Auctions

Christoph Schottmüller

Setup: Independent private value (IPV) auction

- one indivisible object is allocated through an auction
- n bidders
- bidder i draws valuation v_{i} from distribution Φ with continuous density ϕ and support $[0,1]$
- v_{i} is i 's private information
- valuations of bidders are drawn independently
- payoff: $v_{i} x_{i}-t_{i}$
- x_{i} : probability of getting the good
- t_{i} : (expected) transfer that i pays to auctioneer

Second price sealed bid auction (IPV)

- allocation: highest bidder gets object
- transfer: highest bidder pays second highest bid, others pay zero
- how much should a bidder with valuation v_{i} bid?

First price sealed bid (IPV)

- allocation: highest bidder gets object
- transfer: highest bidder pays his own bid, others pay zero
- solve for symmetric BNE in strictly increasing and continuous strategies
- bidder with valuation v_{i} bids $s\left(v_{i}\right)$ which is strictly increasing and continuous
- let t be the inverse of $s, t(b)$ is type bidding b
- given $s()$, what is the probability that bidder i wins the auction when bidding b ?
- what is bider i 's expected payoff when bidding b ?
- what is bidder i's first order condition for optimal bidding?

First price sealed bid (IPV) II

Theorem (Equilibrium)

There exists a symmetric BNE in which all bidders use the bidding strategy

$$
s\left(v_{i}\right)=\int_{0}^{v_{i}}(n-1) x \Phi(x)^{n-2} \phi(x) d x / \Phi\left(v_{i}\right)^{n-1} \quad \text { for } \quad v_{i}>0
$$

and $s(0)=0$.
s is strictly increasing:

$$
\begin{aligned}
s^{\prime}\left(v_{i}\right) & =(n-1) \frac{v_{i} \Phi^{n-2}\left(v_{i}\right) \phi\left(v_{i}\right) \Phi^{n-1}\left(v_{i}\right)-(n-1) \Phi\left(v_{i}\right)^{n-2} \phi\left(v_{i}\right) \int_{0}^{v_{i}} x \Phi(x)^{n-2} \phi(x) d x}{\left(\Phi^{n-1}\left(v_{i}\right)\right)^{2}} \\
& =(n-1) \frac{\phi\left(v_{i}\right)}{\Phi^{n}\left(v_{i}\right)}\left(v_{i} \Phi^{n-1}\left(v_{i}\right)-\int_{0}^{v_{i}}(n-1) x \Phi(x)^{n-2} \phi(x) d x\right) \\
& =(n-1) \frac{\phi\left(v_{i}\right)}{\Phi^{n}\left(v_{i}\right)}\left(v_{i} \Phi^{n-1}\left(v_{i}\right)-\left[x \Phi^{n-1}(x)\right]_{0}^{v_{i}}+\int_{0}^{v_{i}} \Phi^{n-1}(x) d x\right) \\
& =(n-1) \frac{\phi\left(v_{i}\right)}{\Phi^{n}\left(v_{i}\right)}\left(\int_{0}^{v_{i}} \Phi^{n-1}(x) d x\right)>0 \quad \text { if } v_{i}>0
\end{aligned}
$$

Common value auction: setup

- one indivisible object is allocated through an auction
- 2 bidders
- value v of the object is either 1 for all bidders or 0 for all bidders (both probability $1 / 2$)
- bidder i draws signal v_{i} from distribution $\Phi\left(v_{i} \mid v\right)$ with density $\phi\left(v_{i} \mid v\right)$
- $\phi\left(v_{i} \mid 0\right)=2-2 v_{i}$ for $v_{i} \in[0,1]$
- $\phi\left(v_{i} \mid 1\right)=2 v_{i}$ for $v_{i} \in[0,1]$
- v_{i} is i 's private information
- signals of bidders are drawn independently conditional on v
- payoff: $v x_{i}-t_{i}$
- x_{i} : probability of getting the good
- t_{i} : (expected) transfer that i pays to auctioneer

