Imperfect Information in Health Care Markets
 Exercise Session 4 - Insurance Demand

Sophia Hornberger

30.10 .2023

Questions?

Exercise 5

Consider a person with utility of income $u(x)=\sqrt{x}$. The person has an income of 2500 Euros but loses L Euros with probability α. Determine the certainty equivalent and the risk premium as a function of α and L. Is the risk premium increasing or decreasing in L ? Is the risk premium increasing or decreasing in α ?
$5 \quad v(x)=\sqrt{x}$

$$
W=2500 \quad L=\operatorname{los} s \quad \alpha \in(0,1)
$$

\rightarrow probability of loss
2 cases:

1. no lass: income of 2500
\rightarrow probability $(1-\alpha)$
2. loss occurs: income of 2500-L
\rightarrow probability α

$$
\begin{aligned}
& (1-\alpha) \cdot 2500+\alpha \cdot 2500 \\
= & 2500-\alpha \cdot 2500+\alpha \cdot 2500 \\
= & 2500
\end{aligned}
$$

Expected income:

$$
\begin{aligned}
\mathbb{E}(x)=\underbrace{(1-\alpha) \cdot 2500}_{\text {no loss }}+\underbrace{\alpha \cdot(2500-L)}_{\text {loss acurs }} & =2500-\alpha \cdot 2500+\alpha \cdot 2500 \\
& =2500-\alpha \cdot L
\end{aligned}
$$

Expected utility:

$$
\begin{aligned}
\mathbb{E}(u) & =(1-\alpha) \cdot v(2500)+\alpha \cdot v(2500-L) \\
& =(1-\alpha) \cdot \sqrt{2500}+\alpha \cdot \sqrt{2500-L} \\
& =(1-\alpha) \cdot 50+\alpha \cdot \sqrt{2500-L}
\end{aligned}
$$

Certainty equivalent:
binomial formula

$$
\begin{aligned}
U(C E)= & \vdots \mathbb{E}(u) \\
\sqrt{C E}= & \alpha \cdot \sqrt{2500-L}+50 \cdot(1-\alpha) \mid()^{2} \\
C E= & (\underbrace{\alpha \cdot \sqrt{2500-L}}_{a}+\underbrace{50 \cdot(1-\alpha)}_{b})^{2} \\
= & (\alpha \cdot \sqrt{2500-L})^{2}+2 \cdot \alpha \cdot \sqrt{2500-L} \cdot 50 \cdot(1-\alpha) \\
& +(50 \cdot(1-\alpha)) 2 \\
= & \alpha^{2} \cdot(2500-L)+100 \cdot \sqrt{2500-L} \cdot \alpha \cdot(1-\alpha) \\
& +2500(1-\alpha)^{2}
\end{aligned}
$$

Risk premium:

$$
\begin{aligned}
R P= & \mathbb{E}(X)-\left(G-2500 \cdot \alpha^{2}+\alpha^{2} \cdot L\right. \\
R P= & 2500-\alpha \cdot L-\alpha^{2}(2500-L)-100 \cdot \sqrt{2500-L} \cdot \alpha(1-\alpha) \\
& \underbrace{-2500(1-\alpha)^{2}} \\
& -2500 \cdot\left(1^{2}-2 \cdot 1 \cdot \alpha+\alpha^{2}\right)=-2500 \cdot\left(1-2 \alpha+\alpha^{2}\right) \\
& =-2500+5000 \alpha-\frac{2500 \alpha^{2}}{} \\
R P= & -\alpha \cdot L+5000 \alpha-\underbrace{2 \alpha^{2} \cdot 2500}_{-5000 \alpha^{2}}+\alpha^{2} \cdot L-100 \cdot(1-\alpha) \cdot \alpha \sqrt{2500-L}
\end{aligned}
$$

Ls the risk premium increasing or decreasing in $L ?$

$$
\begin{aligned}
& R P=-\alpha L+5000 \alpha-2 \alpha^{2} \cdot 2500+\alpha^{2} \cdot L-100(1-\alpha) \alpha \sqrt{2500-2} \\
& \begin{aligned}
\frac{\partial R P(\alpha, L)}{\partial L} & =-\alpha+\alpha^{2}-100(1-\alpha) \alpha \frac{1}{2} \cdot(2500-L)^{-\frac{1}{2}} \cdot(-1) \\
& =\alpha^{2}-\alpha+50 \underbrace{}_{-(\underbrace{\left(\alpha^{2}-\alpha\right)} \cdot \frac{1}{\left(\alpha-\alpha^{2}\right)} \frac{1}{\sqrt{2500-L}}}=\underbrace{\left(\alpha^{2}-\alpha\right)}_{<0}(\underbrace{\left(1-50 \cdot \frac{1}{\sqrt{2500-L}}\right)>0}_{\text {since }} \sqrt{\sqrt{2500-L}}>1
\end{aligned} \\
& \sin \operatorname{ce} \alpha \in(0,1)
\end{aligned}
$$

