Imperfect Information in Health Care Markets

Exercise Session 1

Sophia Hornberger

09.10 .2023

Course Information

- Material can be found on GitHub
- Prerequisites: High school level math knowledge
- Solve linear and quadratic equations
- Take derivatives and know their interpretation
- Integrate simple functions
- What is a distribution
- Calculation of expected value and variance
- Refresh your knowledge if necessary
- Contact Address: hornberger@wiso.uni-koeln.de

Advice for Understanding the Material

- Work on the exercises beforehand (but do not be discouraged if you cannot solve them)
- Study in groups if that is beneficial to you
- Solve the exercises yourself after the exercise session
- Make sure you understand and can apply the mathematics steps/tools as well as the economic concepts and intuition taught in the lecture
- The exam will ask you to transfer your built up knowledge to new exercises
- Ask questions if anything is unclear

Exercise 1

1. Recall the notion of a random variable and how to compute the expected value of discrete and continuous random variables.
2. Let X and Y be two random variables with $Y \sim U([0,1])$ and X taking a value of 1 with the probability 0.4 and a value of 0 with the probability 0.6 . Calculate $\mathbb{E}(X)$ and $\mathbb{E}(2 Y)$.
3. Consider the random experiment "rolling a regular die once" and define a random variable Z that gives the number that is rolled. How is Z distributed? Assume that you receive a payment of z^{2} when the die shows the number z. What is the expected payment you get?

Random Variable:
A variable whose possible values are numerical outcomes of a random phenomenon

Typically represented by a capital letter (e.g. X, Y)
A random variable X is a map $X: \Omega \rightarrow \mathbb{R}$
set of events that can occur
\rightarrow Two types: discrete and continuous random variables

Discrete random variable
\rightarrow number of possible outcomes/ events is countable
\rightarrow finite number of distinct values
Example: number of patients in a doctor's office on a given day

Expected value:

$$
E(x)=\sum_{i=1}^{n} \overbrace{i}^{n} \overbrace{\text { pass }}^{\text {valobability }}
$$

where x_{1}, \ldots, x_{n} are the values that X can take

Example:
Suppose a variable X can take the values $1,2,3$ or 4 . The probabilities associated with each outcome are described by the following table:

Outcome	1	2	3	4
Probability	0,1	0,3	0,4	0,2

What is the expected value?

$$
\mathbb{E}(x)=0,1 \cdot 1+0,3 \cdot 2+0,4 \cdot 3+0,2 \cdot 4=2,7
$$

Continuous random variable
\rightarrow there are infinitely many possible outcomes
Example: height of a person or weight
A continuous random variable is not defined at specific values.
Instead, it is defined over an interval of values and is represented by the area under a curve (integral)
The probability of observing any single value is O, since the number of values the random variable could take is infinite.
Expected value:

$$
\mathbb{E}(x)=\int_{a}^{b} x \cdot \underbrace{f(x)}_{\text {probability }} d x
$$

probability density function (pdf) of x \rightarrow gives the probability density at leach pant in the interval

Example:
Suppose X is a continuous random variable defined on the interval $[0,1]$
pdf: $\quad f(x)=2 x \quad$ for $0 \leq x \leq 1$

$$
f(x)=0 \quad \text { otherwise }
$$

What is the expected value?

$$
\begin{aligned}
\mathbb{E}(x)= & \int_{a}^{b} x \cdot f(x) d x=\int_{0}^{1} x \cdot 2 x d x=\int_{0}^{1} 2 x^{2} d x=\left[\frac{2}{3} x^{3}\right]_{0}^{1} \\
= & \begin{array}{l}
\frac{2}{3} \\
\text { integaten: }^{1} \\
\int x^{n} d x=\frac{1}{n+1} x^{n-1}
\end{array}
\end{aligned}
$$

1.2
$\mathbb{E}(x)$

$$
\begin{aligned}
& P(x=1)=0,4 \\
& P(x=0)=0,6
\end{aligned}
$$

$$
\mathbb{E}(x)=\sum_{i=0}^{1} x_{i} \cdot P\left(x=x_{i}\right)=0 \cdot 0,6+1 \cdot 0,4=0,4
$$

EE(2y): $\quad y \underset{\substack{\text { is daribated as }}}{\sim}(0,1]) \rightarrow$ Uniform distribution
cumulative distribution function: caff
Gives the answer to:
"What is the probability that y is weakly less than some value y ?

$$
F(y)=0,3
$$

\rightarrow The probability of y being less than y is 0,3 .
The derivative of ${ }^{F}$ is called the probability
density function pdf density function pdf (f)

For $\quad y \sim v([0,1])$
cd f.

$$
F(y)= \begin{cases}0 & \text { for } \quad y<0 \\ y & y \in[0,1] \\ 1 & y>1\end{cases}
$$

$p d f$

$$
f(y)= \begin{cases}1 & y \in[0,1] \\ 0 & \text { else }\end{cases}
$$

Any interval of numbers of equal length has an equal probability of being observed.

