Imperfect Information in Health Care Markets

Exercise Session 11 - Moral Hazard

Exercise 26

$$
D=200 \$, \quad \mu=10.000 \$
$$

Health insurance plans can often be described by a deductible D, a copayment rate c and a maximal out of pocket amount M : Up to D all expenditures are paid by the insured, for every $\$$ spent between D and M the insured pays c and the insurance bears all expenses above M. ${ }^{1}$ Assume that consumers act as to maximize the utility function cons $-0.5(2-s-t)^{2}$ where cons is consumption, i.e. all money left to the consumer after paying for treatment $t \in[0,2-s]$, and $s \leq 1$ is a health state. Assume that the consumer has an initial wealth of 4 (net of the insurance premium) and therefore consumption is $4-t$ if he has no insurance.
a) Suppose the consumer has no insurance (or equivalently $D>4$). How much treatment will he buy in health state $s \in[0,1]$?

[^0]Exc. 26
a)

To find the osfinal freatuant decision t (chemeding ons), we eook for the anome where the margical benefits (μB) equal the margicual cosfs (μC)

$$
\begin{aligned}
& \left.\begin{array}{l}
\mu B \stackrel{!}{=} \mu C \quad(\text { cous }=4-t) \\
2-s-t=1
\end{array} \quad \right\rvert\, \begin{array}{l}
\text { mathe maticel apprach: Take fiof } \\
t \in[0,2-5]
\end{array} 4-t-0,5(2-5-t)^{2} \\
& \left.\Leftrightarrow \begin{array}{l}
2-s-t=1 \\
l=\frac{\partial\left(-0,5(2-s-t)^{2}\right)}{d t}
\end{array} \frac{\partial t}{\partial t} \quad \right\rvert\, \begin{array}{l}
t \in[0,2-5] \\
F O C=-1-0,5 \cdot 2(2-s-t) \cdot(-1)=0 \\
\Leftrightarrow-1+(2-s-t)=0
\end{array} \\
& \Leftrightarrow t=1-s \text { (which is in }[0,1] \text { for } s \in[0,1] \text {) } \Leftrightarrow 2-s-t=1
\end{aligned}
$$

\longrightarrow consumer will buy treafnent of the anoount $t=1-5$.

Exercise 26

b) Suppose the consumer has a coinsurance rate of $c \in[0,1)$ while $D=0$ and $M=\infty$. How much treatment will he buy in health state $s \in[0,1]$?
c) Now let $D=0.5, c=1 / 2$ and $M=\infty$. How much treatment will the consumer buy in health state $s \in[0,1]$?
d) Think now about expected expenditure at the time of insurance purchase (i.e. we do not know the health state yet). Under which conditions on the distribution of health states will an increase in the deductible reduce expected expenditures? What does this imply for the effectiveness of small deductibles in reducing expected expenditures?

Exc. 26
b) With a copayment rate of $C \in[0,1)$, we get:

$$
M B \equiv M C
$$

$\Leftrightarrow 2-s-t=c \rightarrow$ for 1 Ed tratemat, Joule pay $c \in(c<1)$
$\Leftrightarrow t=2-c-s \quad$ (thesis >0, since $s \in[0,1]$)
C) There are now 2 relevant cases depending on t.

First care: $\quad t \leq 0,5 \rightarrow$ dedenctitle 0
$\rightarrow \mu B \doteq \mu c \Leftrightarrow 2-s-t=1$
$\Leftrightarrow t=1-s \quad$ Conley consistent, if $s \geq 0,5$)
Second case: $\quad t>0,5$

So in total, for $s<0,5$, it is clear that we tale $t=1,5-s$ as a treatment choice.
For $s \geq 0,5$, we compare the athitities of spending $t=1, s$ and $t=1,5-s$:

$$
\frac{1}{8}=0,125
$$

$$
\begin{aligned}
& u(1-5)=4-(1-5)-0,5 \cdot 1^{2}=2,5+5 \quad(\text { for } 520,5,1-5 \text { is } \leq \text { the deductible } 0,5) \\
& u(1,5-5)=4-\left(0,5+\frac{1,5-5-0,5)}{2}-0,5(2-5-(1,5-5))^{2}=2,875+\frac{5}{2}(\text { for } 5 \in[0,5 ; 1], \text {, wharve }\right. \\
& u(1,5-5 \geq 0,5)
\end{aligned}
$$

From this, we case that for highs (e.g. sc 1), we prefer $t^{2}=1-s^{\frac{3}{2}}$ and for lows s_{1} we prefer $t=1,5-s$. The thrertuld is given by $2,5+5=2,875+\frac{5}{2}$

$$
\Leftrightarrow \frac{s}{2}=0,375 \Leftrightarrow s=0,75
$$

Exc. 26 c)

26.d) Consider an increase in the deductible from D_{1} to D_{2}. Then, expenditures are only affected if health states in which we want to spend between D_{1} and D_{2} (under D_{1}) have positive probability/share in the population.
Otherwise, there is uss difference between D_{1} and D_{2}.
\Rightarrow small deductibles have practically no effect on expenditures as they can prevent only small expenditures and have us effect on big spenders that cause the majority of loath care expenditures.

