Imperfect Information in Health Care Markets
 Exercise Session 3 - Insurance Demand

Sophia Hornberger

23.10.2023

Questions?

Insurance Demand

In all exercises, let the person be an expected utility maximizer, i.e. the person's choices satisfy the assumptions of the von Neumann-Morgenstern expected utility theorem.

Exercise 4

Consider a person with utility of income $u(x)=\sqrt{x}$. Is this person risk averse? For the following lotteries, compute the expected income, the certainty equivalent, and the risk premium.
a) Probability $1 / 3$ for each 1600,2500 , and 3600 Euros.
b) Income is uniformly distributed between 1600 and 2500 Euros.
ta)

$$
u(x)=\sqrt{x}=x^{\frac{1}{2}}
$$

Is this pers on risk averse?
Risk aversion: $v^{\prime \prime}(x)<0$ for all $x>0$
\rightarrow concave utility function

$$
\begin{aligned}
& u^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& v^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}=-\frac{1}{4 x^{\frac{3}{2}}}<0 \text { for } x>0
\end{aligned}
$$

\Rightarrow sin $v^{\prime \prime}(x)<0$, the person is risk averse We have shown risk aversion by concavity of the utility function.

Expected income:

$$
v(x)=\sqrt{x_{1}}
$$

probability 1/3 for each 1600, 2500 and 3600

$$
\begin{aligned}
\mathbb{E}(X) & =\frac{1}{3} \cdot 1600+\frac{1}{3} \cdot 2500+\frac{1}{3} \cdot 3600 \\
& \approx 2566,66
\end{aligned}
$$

Expected utility:

$$
\begin{aligned}
\mathbb{E}(v) & =\frac{1}{3} \cdot v(1600)+\frac{1}{3} \cdot v(2500)+\frac{1}{3} \cdot v(3600) \\
& =\frac{1}{3} \sqrt{1600}+\frac{1}{3} \sqrt{2500}+\frac{1}{3} \cdot \sqrt{3600} \\
& =\frac{1}{3}(40+50+60)=50
\end{aligned}
$$

Certainty equivalent $(C E)$:
\rightarrow measures the safe amount of income that makes me indifferent to playing the lottery or receiving the safe amount

$$
\underbrace{u(C \epsilon)}_{0 \text { the }} \stackrel{!}{=} \underbrace{\mathbb{E}(u)}
$$

utility at the
"safe amount"
expected utility of lottery

$$
\begin{aligned}
& \Leftrightarrow \\
& \sqrt{c \epsilon}=50 \quad 1()^{2} \\
E(x) & =2566,66>2500=c \epsilon
\end{aligned}
$$

Risk premium (RP):
\rightarrow difference between the expected payment from a lottery and the certainty equivalent of this lottery

$$
\begin{aligned}
R P & =E(x)-C E \\
\Leftrightarrow \quad R P & =2566,66-2500=66,66>0
\end{aligned}
$$

\Rightarrow indication that the person is risk-averse since $R P>0$

4b)
Income is uniformly distributed between 1600 and 2500

$$
\underbrace{x} \sim U(1600,2500)
$$

Income
General uniform distribution:

$$
x \sim U(a, b)
$$

cdf: $F(x)=\frac{x-a}{b-a}$ for $x \in[a, b]$
pdf. $f(x)=\frac{1}{b-a} \quad$ for $x \in[a, b]$

Here: $\quad X \sim U(1600,2500)$
cdf: $F(x)=\frac{x-a}{b-a}=\frac{x-1600}{2500-1600}=\frac{x-1600}{900} \quad$ for $x \in[16002500]$
pdf: $f(x)=\frac{1}{b-a}=\frac{1}{2500-1600}=\frac{1}{900} \quad$ for $x \in[1600,2500]$

$$
\begin{aligned}
& \frac{\text { Expected income: }}{b} \\
& \begin{aligned}
\mathbb{E}(x)= & \int_{a}^{2500} x \cdot f(x) d x=\int_{1600}^{2} x \cdot \frac{1}{900} d x=\left[\frac{1}{900} \cdot \frac{1}{2} x^{2}\right]_{1600}^{2500} \\
& =\frac{1}{900} \cdot \frac{1}{2} \cdot 2500^{2}-\left(\frac{1}{900} \cdot \frac{1}{2} \cdot 1600^{2}\right) \\
& =2050
\end{aligned}
\end{aligned}
$$

Expected ubility:

$$
\begin{aligned}
\mathbb{E}(u) & =\int_{a}^{b} v(x) f(x) d x=\int_{1600}^{2500} \sqrt{x} \cdot \frac{1}{900} d x \\
& =\frac{1}{900}\left[\frac{1}{\frac{1}{2}+1} x^{\frac{1}{2}+1}\right]_{1600}^{2500}=\frac{1}{900}\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1600}^{2500} \\
& =\frac{1}{900}\left[\frac{2}{3} \cdot 2500^{\frac{3}{2}}-\frac{2}{3} \cdot 1600\right] \\
& \approx 45,185
\end{aligned}
$$

Certainty equivalent:

$$
v(x)=\sqrt{x}
$$

$$
\begin{aligned}
U(C E) & =\mathbb{E}(u) \\
\sqrt{C E} & =45,185 \quad 1()^{2} \\
C E & =45,185^{2}=2041,7<2050=\mathbb{E}(X)
\end{aligned}
$$