Common value auction: second price sealed bid

$$
\begin{aligned}
& \mathbb{E}\left[v \mid v_{i}\right]=\frac{\phi\left(v_{i} \mid 0\right)}{\phi\left(v_{i} \mid 0\right)+\phi\left(v_{i} \mid 1\right)} 0+\frac{\phi\left(v_{i} \mid 1\right)}{\phi\left(v_{i} \mid 0\right)+\phi\left(v_{i} \mid 1\right)} 1=\left(1-v_{i}\right) 0+v_{i} 1=v_{i} \\
& \phi\left(v_{j} \mid v_{i}\right)=\frac{\phi\left(v_{i} \mid 0\right)}{\phi\left(v_{i}(0)+\phi v_{i} \mid 1\right)} \phi\left(v_{j} \mid 0\right)+\frac{\phi\left(v_{i} \mid 1\right)}{\phi\left(v_{i} \mid+\phi\left(v_{i} \mid 1\right)\right.} \phi\left(v_{j} \mid 1\right)= \\
& \left(1-v_{i}\right)\left(2-2 v_{j}\right)+v_{i}\left(2 v_{j}\right)=2-2 v_{i}-2 v_{j}+4 v_{i} v_{j} \\
& \mathbb{E}\left[v \mid v_{i}, v_{j}\right]=\frac{\phi\left(v_{i} \mid 0\right)\left(v_{j} \mid 0\right)}{\phi\left(v_{i} \mid 0\right) \phi\left(v_{j} \mid 0\right)+\phi\left(v_{i} \mid 1\right) \phi\left(v_{j} \mid 1\right)} 0+\frac{\phi\left(v_{i} \mid 1\right)\left(v_{j} \mid 1\right)}{\phi\left(v_{i} \mid 0\right) \phi\left(v_{j} \mid 0\right)+\phi\left(v_{i} \mid 1\right) \phi\left(v_{j} \mid 1\right)} 1= \\
& \frac{v_{i} v_{j}}{1-v_{i}-v_{j}+2 v_{i} v_{j}}
\end{aligned}
$$

- aside: $\mathbb{E}\left[v \mid v_{i}, v_{j}\right] \leq \mathbb{E}\left[v \mid v_{i}\right]$ if and only if $v_{j} \leq 1 / 2$ (check!)

Equilibrium

Both bidders bidding $s\left(v_{i}\right)=\mathbb{E}\left[v \mid v_{i}, v_{j}=v_{i}\right]$ is a symmetric equilibrium in increasing strategies.
Expected payoff bid $b: \int_{0}^{s^{-1}(b)}\left(\mathbb{E}\left[v \mid v_{i}, v_{j}\right]-\mathbb{E}\left[v \mid v_{j}, v_{j}\right]\right) \phi\left(v_{j} \mid v_{i}\right) d v_{j}$

Common value auction: English auction

- auctioneer continuously increases price starting from zero
- bidders have hands raised at start and drop their hand if they are no longer interested in the item (i.e. if the price is too high)
- the last bidder with his hand raised gets the object at a price equal to the auctioneer price at the time he lowers his hand
- what should you do when you are the only bidder with your hand raised?
- we look for a symmetric equilibrium in strictly increasing strategies
- at what price should i drop his hand given that j still has his hand up in a symmetric equilibrium?

Common value auction: first price sealed bid

- we search for a symmetric equilibrium in strictly increasing and continuous strategies $s\left(v_{i}\right)$
- let t be the inverse of the equilibrium strategy s
- $\operatorname{prob}\left(v_{j} \leq x \mid v_{i}\right)=\int_{0}^{x} \phi\left(v_{j} \mid v_{i}\right) d v_{j}=2 x-2 v_{i} x-x^{2}+2 v_{i} x^{2}$
- $\mathbb{E}\left[v \mid v_{i}, v_{j} \leq x\right]=\int_{0}^{x} \mathbb{E}\left[v \mid v_{i}, v_{j}\right] \frac{\phi\left(v_{j} \mid v_{i}\right)}{\int_{0}^{x} \phi\left(\tilde{v}_{j} \mid v_{i}\right) d \tilde{v}_{j}} d v_{j}=$

$$
\int_{0}^{x} \frac{2 v_{i} v_{j}}{\int_{0}^{x} 2-2 v_{i}-2 \tilde{v}_{j}+4 v_{i} \tilde{v}_{j} d \tilde{v}_{j}} d v_{j}=\frac{v_{i} x}{2-2 v_{i}-x+2 v_{i} x}
$$

- i's expected payoff when bidding b (given that j uses equilibrium strategy s):
$\operatorname{prob}\left(v_{j} \leq t(b)\right) *\left(\mathbb{E}\left[v \mid v_{i}, v_{j} \leq t(b)\right]-b\right)=$
$\left(2 t(b)-2 v_{i} t(b)-t(b)^{2}+2 v_{i} t(b)^{2}\right) *\left(\frac{v_{i} t(b)}{2-2 v_{i}-t(b)+2 v_{i} t(b)}-b\right)=$ $v_{i} t(b)^{2}-\left(2 t(b)-2 v_{i} t(b)-t(b)^{2}+2 v_{i} t(b)^{2}\right) b$
- i's first order condition for an optimal bid:
$2 v_{i} t(b) t^{\prime}(b)-\left(2 t(b)-2 v_{i} t(b)-t(b)^{2}+2 v_{i} t(b)^{2}\right)-b * t^{\prime}(b)(2-$ $\left.2 v_{i}-2 t(b)+4 v_{i} t(b)\right)=0$
- in symmetric equilibrium: $t(b)=v_{i}, t^{\prime}(b)=1 / s^{\prime}\left(v_{i}\right)$,

$$
b_{i}=s\left(v_{i}\right), s(0)=0
$$