\Rightarrow The risk premium increases as $\sqrt{2500-L}<50$ for $L>0$ with a higher loss (L)

$$
\sqrt{2500}=50
$$

Is the risk premium increasing or decreasing in α ?

$$
\begin{aligned}
& R P=-\alpha L+5000 \alpha \underbrace{-2 \alpha^{2} \cdot 2500}_{-5000 \alpha^{2}}+\alpha^{2} \cdot L-100(1-\alpha) \alpha \sqrt{2500-L} \\
& -\left(\alpha-\alpha^{2}\right) \cdot 100 \cdot \sqrt{2500-L}
\end{aligned} \overbrace{\frac{\partial R P(\alpha, L)}{\partial \alpha}=-L+5000-10000 \alpha+2 \alpha \cdot L-100 \cdot \sqrt{2500-L}(1-2 \alpha)} \begin{aligned}
& \left(a-\alpha^{2}\right)
\end{aligned}
$$

This is neither always ≥ 0 nor always ≤ 0
For example, for $L=900$, we get

$$
\begin{aligned}
& \text { For example, for } L=900 \text {, we get } \\
& \frac{\partial R P(\alpha, 900)}{\partial \alpha}=100-200 \cdot \alpha \rightarrow 0 \text { for } \alpha \leq \frac{1}{2} \\
& \rightarrow<0 \text { for } \alpha>\frac{1}{2}
\end{aligned}
$$

Exercise 6

Consider the utility function $u(x)=-e^{-\eta x}$. The person has an income of 1 and experiences a loss of 1 with probability α. The coefficient of absolute risk aversion is defined as $-u^{\prime \prime}(x) / u^{\prime}(x)$. Compute this coefficient. Let now $\alpha=0.5$ and check whether the certainty equivalent in- or decreases in η.

6

$$
u(x)=-e^{-n x}
$$

Two cases:

1. no loss: income of 1

4 probability $(1-\alpha)$
2. loss occurs: income of $1-1=0$
\rightarrow probability α

Coefficient of absolute risk aversion:

$$
-\frac{v^{\prime \prime}(x)}{v^{\prime}(x)}
$$

$$
\begin{gathered}
u(x)=-e^{-n x} \\
f(x)=e^{x}
\end{gathered}
$$

$$
u^{\prime}(x)=(-n)-e^{-n x}=n e^{-n x}
$$

$$
u^{\prime \prime}(x)=n \cdot(-n) e^{-n x}=-n^{2} \cdot e^{-n x}
$$

$$
-\frac{v^{\prime \prime}(x)}{v^{\prime}(x)}=-\frac{-n^{2} \cdot e^{-n x}}{n e^{-n x}}=-\frac{-n^{2}}{n}=n \text {, meas ores risk aversion }
$$

Certainty equivalent: for $\alpha=\frac{1}{2} \quad u(x)=-e^{-n x}$
Gpected utility:

$$
\begin{aligned}
\mathbb{E}(v) & =(1-\alpha) \cdot v(1)+\alpha \cdot v(0)=\frac{1}{2} \cdot v(1)+\frac{1}{2} \cdot v(0) \\
& =\frac{1}{2} \cdot\left(-e^{-n \cdot 1}\right)+\frac{1}{2} \cdot\left(-e^{-n \cdot 0}\right) \\
& =-\frac{1}{2} e^{-n}+\frac{1}{2} \cdot(-1)=-\frac{1}{2} e^{-n}-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& v(C \epsilon) \stackrel{!}{=} \mathbb{E}(u) \\
& u(x)=-e^{-n x} \\
& \left.\Leftrightarrow \quad-e^{-n \cdot C \epsilon}=-\frac{1}{2} e^{-n}-\frac{1}{2} \right\rvert\, \cdot(-1) \\
& \Leftrightarrow e^{-n \cdot C \epsilon}=\frac{1}{2} e^{-n}+\frac{1}{2}(\ln c) \quad \ln \left(e^{x}\right)=x \\
& \Leftrightarrow \ln \left(e^{-n \cdot c \epsilon}\right)=\ln \left(\frac{1}{2} e^{-n}+\frac{1}{2}\right) \\
& \left.\Leftrightarrow \quad-n \cdot c \epsilon=\ln \left(\frac{1}{2} e^{-n}+\frac{1}{2}\right) \right\rvert\,:(-n) \\
& \Leftrightarrow \quad C \epsilon=-\frac{\ln \left(\frac{1}{2} e^{-n}+\frac{1}{2}\right)}{n}
\end{aligned}
$$