Exercise 27

Suppose a study like the RAND health insurance experiment could be redone for $\$ 200$ million. On what should the new study focus, i.e. how should it be different from the old one? Do you think it would be worth the money?

Exc. 27
What sack a ness ithedy could focus on:

- Potential for consumers to shop for value in heath care
- inpatient care that may or may not be prevcuted by geverons dey benefits
- mental health treatment approaders
- health savings accounts
- other forms \& cost sharing (e.g. in Germany the "Ouardalspausciale")
- maybe focus more or deductibles rather than copayment
\Rightarrow Could well be worth the money since pestential savings are very high

Exercise 28

A consumer has wealth $W=64$ and faces a potential loss of $L=15$. The consumer has to decide whether to "be careful" or not. If he is careful, the loss realizes with probability $1 / 4$. If he is not careful, the loss realizes with probability $1 / 2$. Being careful costs (the money equivalent of) 1 unit of income. (The consumer is a risk averse expected utility maximizer and you can assume $u(x)=\sqrt{x}$.)
a) Consider the situation where the consumer is not insured. Will he be careful?
b) Consider the situation where the consumer is fully insured at premium $p>0$. Will he be careful?

Exc. 28
a) Consumer is careful:

$$
\begin{aligned}
E(u) & =\frac{3}{4} u\left(\omega-C^{c o s t}+\right.\text { being cretin } \\
& =\frac{1}{4} \cdot u(\omega-L-1) \\
& =\sqrt{63}+\frac{1}{4} \cdot \sqrt{48}=7,68
\end{aligned}
$$

consumer is not careful:

$$
\begin{aligned}
E(u) & =\frac{1}{2} \cdot u(w)+\frac{1}{2} \cdot u(w-L) \\
& =\frac{1}{2} \cdot \sqrt{64}+\frac{1}{2} \cdot \sqrt{49}=7,5
\end{aligned}
$$

\Rightarrow the consumer will be caredde if he has no insurance
b) with full coverage insurance:

$$
\begin{aligned}
& E(u)_{\text {careful }}=u(w-p-1) \\
& E(u)_{\text {careless }}=u(w-p)>E(u)_{\text {careful }}
\end{aligned}\left\{\begin{array}{l}
\text { he will wot be carehle } \\
\text { due to moral hazard }
\end{array}\right.
$$

Note: Being careful is socially desirable as the expected benefit is $\frac{15}{4}$ and costs are only 1.
$S_{\text {probability of losing } 15}$ reducer by $\frac{1}{4}$

Exercise 29

A consumer with Bernoulli utility $u(x)=-x^{2}+10 x$ has wealth $W=4$ and faces a potential (money equivalent) loss $L=2$ which realizes with probability $\alpha=1 / 2$. If the loss realizes the consumer can (partially) make up for the loss by treatment $M \in[0,2]$. The insurance will cover $q M$ of these treatment expenditures for some coverage rate $q \in[0,1]$. Treatment M will mitigate the loss to $L-2 M+M^{2} / 2$.
a) If the consumer is ill, what treatment intensity $M^{*}(\boldsymbol{q})$ will he choose?
b) (numerical) Assume that the insurance premium is fair, i.e. $p=\alpha q M^{*}(q)$. Write down the consumers expected utility. Which q maximizes expected consumer utility? How and why does this result differ from models without moral hazard?

Exc. 29
a) First, cute that $u^{\prime}(x)=-2 x+10>0$ for $x<5$
\rightarrow alt) is a positive monotone transformation of x in this case (as income will be between O and 4) $4 \tilde{u}(x)=x$
\Rightarrow If the consumer is ill, he solves the following problem: (as we can demo justure the utility function $u(t)=x$)

$$
\begin{gathered}
\max _{M \in[0,2]} W-p-\frac{L+2 \mu-\frac{\mu^{2}}{2}}{L \text { (mitigheded) loss part }}- \\
F O C: \quad 2-\mu-(1-q)=0 \\
\Leftrightarrow \mu^{*}(q)=1+9
\end{gathered}
$$

$$
\begin{aligned}
& f(1-\alpha) u\left(\omega-\underset{\text { proving }}{\left.\alpha q q^{\mu}(q)\right)}\right. \\
& \text { hov care }
\end{aligned}
$$

Optimal coverage level with Moral Hazard

29. b) (continued)

This result is interesting since without moral hazard, a risk - averse consumer would always prefer more coverage over les coverage (af a fair precuimu).
The problem here is that with higher coverage, the consumer adjusts his behavior (overconsumption) and pays a higher premium (which he dislikes).
This is shy the optimal coverage level for the consumer with the presence of moral hazard is smatter then 1 (partial concage oily).

[^0]: ${ }^{1}$ Hence, the total copayment if expenditures are x is x if $x \leq D$; is $D+c(x-D)$ if $D<x<M$ and is $D+c(M-D)$ for $x \geq M$.

