Imperfect Information in Health Care Markets

Exercise Session 9 - Genetic Tests, Premium Risk and Risk Adjustment

Exercise 17 c)

Consider now a profit maximizing insurance monopolist. How does your answer in a) and b.1) and b.2) change?

Exc. 17c)
Remember from a): RP $=\frac{1}{4}$ without the test expected coots

in 6.1): $R P=\frac{3}{16}$ for both types
\Rightarrow the monopolist will offer the compacts

$$
P_{h}^{\text {non }}=0,75 \cdot 5+\frac{3}{16}=\frac{63}{16}, q_{n}^{\text {mon }}=1 \quad \text { for the high tope }
$$

and $\quad P_{e}^{\text {mon }}=0,25 \cdot 5+\frac{3}{16}=\frac{23}{16}, q_{e}^{\text {mon }}=1$ for the los type
RP
in 6.2): profits a the neroopest from each cautiact are $\pi=\frac{\pi}{16}<\frac{1}{4}=\pi_{\text {what tops }}$
exp. utility of the high tope: $E_{h}(u)=\sqrt{9-\frac{63}{16}}=\sqrt{\frac{81}{16}}=\frac{9}{4} \quad \rightarrow$ on average, E(u) $=\frac{10}{4}=2,5$,
-4 low type: $\quad E_{l}(u)=\sqrt{9-\frac{23}{16}}=\sqrt{\frac{121}{16}}=\frac{\mu}{4}$
the sure whity consumers had without the test

Exercise 18

In Germany (private) health insurers are required to charge a constant premium over the life cycle. We use the premium risk model from the lecture: 2 periods, income W in each period, everyone has low risk α_{l} of a loss L in period 1 , probability $1-\lambda$ of an increase of risk to α_{h} in period 2, perfect competition, $0<\lambda<1$.
a) Calculate the constant premium that yields zero expected profits to insurers under the assumption that no one switches insurers in period 2.

Exc. 18 al
What are the expected costs for the issuance in period 1 and 2?
Tu period 1: $\quad \alpha_{e} \cdot L$
In period 2: $\quad\left(\lambda \cdot \alpha_{e}+(1-\lambda) \cdot \alpha_{n}\right) \cdot L$
\Rightarrow to make exactly zero profits, insurances will charge the consfout premium

$$
P=\frac{\frac{\alpha_{l}+\lambda \cdot \alpha_{l}+(1-\lambda) \cdot \alpha_{u}}{2} \cdot L}{\text { average expected copts per }} \begin{aligned}
& \text { period }
\end{aligned}
$$

Exercise 18 b)

Given the premium from the previous subquestion, what would happen if consumers could switch insurers in period 2?

Exc. 18b)
low risk types would count to switch insurers as $\alpha_{e}<\frac{\alpha_{c}+\lambda \alpha_{e}+(a-\lambda) \alpha_{n}}{2}$ $S_{\text {in period } 2}$
and insurances would offer them contracts at premium α_{l} due to perfect conception.

Exercise 18 c)

Compare the premium of the first subquestion with the premiums under "guaranteed renewal". What are the implications?

Exc. 18c)
guaranteed revival: the insurance guarantees the same premium in the second as in the first period for sone fee the consumer pays in the first period (additional to his premise)
\rightarrow consumer pays for the risk of an increase in risk level in period 2 already in period 1 , hence us one has an incentive to switch in period 2
premial under guaranteed renewal:

$$
\begin{aligned}
& P_{1}^{g}=\alpha_{\substack{\downarrow \\
\text { fair inmumace } \\
\text { penmen }}}^{\alpha_{l} \cdot L}+\underbrace{(1-\lambda)\left(\alpha_{4}-\alpha_{l}\right) \cdot L}_{\begin{array}{r}
\text { fee for premium guarrutfee } \\
\text { expected added cost for insurances } \\
\text { in period } 2
\end{array}} \\
& P_{2}^{g}=\alpha_{l} \cdot L
\end{aligned}
$$

implications: wow, the consumer pays in total a higher amount in period 1 and a lower amount in period 2. This might lead to budget constraints.

Exercise 18 d)

Suppose now that in period 2 everyone's health deteriorates. More precisely, assume that the risk is $\alpha_{m}>\alpha_{I}$ with probability λ and $\alpha_{h}>\alpha_{m}$ with probability $1-\lambda$.

1. Calculate the constant premium that yields zero profits to insurers (without switching).
2. Compare it to the premiums with "guaranteed renewal".

Exc. 18d)

1. constant premium that yields zero profits to isfarers:

$$
p^{\text {cost }}=\frac{\alpha_{l}+\lambda \alpha_{m}+(1-\lambda) \alpha_{m}}{2} \cdot L
$$

2. guaranteed renewal: (where the lower premium $\alpha_{m} \cdot L<\alpha_{n} \cdot L$ is guarantied

$$
\begin{aligned}
& p_{1}^{g}=\alpha_{l} \cdot L+(1-\lambda)\left(\alpha_{n}-\alpha_{m}\right) \cdot L \\
& p_{2}^{g}=\alpha_{m} \cdot L
\end{aligned}
$$

- noe: for $\alpha_{m} \approx \alpha_{n}$ being very lane compare to α_{l},
 $p^{\text {canst }}<\rho_{2}^{g}$ is passible. So you would pay more in the second period
\Rightarrow in general, it is not so dear whether budget constraints are relaxed more by the constant premium

Exercise 20

Suppose the population consists of two types $/$ and h with the expenditure distribution for each type as in the table below. In this exercise we measure the incentive of an insurance to engage in risk selection by the difference in expected expenditures.
a) Calculate the expected expenditures per risk type and the incentives to engage in risk selection.

risk/expenditure	0	10	30
l	40%	10%	50%
h	10%	50%	40%

Exc. 20 a)
Expected expenditures
for the l.type: $\quad 0,4 \cdot 0+0,1 \cdot 10+0,5 \cdot 30=1+15=16$
for the h-tgpe: $\quad 0,1 \cdot 0+0,5 \cdot 10+0,4 \cdot 30=5+12=17$
incentive to only insure the los risk types (incentive to engage in risk selection) is surall since $17-16=1$.