Example: Fix an interval of length 0,1
The probability that y falls in the subinterval [0.2, 0.3] is the same as the probability that y falls in $[0.55,0.65]$.

$$
\begin{aligned}
\mathbb{E}(y) & =\int_{a}^{b} y f(y) d y=\int_{0}^{1} y f(y) d y=\int_{0}^{1} y \cdot 1 d y=\left[\frac{1}{2} y^{2}\right]_{0}^{1} \\
& =\frac{1}{2} \cdot 1^{2}+\frac{1}{2} \cdot 0=\frac{1}{2} \\
\mathbb{E}(2 y) & =\int_{0}^{1} 2 y \cdot f(y) d y=\int_{0}^{1} 2 y \cdot 1 d y=\left[y^{2}\right]_{0}^{1}=1^{2}-0^{2}=1
\end{aligned}
$$

1.3

Random experiment: roll a regular die once What is the set of outcomes?

$$
\Omega=\{1,2,3,4,5,6\}
$$

Define a random variable z :

$$
Z: \Omega \rightarrow \mathbb{R}
$$

How is Z distributed?
The die is regular

$$
\Rightarrow z \sim \operatorname{Unif}(\{1,2,3,4,5,6\})
$$

\rightarrow Uniform distribution in the discrete case
Z^{2} is the random variable that defines our payment.
Expected payment :

$$
\begin{aligned}
\mathbb{E}\left(z^{2}\right) & =\sum_{i=1}^{6} i^{2} \cdot P(z=i) \\
& =1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+3^{2} \cdot \frac{1}{6}+4^{2} \cdot \frac{1}{6}+5^{2} \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6} \\
& =\frac{1}{6}(1+4+9+16+25+36)=\frac{1}{6} \cdot 91 \\
& =15,1667
\end{aligned}
$$

Exercise 2

1. Let $f(x, y)=y^{2} \ln (x)-y$. Compute $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$. What is the geometric interpretation $\frac{\partial f(x, y)}{\partial x}$?
2. Recall the definition of concave functions in one real variable.
3. Compute $\max _{x \in \mathbb{R}} g(x)$ with $g(x)=-2 x^{2}+32 x+7$.
2.1 Partical derivatives:

$$
\begin{aligned}
& f(x, y)=y^{2} \ln (x)-y \\
& \frac{\partial f(x, y)}{\partial x}=y^{2} \cdot \frac{1}{x}-0=\frac{y^{2}}{x} \\
& \frac{\partial f(x, y)}{\partial y}=2 y \ln (x)-1
\end{aligned}
$$

Geometric interpretation:
How does a function change with respect to one of its independent variables while keeping the other

For $\frac{\partial f(x, y)}{\partial x}$?
2.1: 3D Plot

$$
f(x, y)=y^{\wedge} 2 * \ln (x)-y
$$

Definition: A function f is called concave, if

$$
f(\alpha x+(1-\alpha) y) \geq \alpha \cdot f(x)+(1-\alpha) f(y)
$$

\rightarrow If you draw a straight line comeding any two points on the graph of rate function, the tine will always be below the graph.
fa)

For differentiable functions: $\quad f$ concave $\left\langle\Rightarrow f^{\prime \prime} \leq 0\right.$
2.3

$$
\max _{x \in \mathbb{R}} g(x) \text { with } g(x)=-2 x^{2}+32 x+7
$$

How do we derive the maximum?
First-order-condition (FOC):

$$
\begin{aligned}
& g^{\prime}(x)=0 \\
& g^{\prime}(x)=-4 x+32=0 \\
& \Leftrightarrow \quad 32=4 x \\
& \rightarrow \quad 8=x
\end{aligned}
$$

Second-arder-condition (SOC): $g^{\prime \prime}(x)<0$
$g^{\prime \prime}(x)=-4<0 \quad \Rightarrow$ the maximum is attained at $x=8$
the maximum value is: $g(8)=-2 \cdot 8^{2}+32 \cdot 8+7=-128+256+7=135$

