Nash Equilibrium

Christoph Schottmüller

Nash equilibrium (NE)

Definition (Nash equilibrium)

A strategy profile (s_1, \ldots, s_l) is a Nash equilibrium of game $\Gamma = [I, \{S_i\}, \{u_i\}]$ if for every $i = 1, \ldots, l$

$$u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$$

for all $s'_i \in S_i$.

• mutual best response: let $b_i(s_{-i})$ be $\{s_i \in S_i : u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \text{ for all } s'_i \in S_i\}$; then NE is an action profile (s_1, \ldots, s_l) such that $s_i \in b_i(s_{-i})$ for all i

Nash equilibrium: interpretations

- non-paternalistic prediction
- self enforcing agreement
- stable steady state (convention)

mixed strategy Nash equilibrium

Definition (mixed strategy Nash equilibrium)

A mixed strategy Nash equilibrium of the game $\Gamma = [I, \{S_i\}, \{u_i\}]$ is a Nash equilibrium $(\sigma_1, \ldots, \sigma_I)$ in the game $\Gamma = [I, \{\Delta S_i\}, \{u_i\}]$, i.e. for every $i = 1, \ldots, I$

$$u_i(\sigma_i, \sigma_{-i}) \geq u_i(\sigma'_i, \sigma_{-i})$$

for all $\sigma'_i \in \Delta S_i$.

by linearity of expected utility, (σ₁,...,σ_l) is a mixed Nash equilibrium if and only if every action in the support of σ_i is a best response to σ_{-i}

Existence of Nash equilibrium

not all games have a Nash equilibrium

Example (non-existence of NE)

- 2 players (*I* = {*P*1, *P*2})
- each player says a number $(S_i = \Re)$
- player that says the higher number wins

 (e.g. winner has payoff 1 while loser has payoff 0, if both say
 the same number each has payoff 1/2)

Existence

Why are we interested in existence of NE?

- worthwhile to search for an equilibrium
- steady state interpretation of equilibrium, existence of NE says that the process might become stable
- sometimes possible to do comparative statics without computing the NE (only sensible if NE exists)

Fixed point theory I

Definition (Fixed point)

Let f be a real function, i.e. $f : S \to \Re$ where $S \subseteq \Re$. A point $s \in S$ is a *fixed point* of f if f(s) = s.

- Does f(x) = 1 have a fixed point? What about f(x) = x + 1? What about $f(x) = x^2$?
- fixed point theory gives general conditions under which functions have fixed points
- fixed points for functions from $f: S \to \Re^n$ where $S \subseteq \Re^n$ are defined analogously

Fixed point theory II

Theorem (Brouwer's fixed point theorem (1-dimensional)) Let $f : [0,1] \rightarrow [0,1]$ be a continuous function. Then f has a fixed point.

Fixed point theory III

Example (Cournot)

- two firms each choose a quantity q_i
- both firms have costs $c(q_i) = cq_i$ for some c > 0
- inverse demand is $P(q_1 + q_2)$ where we assume that P is two times continuously differentiable with P' < 0 and $P'' \le 0$
- assume that P(1) < c \Rightarrow a firm will never offer a quantity greater than 1
- $\bullet\,$ firm 1 chooses a quantity from [0,1] to maximize profits

$$\max_{q_1}(P(q_1+q_2)-c)q_1$$

we get the first order condition

$$P'(q_1+q_2)q_1+P(q_1+q_2)-c=0$$

Fixed point theory IV

Example (Cournot (continued))

• the second order condition holds by assumption

$$P^{\prime\prime}(q_1+q_2)q_1+2P^{\prime}(q_1+q_2)<0$$

- the first order condition defines a best response function $q_1(q_2)$
- \bullet the best response function is continuous because P and P^\prime are continuous by assumption
- Brouwer: best response function has a fixed point!
- $\bullet\,$ game is symmetric $\Rightarrow\,$ fixed point is an equilibrium $\Rightarrow\,$ equilibrium exists
- We showed this without being able to actually calculate the equilibrium!

Fixed point theory V

Theorem (Brouwer fixed point theorem)

Let S be a convex and compact set in \Re^n and let $f : S \to S$ be a continuous function. Then there exists an $s^* \in S$ such that $f(s^*) = s^*$.

Nash theorem

Theorem (Nash theorem)

A strategic game $[I, \{S_i\}, \{u_i\}]$ with

- a finite number of players
- a finite number of actions for each player

has a Nash equilibrium in mixed strategies.

- proof uses Brouwer's fixed point theorem
- \bullet to simplify notation, we prove the theorem for 2×2 games

Proof of Nash theorem for 2×2 games I

• 2×2 game:

	L	R	
U	a,b	c,d	
D	e,f	g,h	

- mixed strategy of P1: probability $\alpha \in [0,1]$ of playing U
- mixed strategy of P2: probability $\beta \in [0,1]$ of playing L
- idea of proof:
 - define a function $f:[0,1] \times [0,1] \to [0,1] \times [0,1]$ such that
 - f is continuous
 - if $f(\alpha^*,\beta^*) = (\alpha^*,\beta^*)$, then (α^*,β^*) is a Nash equilibrium of the game
 - use Brouwer's theorem to establish that f has a fixed point

Proof of Nash theorem for 2×2 games II

- $u_1(U,\beta) = \beta a + (1 \beta)c$ is the expected utility of P1 when playing U and P2 uses the mixed strategy β
- $u_1(U,\beta)$ is linear and therefore continuous in β
- define

$$g(\alpha,\beta) = max\left\{0, \frac{\alpha + u_1(U,\beta) - u_1(D,\beta)}{1 + |u_1(U,\beta) - u_1(D,\beta)|}\right\}$$

- $g(\alpha, \beta)$ is higher than α if U is the best response to β and lower than α if D is best response
- g is continuous because u_1 is continuous in β
- define

$$h(\alpha,\beta) = max\left\{0, \frac{\beta + u_2(L,\alpha) - u_2(R,\alpha)}{1 + |u_2(L,\alpha) - u_2(R,\alpha)|}\right\}$$

- h(α, β) is higher than β if L is best response to α and lower than β if R is best response
- *h* is continuous because u_2 is continuous in α

Proof of Nash theorem for 2×2 games III

let f be defined by

$$f(\alpha,\beta) = (g(\alpha,\beta), h(\alpha,\beta))$$

if f(α*, β*) = (α*, β*) then
g(α*, β*) = α* ⇒ α* is best response to β*
h(α*, β*) = β* ⇒ β* is best response to α*
(α*, β*) is Nash equilibrium
every fixed point of f is Nash equilibrium

- f is continuous because g and h are continuous
- Brouwer: f has a fixed point

Generalization of Nash's theorem

Theorem (Nash theorem)

A strategic game $[I, \{S_i\}, \{u_i\}]$ with

- a finite number of players
- a convex and compact action set S_i (for all i)
- continuous utility functions u_i

has a Nash equilibrium in mixed strategies (and in pure strategies if all u_i are quasi-concave in s_i).