Exercise 20 b)

Consider a risk adjustment scheme that covers all expenditures above 20 (i.e. all expenditures above 20 are covered by some common fund to the extent that they exceed 20). Calculate the expected expenditures per risk type that an insurer has to cover himself and the incentives to engage in risk selection. What is the idea behind such a risk adjustment scheme?

risk/expenditure	0	10	30
l	40%	10%	50%
h	10%	50%	40%

Exc. 20 b)
idea behind such ascheme: Take assay incentives to not contract high risk types exp. expenditures with this scheme:
because 10 are covered by common fund

$$
\begin{aligned}
& l \text {-type: } 0,1 \cdot 10+0,5 \cdot 20=11 \\
& \text { h-type: } 0,5 \cdot 10+0,4 \cdot 20=13
\end{aligned}
$$

\Rightarrow higher incentives to engage in risk selection (13-11 $=2$)

Exercise 20 c)

Consider a risk adjustment scheme that covers all expenditures up to 8 (i.e. all expenditures up to 8 are covered by some common fund). Calculate the expected expenditures per risk type that an insurer has to cover himself and the incentives to engage in risk selection.

risk/expenditure	0	10	30
I	40%	10%	50%
h	10%	50%	40%

Exc. 20 c
expected expenditures:
l-type: $\quad 0,1 \cdot 2^{\lambda^{10-8}}+0,5 \cdot 22^{30-8}=11,2$
h-type: $0,5 \cdot 2+0,4 \cdot 22=9,8$
\Rightarrow incentives to engage in risk selection are reversed and bigger than in a).

$$
(11,2-9,8=1,4)
$$

Exercise 20 d)

Consider expenditure distributions that satisfy the following conditions: $p_{h}^{30}>p_{l}^{30}$ and $p_{h}^{10}+p_{h}^{30} \geq p_{l}^{10}+p_{l}^{30}$ where p_{h}^{30} is the probability that a high risk type has expenditures 30 and so on.

- Show that the incentives to engage in risk selection are decreased by a risk adjustment scheme as in b) for all such distributions.
- Show that the incentives to engage in risk selection are decreased by a risk adjustment scheme as in c) for all such distributions.

risk/expenditure	0	10	30
I	40%	10%	50%
h	10%	50%	40%

Exc. 20 d$)$
for both schemes in 61 and c)
First note: The expenses for the high type will be always bigger then those for the low type with such expenditure distributions: expected exp. for h-type: $p^{10} \cdot 10+\rho_{n}^{30} \cdot 30=\left(\rho^{10}+\rho^{30} 20\right.$ scheme of b)
 $10+\mathrm{Pe} \cdot 20 \quad$ for light type are
2
10
scheme of c)

- in a risk adjustment scheme as in b), the 4-type gets subsidized more since there is a higher share of people consing expenditimes above $20\left(\mathrm{p}_{4}^{30}>\mathrm{p}_{e}^{30}\right)$
\Rightarrow lover incentives to engage in ike selection, as the difference in exp. expenditures decreases
- also in a risk adjustment as in c), the k-type gets subsidized (weakly) more, since $p_{h}^{30}+p_{h}^{10} \geq p^{30}+p_{e}^{10}$.
\Rightarrow lower incentives to engage in risk selection

Exercise 19

Discuss the advantages and disadvantages of using "last year health care expenditures of insured" as an explanatory variable in a risk adjustment scheme.

ExC. 19
advantages: - reduces the incentives for insurances to engage in risk selection (but this might be achieved with other measures as well)

- in theory, much higher prediction power as health care expenditures tend to be serially conelated
disadvantages: - reduced incentives for insurers to cut costs (high expenditures today lead to high payments next year)
\Rightarrow more wast has to be expected
- variable not available for new inflow (Kids, people from abroad,...)
- different insurances have different age distributions in their insurance porer. There might be affected ditterntely one gear later.
Condusion: - expenditure should not include administrative costs or costs of tonus benefits (gym subscription,-)
- HCC might be a better measure since it is harder for the insurance to misrepresent it L, "hierarchical coexisting conditions"

Exercise 21

Compare adverse and advantageous selection.

Exc. 21
Adverse Selection: People have and use private information about heir own risk
\Rightarrow people who bug issurnace lave lighter risk on average (compared to whole population)
Advantageous Selection: There is a variable (e.g. niskaversion) that is positively correlated with the probability to bay an insurance and negatively correlated with risk
\Rightarrow people shes buy insurance have lower risk on average
Comparison: Both are about selection (whoso buys insurance)
$~$ risksecction vs riskavesison selection: different implication for the conception of issuance purchase (adverse) (adiantageons) and expected health care expenditures
\sim reality seems to be a mix of both
\sim differ in welfare implications: under adverse selection, too few people by y insurance and this is not necessarily true under adruatageoss selection