Some helpful notes on mathematical tools

Types of numbers
Natural numbers: $\mathbb{N}=\{1,2,3,4, \ldots\}$
Integers : $\mathbb{Z}=\{0,-1,1,-2,2,-3,3, \ldots\}$
Rational numbers: $Q=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}\right\}$
Real numbers: \mathbb{R} all rational and irrational numbers
Summation sign:
\rightarrow abbreviation of a Sum
$\sum_{i=m}^{n} a_{i}:=a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n} \quad$ where $a_{i} \in \mathbb{R}$ for all i

Calculations with fractions
$\frac{p}{q} \rightarrow$ numerator
Multiplication: $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}$
Addition: $\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}$
Addition without the same denominator: $\frac{a}{b}+\frac{c}{d}=\frac{a \cdot d}{b \cdot d}+\frac{b \cdot c}{b \cdot d}=\frac{a d+b \cdot c}{b \cdot d}$
Division: $\quad \frac{a}{b}: \frac{c}{d}=\frac{\frac{a}{b}}{c}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a \cdot d}{c \cdot d}$

Pover Laws

$$
\begin{aligned}
& a^{0}=1 \\
& a^{1}=a \\
& a^{m} \cdot a^{n}=a^{m+n} \\
& \left(a^{m}\right)^{n}=a^{m \cdot n} \\
& a^{n} b^{n}=(a b)^{n} \\
& a^{-n}=\frac{1}{a^{n}} \\
& \frac{a^{n}}{a^{m}}=a^{\frac{1}{n}}=m \\
& a^{\frac{m}{n}}=\frac{n}{a} \\
& a^{\frac{m}{n}}=\frac{n}{a^{m}}
\end{aligned}
$$

Solving equations
$p-q$-Formula:

$$
\begin{aligned}
& x^{2}+p x+q=0 \\
& \Rightarrow x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}
\end{aligned}
$$

Binomial formula.

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)(a-b)=a^{2}-b^{2}
\end{aligned}
$$

Piecewise Functions

$$
f(x)= \begin{cases}\frac{0}{x}, & x \leq 1 \\ \frac{x}{4}, & 1<x \leq 5 \\ \frac{5<x}{} & 50\end{cases}
$$

Differentiation Rules

$f(x)$	$f^{\prime}(x)$
c	0
x^{α}	$\alpha x^{\alpha-1}$
e^{x}	e^{x}
$\ln (x)$	$\frac{1}{x}$

c is a constant $(c \in \mathbb{R})$
$\alpha \neq 0$

Examples: $\quad f(x)=x^{4}, \quad f^{\prime}(x)=4 x^{3}$

$$
\begin{array}{ll}
f(x)=\frac{1}{x^{5}}=x^{-5}, & f^{\prime}(x)=-5 x^{-6}=-\frac{5}{x^{6}} \\
f(x)=\sqrt{x}=x^{\frac{1}{2}}, & f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}
\end{array}
$$

Sum/Differerce Rille: $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
Example: $\left(x^{2}+3 x\right)=2 x+3$
Constant Matiplication: $(\alpha f)^{\prime}=\alpha f^{\prime}$ for all $\alpha \in \mathbb{R}$
Example: $\left(2 x^{2}\right)^{\prime}=4 x$
Product Rule: $(f \cdot g)^{\prime}=f \cdot \cdot g+f \cdot g^{\prime}$
Example: $(\ln (x) \cdot 2 x)^{\prime}=\frac{1}{x} \cdot 2 x+\ln (x) \cdot 2$
Quotient Rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}} \quad$ for $g \neq 0$
Example: $\frac{\ln (x)}{x^{2}}=\frac{\frac{1}{x} \cdot x^{2}-\ln (x) \cdot 2 x}{\left(x^{2}\right)^{2}}=\frac{x-\ln (x) \cdot 2 x}{x^{4}}=\frac{1-\ln (x) \cdot 2}{x^{3}}$

Chain Rule: $(g(f(x)))^{\prime}=\underbrace{g^{\prime}(f(x))} \cdot \underbrace{f^{\prime}(x)}$ exterior derivative inner derivative

Example: $\left(\ln \left(x^{2}\right)\right)^{\prime}=\frac{1}{x^{2}} \cdot 2 x=\frac{2 x}{x^{2}}=\frac{2}{x}$

Integration: Power Rule
Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}$
Example: $\int x^{3} d x=\frac{1}{4} x^{4}$
Example: $\int \sqrt{x} d x=\frac{1}{1+\frac{1}{2}} x^{\frac{1}{2}+1}=\frac{2}{3} x^{\frac{3}{2}}$

