Imperfect Information in Health Care Markets

Exercise Session 2 - Introduction

Sophia Hornberger

16.10.2023

Questions?

Exercise 1

Assume that the utility function u_{i} represents i 's preferences over a set of alternatives $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Show that
a) i 's preferences are transitive;
b) the function v_{i} denoted by $v_{i}(x)=f\left(u_{i}(x)\right)$ also represents i 's preferences if f is a strictly increasing function.
c) Assume now that there are only 2 alternatives, i.e. $X=\left\{x_{1}, x_{2}\right\}$. Assume that there are 2 people in the society and person 1 prefers x_{1} over x_{2} while person 2 prefers x_{2} over x_{1}. Choose some utility functions u_{1} and u_{2} to represent their preferences. Assume that society chooses the alternative x maximizing $u_{1}(x)+u_{2}(x)$.

- Which alternative does society choose with the utility functions you chose?
- Show that a transformation as in the previous subquestion can change society's choice. What is the problem and how does it come about?
(a)

What does the utility function v_{i} represents i's preferences mean?
Vi represents individual i's preferences means

$$
\begin{aligned}
& x_{1} \succsim x_{2} \\
& \text { is wonky perfered over } x_{2}
\end{aligned} \Leftrightarrow \underbrace{u_{i}\left(x_{1}\right)}_{\text {is a number in } \mathbb{R}} \geq v_{i}\left(x_{2}\right) \text { for all } x_{1}, x_{2} \text { in } X
$$

Example:
Person i weakly prefers an cupple over an orange
\Leftrightarrow Person is vilify from an apple is at least as high as from an
orange

$$
\text { e.g } v_{i} \text { (apple) }=10, \quad v_{i} \text { (orange) }=5 \quad v_{i}(\text { apple })>v_{i} \text { (orange) }
$$

What are transitive preferences?
i's preferences are transitive, if
$x_{1} \succsim x_{2}$ and $x_{2} \succsim x_{3}$ then $x_{1} \succsim x_{3}$
for all x_{1}, x_{2}, x_{3} in X
We want to show:
If i's preferences can be represented by a utility function, then the preferences are transitive.

Proof:
Let us assume that $x_{1} \succsim x_{2}$ and $x_{2} \succsim x_{3}$ for some x_{1}, x_{2}, x_{3} in X.

As the preferences can be represented by v_{i}, we know that

$$
\begin{aligned}
& \qquad v_{i}\left(x_{1}\right) \geq v_{i}\left(x_{2}\right) \quad \text { and } \quad v_{i}\left(x_{2}\right) \geq v_{i}\left(x_{3}\right) \\
& \Rightarrow v_{i}\left(x_{1}\right) \geq v_{i}\left(x_{2}\right) \geq v_{i}\left(x_{3}\right)
\end{aligned} \rightarrow \text { all of these are numbers }
$$ and in particular $v_{i}\left(x_{1}\right) \geq v_{i}\left(x_{3}\right)$

as the \geq relation on the real numbers is (naturally) transitive \rightarrow This implies that $x_{1} \succsim x_{3}$.
ib)

$$
V_{i}(x)=f\left(v_{i}(x)\right)
$$

we want to show

$$
\text { e.g. } v(3)=f(v(3))=2 \cdot 3^{2}=18
$$

$v_{i}(x)=f\left(u_{i}(x)\right)$ also represents i's preferences for f being a strictly increasing function,

$$
x_{1} \succsim x_{2} \Leftrightarrow f\left(v_{i}\left(x_{1}\right)\right) \geq f\left(v_{i}\left(x_{2}\right)\right) \text { for all } x_{1}, x_{2} \text { in } X
$$

We have to show:
(i) If $x_{1} \succsim x_{2}$ then $f\left(u_{i}\left(x_{1}\right)\right) \geq f\left(v_{i}\left(x_{2}\right)\right)$
(ii) If $f\left(v_{i}\left(x_{1}\right)\right) \geq f\left(u_{i}\left(x_{2}\right)\right)$ then $x_{1} \gtrsim x_{2}$
(i) We know that $x_{1} \succsim x_{2}$

As vi represents i's preferences, this means that $v_{i}\left(x_{1}\right) \geq v_{i}\left(x_{2}\right)$
\rightarrow This implies $f\left(U_{i}\left(x_{1}\right)\right) \geq f\left(U_{i}\left(x_{2}\right)\right)$ as f is strictly increasing
(ii)

We know that $f\left(u\left(x_{1}\right)\right) \geq f\left(v_{i}\left(x_{2}\right)\right)$:
We can apply the inverse function f^{-1} of f to this in equality.