Gindication that person is riok-averse

Risk premium:

$$
R P=\mathbb{E}(X)-C E=2050-2041,7=8,3>0
$$

Exercise 5

Consider a person with utility of income $u(x)=\sqrt{x}$. The person has an income of 2500 Euros but loses L Euros with probability α. Determine the certainty equivalent and the risk premium as a function of α and L. Is the risk premium increasing or decreasing in L ? Is the risk premium increasing or decreasing in α ?
$5 \quad v(x)=\sqrt{x}$

$$
W=2500 \quad L=\operatorname{los} s \quad \alpha \in(0,1)
$$

\rightarrow probability of loss
2 cases:

1. no lass: income of 2500
\rightarrow probability $(1-\alpha)$
2. loss occurs: income of $2500-\mathrm{L}$
\rightarrow probability α

$$
\begin{aligned}
& (1-\alpha) \cdot 2500+\alpha \cdot 2500 \\
= & 2500-\alpha \cdot 2500+\alpha \cdot 2500 \\
= & 2500
\end{aligned}
$$

Expected income:

$$
\begin{aligned}
\mathbb{E}(x)=\underbrace{(\underbrace{1-\alpha) \cdot 2500}_{\text {loss acurs }}}_{\text {no loss }}+\underbrace{\alpha \cdot(2500-L)} & =2500-\alpha \cdot 2500+\alpha \cdot 2500 \\
& =2500-\alpha \cdot L
\end{aligned}
$$

Expected utility:

$$
\begin{aligned}
\mathbb{E}(u) & =(1-\alpha) \cdot v(2500)+\alpha \cdot v(2500-L) \\
& =(1-\alpha) \cdot \sqrt{2500}+\alpha \cdot \sqrt{2500-L} \\
& =(1-\alpha) \cdot 50+\alpha \cdot \sqrt{2500-L}
\end{aligned}
$$

Certainty equivalent:
binomial formula

$$
\begin{aligned}
U(C E)= & \vdots \mathbb{E}(u) \\
\sqrt{C E}= & \alpha \cdot \sqrt{2500-L}+50 \cdot(1-\alpha) \mid()^{2} \\
C E= & (\underbrace{\alpha \cdot \sqrt{2500-L}}_{a}+\underbrace{50 \cdot(1-\alpha)}_{b})^{2} \\
= & (\alpha \cdot \sqrt{2500-L})^{2}+2 \cdot \alpha \cdot \sqrt{2500-L} \cdot 50 \cdot(1-\alpha) \\
& +(50 \cdot(1-\alpha)) 2 \\
= & \alpha^{2} \cdot(2500-L)+100 \cdot \sqrt{2500-L} \cdot \alpha \cdot(1-\alpha) \\
& +2500(1-\alpha)^{2}
\end{aligned}
$$

Risk premium:

$$
\begin{aligned}
R P= & \mathbb{E}(X)-\left(G-2500 \cdot \alpha^{2}+\alpha^{2} \cdot L\right. \\
R P= & 2500-\alpha \cdot L-\alpha^{2}(2500-L)-100 \cdot \sqrt{2500-L} \cdot \alpha(1-\alpha \\
& \underbrace{-2500(1-\alpha)^{2}} \\
& -2500 \cdot\left(1^{2}-2 \cdot 1 \cdot \alpha+\alpha^{2}\right)=-2500 \cdot\left(1-2 \alpha+\alpha^{2}\right) \\
& =-2500+5000 \alpha-\frac{2500 \alpha^{2}}{} \\
R P= & -\alpha \cdot L+5000 \alpha-\underbrace{2 \alpha^{2} \cdot 2500}_{-5000 \alpha^{2}}+\alpha^{2} \cdot L-100 \cdot(1-\alpha) \cdot \alpha \sqrt{2500-L}
\end{aligned}
$$

Ls the risk premium increasing or decreasing in $L ?$

$$
\begin{aligned}
& R P=-\alpha L+5000 \alpha-2 \alpha^{2} \cdot 2500+\alpha^{2} \cdot L-100(1-\alpha) \alpha \sqrt{2500-2} \\
& \begin{aligned}
\frac{\partial R P(\alpha, L)}{\partial L} & =-\alpha+\alpha^{2}-100(1-\alpha) \alpha \frac{1}{2} \cdot(2500-L)^{-\frac{1}{2}} \cdot(-1) \\
& =\alpha^{2}-\alpha+50 \underbrace{}_{-(\underbrace{\left(\alpha^{2}-\alpha\right)} \cdot \frac{1}{\left(\alpha-\alpha^{2}\right)} \frac{1}{\sqrt{2500-L}}}=\underbrace{\left(\alpha^{2}-\alpha\right)}_{<0}(\underbrace{\left(1-50 \cdot \frac{1}{\sqrt{2500-L}}\right)>0}_{\text {since }} \sqrt{\sqrt{2500-L}}>1
\end{aligned} \\
& \sin \operatorname{ce} \alpha \in(0,1)
\end{aligned}
$$

\Rightarrow The risk premium increases as $\sqrt{2500-L}<50$ for $L>0$ with a higher loss (L)

$$
\sqrt{2500}=50
$$

