Imperfect Information in Health Care Markets Exercise Session 2 - Introduction

Sophia Hornberger

16.10.2023

Questions?

Exercise 1

Assume that the utility function u_i represents *i*'s preferences over a set of alternatives $X = \{x_1, x_2, \dots, x_n\}$. Show that

- a) *i*'s preferences are transitive;
- b) the function v_i denoted by $v_i(x) = f(u_i(x))$ also represents *i*'s preferences if f is a strictly increasing function.
- c) Assume now that there are only 2 alternatives, i.e. $X = \{x_1, x_2\}$. Assume that there are 2 people in the society and person 1 prefers x_1 over x_2 while person 2 prefers x_2 over x_1 . Choose some utility functions u_1 and u_2 to represent their preferences. Assume that society chooses the alternative x maximizing $u_1(x) + u_2(x)$.
 - Which alternative does society choose with the utility functions you chose?
 - Show that a transformation as in the previous subquestion can change society's choice. What is the problem and how does it come about?

What are transitive preferences?

i's preferences are transitive, if

for all x1, x2, x3 in X Ly set of alternatives

We want to show?

If it's preferences can be represented by a stility fonction, then the preferences are transitive.

Proof:

Let us assume that X1 2 X2 and X2 2 X3 for Some X1, X2, X3 in X.

As the preferences can be represented by u; we know that

 $v_{1}(X_{1}) = v_{1}(X_{2})$ and $v_{1}(X_{2}) = v_{1}(X_{3})$

 $\Rightarrow v_i(x_1) \geq v_i(x_2) \geq v_i(x_3) \\ \Rightarrow au of these are numbers$

and in particular $v_1(X_1) \ge v_1(X_3)$

as the ≥ relation on the real numbers is (naturally) transitive

> This implies that X1 & X3.

v:(x) = f(v;(x)) also represents i's preferences for f

being a strictly increasing fonction. f'(X) > 0 for all X

x1 × x2 (>> f(v:(x1)) 2 f(v:(x2)) for all x1, x2 in X

We have to show:

(i) If $x_1 \gtrsim x_2$ then $f(u; (x_1)) \ge f(u; (x_2))$

(ii) If $f(v; (x_1)) \ge f(v; (x_2))$ then $x_1 \gtrsim x_2$

(i) We know that X1 Z X2 As is represents i's preferences, this means that $U_{i}(X_{1}) \geq U_{i}(X_{2})$ > This implies f(v:(X1)) 2 f(v:(X2)) as f is strictly increasing

We know that $f(u_1(x_1)) \ge f(u_1(x_2))$.

(ii)

-> Society would choose X1

Show that a transformation as in No) can change society's choice.

Now assume that person 2 reports the utility function

 \widetilde{U}_2 with $\widetilde{U}_2(x_1) = 0$, $\widetilde{U}_2(x_2) = 10$

-> Transformation by f(x) = 100 x

-> Person 2 still prefers X2

What would society choose now?

 $u_{1}(x_{1}) + \widetilde{u}_{2}(x_{1}) = 1 + 0 = 1$

 $U_1(X_2) + \widetilde{U}_2(X_2) = 0 + 10 = 10 > 1$

Utility is an Ordinal concept

-> Society will choose X2

Assume that there are m people in society and society has to choose an option from $X = \{x_1, x_2, \dots, x_n\}$. The preferences of each member of society can be represented by a utility function u_i . Society chooses the alternative $x \in X$ maximizing $\sum_{i=1}^{m} u_i(x)$. Show that the chosen alternative is Pareto efficient.

Pareto efficient:

There exists no alternative that could make one

individual better off without making at least one

individual wore off

We want to show:

If society chooses the alternative $x \in X$ maximizing $\sum_{i=1}^{\infty} U(X)$, then the chosen alternative is Pareto efficient

Assume society chose a state $y \in X$ maximizing $\sum_{i=1}^{2} v_i(X)$

We want to show that y is Pareto efficient.

Proof by contradiction:

We assume that y is not Pareto efficient, this means that there exists some alternative X & X that makes at least one person strictly better off than y and that makes all the other persons not worse off.

Exercise 3

Assume *i*'s preferences over lotteries on the set of outcomes {*healthy*, *ill*, *dead*} satisfy the assumptions of the von Neumann-Morgenstern expected utility theorem and can therefore be represented by three numbers $u^{healthy}$, u^{ill} and u^{dead} . Assume that $u^{healthy} = 1$, $u^{ill} = 0.75$ and $u^{dead} = 0$.

- a) Treatment 1 leads to the probability distribution (0.3, 0.5, 0.2) (over {*healthy*, *ill*, *dead*}) while treatment 2 leads to the probability distribution (0.4, 0.3, 0.3). Which treatment does i prefer?
- b) Show that i's preferences over lotteries can also be represented by the three numbers $v^h ealthy = a \cdot u^{healthy} + b$, $v^{ill} = a \cdot u^{ill} + b$ and $v^{dead} = a \cdot u^{dead} + b$ where a > 0 and $b \in \mathbb{R}$ are some real numbers.

3a) Set of outcomes: Shealthy, ill, dead} healthy i = 0, 7-5, U = 0Treatment 1: Probability distribution (0,3,0,5,0,2) healthy : u dead Expected stility of treatment 1: 0.3 unealthy + 0.5 u + 0.2 und = 0.3.1+ 0.5.075 + 0.2.0 = 0,675 Treatment 2: Probability distribution (0,4,0,3,0,3) Expected ubility of breatment 2:

-> Person i would choose treatment 1

We can see that we just applied the transformation function $f(x) = a \cdot x + b$ to the old utility.

Since f'(x) = a > 0 (by assumption), this is a positive monotone transformation and results in the same preferences

Lo a Seen in exercise 16)

c) Show by means of an example that i's preferences are not necessarily represented by $v^{healthy} = f(u^{healthy}), v^{ill} = f(u^{ill})$ and $v^{dead} = f(u^{dead})$ for some strictly increasing function f. Why does this not contradict our result from exercise 1 above?

130 $f(x) = T \times 1$, which is strictly increasing on $(0, \infty)$ Example: f'(x) > 0 $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ $f'(x) = \frac{1}{2}x^{\frac{1}{2}} = \frac{1}{2}\sqrt{x}^{\frac{1}{2}} = \frac{1}{2}$

Before: v = 1, v = 0,75, v = 0