$$
\begin{aligned}
& \Rightarrow f^{-1}\left(f\left(u_{i}\left(x_{1}\right)\right) \geq f^{-1}\left(f\left(v_{i}\left(x_{2}\right)\right)\right.\right. \\
& \Leftrightarrow \quad v_{i}\left(x_{1}\right) \geq v_{i}\left(x_{2}\right) \quad \Leftrightarrow \quad x_{1} \gtrless x_{2}
\end{aligned}
$$

Ac)
Assume:
Person 1: $\quad u_{1}\left(x_{1}\right)=1, \quad v_{1}\left(x_{2}\right)=0$
\rightarrow Person 1 prefers x_{1}
Person 2: $\quad U_{2}\left(x_{1}\right)=0, \quad U_{2}\left(x_{2}\right)=0,1$
\rightarrow Person 2 prefers x_{2}
What would society choose? (maximize $v_{1}(x)+v_{2}(x)$)

$$
\begin{aligned}
& u_{1}\left(x_{1}\right)+u_{2}\left(x_{1}\right)=1+0=1 \\
& u_{1}\left(x_{2}\right)+v_{2}\left(x_{2}\right)=0+0,1=0,1<1
\end{aligned}
$$

\rightarrow Society would choose x_{1}

Show that a transformation as in 1b) can change society's choice.
Now assume that person 2 reports the utility function \tilde{U}_{2} with $\tilde{v}_{2}\left(x_{1}\right)=0, \quad \tilde{v}_{2}\left(x_{2}\right)=10$
\rightarrow Transformation by $f(x)=100 \cdot x$
\rightarrow person 2 still prefers x_{2}
What would society choose now?

$$
\begin{aligned}
& u_{1}\left(x_{1}\right)+\tilde{u}_{2}\left(x_{1}\right)=1+0=1 \\
& u_{1}\left(x_{2}\right)+\tilde{u}_{2}\left(x_{2}\right)=0+10=10>1
\end{aligned}
$$

\rightarrow Society wu choose x_{2}

Exercise 2

Assume that there are m people in society and society has to choose an option from $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The preferences of each member of society can be represented by a utility function u_{i}. Society chooses the alternative $x \in X$ maximizing $\sum_{i=1}^{m} u_{i}(x)$. Show that the chosen alternative is Pareto efficient.

2
Pareto efficient:
There exists no alternative that could make one individual better off without making at least one individual wore off

We want to show:
If society chooses the alternative $x \in X$ maximizing $\sum_{i=1}^{m} U_{i}(X)$, then the chosen alternative is Pareto efficient

Poof:
Assume society chose a state $y \in X$ maximizing $\sum_{i=1}^{n} v_{i}(x)$

We want to show that y is Pareto efficient.
Proof by contradiction:
We assume that y is not Pareto efficient, this means that there exists some alternative $\tilde{x} \in X$ that makes at least one person strictly better off than y and that makes all the other persons not worse off

This means that one person has a higher utility from \tilde{x} and all others have at least the same utility.

$$
\Rightarrow \sum_{i=1}^{n} v_{i}(\tilde{x})>\sum_{i=1}^{n} v_{i}(y)
$$

This is a contradiction, since y was supposed to maximize $\sum_{i=1}^{n} U_{i}(x)$
\Rightarrow y has to be Pareto efficient.

Exercise 3

Assume i 's preferences over lotteries on the set of outcomes $\{$ healthy, ill, dead $\}$ satisfy the assumptions of the von Neumann-Morgenstern expected utility theorem and can therefore be represented by three numbers $u^{\text {healthy }}, u^{\text {ill }}$ and $u^{\text {dead }}$. Assume that $u^{\text {healthy }}=1, u^{\text {ill }}=0.75$ and $u^{\text {dead }}=0$.
a) Treatment 1 leads to the probability distribution ($0.3,0.5,0.2$) (over $\{$ healthy, ill, dead \}) while treatment 2 leads to the probability distribution ($0.4,0.3,0.3$). Which treatment does i prefer?
b) Show that i's preferences over lotteries can also be represented by the three numbers v^{h} ealthy $=a \cdot u^{\text {healthy }}+b$, $v^{\text {ill }}=a \cdot u^{\text {ill }}+b$ and $v^{\text {dead }}=a \cdot u^{\text {dead }}+b$ where $a>0$ and $b \in \mathbb{R}$ are some real numbers.

Sa) Set of outcomes: \{healthy, ill, dead\} ~

$$
u^{\text {healthy }}=1, \quad u^{i 4}=0,75, \quad u^{\text {dead }}=0
$$

Treatment 1:

Expected utility of treatment 1:

$$
0,3 \cdot v^{\text {healthy }}+0,5 \cdot v^{i u}+0,2 \cdot v^{\text {dead }}=0,3 \cdot 1+0,5 \cdot 075+0,2 \cdot 0=0,675
$$

Treatment $2: \quad$ Probability distribution $(0,4,0,3,0,3)$
Expected utility of treatment 2 :

$$
0,4 \cdot v^{\text {nealeny }}+0,3 \cdot v^{\text {il }}+0,3 \mathrm{v}^{\text {dead }}=0,4 \cdot 1+0,3 \cdot 0,75+0,3 \cdot 0=0,625<0,675
$$

\rightarrow Person i wald choose treatment 1

3b) $v^{\text {healthy }}=a \cdot U^{\text {healthy }}+b$

$$
\begin{aligned}
& v^{i l l}=a \cdot u^{i u}+b \\
& v^{\text {dead }}=a \cdot u^{\text {dead }}+b
\end{aligned}
$$

where $a>0$ and $b \in \mathbb{R}$

We want to shou that $v^{\text {healthy }}, i l l$, and v dead also represent i's preferences over lotteries on the set of outcomes.

Compute expected utility from some random lottery ($p, q, 1-p-q$) with $p, q, 1-p-q$ in $[0,1]$

$$
\begin{aligned}
& \mathbb{E}(v(p, q, 1-p-q))=p \cdot v^{\text {healthy }}+q \cdot v^{i u}+(1-p-q) \cdot v^{\text {dead }} \\
&=p \cdot\left(a \cdot v^{\text {health }}+b\right)+q \cdot\left(a \cdot v^{i u}+b\right)+(1-p-q) \cdot\left(a \cdot v^{\text {dead }}+b\right) \\
&=\underbrace{p \cdot b+q \cdot b+(1-p-q) \cdot b}_{\text {old utility see } a)}+a \cdot \underbrace{(p+q+1-p-q)}_{\text {on }} \cdot b=b \\
& \underbrace{\left.p \cdot v^{\text {healthy }}+q v^{i u}+(1-p-q) u^{\text {dead }}\right)}_{=1} \\
&=b+a \cdot \mathbb{E}(v(p, q, 1-p-q))
\end{aligned}
$$

We can see that we just applied the transformation function $f(x)=a \cdot x+b$ to the odd utility.

Since $f^{\prime}(x)=a>0$ (by assumption), this is a positive monotone transformation and results in the same preferences
\longrightarrow a seen in exercise ib)
c) Show by means of an example that i's preferences are not necessarily represented by $v^{\text {healthy }}=f\left(u^{\text {healthy }}\right), v^{\text {ill }}=f\left(u^{\text {ill }}\right)$ and $v^{\text {dead }}=f\left(u^{\text {dead }}\right)$ for some strictly increasing function f . Why does this not contradict our result from exercise 1 above?
(Bc)
Example: $f(x)=\sqrt{x}$, which is $\underbrace{\text { strictly increasing or }(0, \infty)}_{f^{\prime}(x)>0}$

Before: $v^{\text {healthy }}=1, \quad v^{i u}=0,75, \quad v^{\text {dead }}=0$

$$
\begin{aligned}
\text { Now: } v^{\text {heathy }} & =f\left(v^{\text {healthy }}\right)=\sqrt{1}=1 \\
v^{\text {vul }} & =\sqrt{0,75} \approx 0,866 \\
v^{\text {dead }} & =\sqrt{0}=0
\end{aligned}
$$

Compare the two lotteries:
Lottery 1: $(0,1,0)$, Lottery 2: $(0,4,0,0,0,1)$

$$
\begin{aligned}
v^{\text {teasing }} & =1 \\
v^{\text {il }} & \approx 0,866 \\
v^{\text {thad }} & =0
\end{aligned}
$$

Before the transformation
Lottery 1

$$
\mathbb{E}\left(u(0,1,0)=0 . v^{\text {healthy }}+1 \cdot u^{\text {in }}+0 v^{\text {dead. }}=0.1+1 \cdot 0.75+0.0=0,75\right.
$$

Lottery 2

$$
\mathbb{E}\left(\cup(0,4,0.5,0,1)=0.4 v^{\text {heathy }}+0.5 v^{\text {in }}+0 . \omega^{\text {dead }}=0.4 .1+0.5 \cdot 0.75+0.1 \cdot 0=0.775>0.75\right.
$$

After the transformation: \rightarrow Here, the person chooses lottery 2

$$
\begin{aligned}
& \mathbb{E}\left(v(0,1,0)=0 \cdot v^{\text {heathy }}+1 \cdot v^{\text {in }}+0 . v^{\text {dead }} \cdot 0 \cdot \sqrt{1}+1 \cdot \sqrt{0.75}+0 \cdot \sqrt{0}=0.866\right. \\
& \mathbb{E}\left(v(0,4,0,5,0,1)=0.4 \cdot v^{\text {heading }}+0.5 v^{4}+0.1 v^{\text {dod }}: 0.4 \cdot 1+0.5 \cdot 0.75+0.10=0.833<0.866\right.
\end{aligned}
$$ \rightarrow tres, the person chooses lately 1

The transformation was not applied to the