CE depending on η for $\alpha=0.5 \quad C E(\eta)=\frac{-\ln \left(0.5+0.5 e^{-\eta}\right)}{\eta}$

(x from -5.2 to 3.6)

Exercise 7

The Wall Street Journal reported in 2006 of "mini-medical insurance plans". These plans cover routine services, but little hospital coverage and usually have a cap on payouts (say of $\$ 10.000$). The premium, however, is only $\$ 50$ per month. Why might people buy a mini-medical plan? Why are such insurance plans not more popular (in a country where a substantial part of the population did/does not have health insurance)?

7 Mini-medical insurance plan
Why might people like such a plan?

- Affordability
\rightarrow they might have a low willingness to pay and $50 \$$ is quite cheap
- access to care that's covered
- think they have lower risk for severe ilnesses/expersive treatments
-act as consumption smoothing '
\leftrightarrow don't pay one big amount at once but several small amounts more often
- access to preventive care
\rightarrow maintain overall health which may help prevent more
severe health issues dawn the line.

Why are such plans not more popular?

- If you think that you have a high risk of severe health issues you know these will most likely not be covered
- advantages of full coverage insurances
\rightarrow higher premium but they provide higher protection
\rightarrow not as vulnerable to high hospitalization or specialized care costs.
- Cap on payouts
e-g. 10000 could often be too low to cover significant medical expenses
\rightarrow risk/fear of significant out-of-pocket costs
$\begin{aligned} 50 & >\alpha \cdot L+\text { administrative costs (+profit margin) } \\ \text { risk } & \text { loss }\end{aligned}$
\rightarrow These plans could be too expensive for insurance companies

Exercise 8

Consider a person with utility of income $u(x)=\sqrt{x}$. The person has an income of 2500 Euros but loses 1500 Euros with probability $1 / 4$. Assume there is an insurance company that offers to insure an arbitrary coverage $C \in[0,1500]$ at premium $p C$. Determine the amount of coverage $C(p)$ that the person will buy. (If you find this too hard, let p be 0.3.)
$8 \quad u(x)=\sqrt{x}$
Two cases: (without insurance)

1. The loss occurs: income of $2500-1500=1000$ \rightarrow probability $\frac{1}{4}$
2. No loss: income of 2500
L) probability $1-\frac{1}{4}=\frac{3}{4}$

There is an insurance company that offers to insure an arbitrary coverage $C \in[0,1500]$ at premium $p C$

What is the amount of coverage $C(p)$ that the person will buy?
\rightarrow Maximize expected utility with respect to C

$$
\underset{\text { Lorded mobility vinimot insurance }}{\text { noins. }}(u)=\frac{1}{2500-1500}+\frac{3}{4} \sqrt{2500} \approx 45,41
$$

Expected utility with insurance:

$$
\mathbb{E}^{\text {ins. }}(u)=\frac{1}{4} \sqrt{1000+c-p c}+\frac{3}{4} \sqrt{2500-p c}
$$

$$
\begin{align*}
& \quad \max _{c} \mathbb{E}(u)=\frac{1}{4} \cdot \sqrt{1000+c-p c}+\frac{3}{4} \sqrt{2500-p c} \\
& \\
& \text { FOC: } \\
& \quad \frac{1}{4} \cdot \frac{1}{2}(1000+c-p c)^{-\frac{1}{2}} \cdot(1-p)+\frac{3}{4} \cdot \frac{1}{2}(2500-p c)^{-\frac{1}{2}} \cdot(-p)=0 \\
& \Leftrightarrow \\
& \Leftrightarrow \frac{1}{8} \frac{1}{\sqrt{1000+c-p c}}(1-p)-\frac{3}{8} \cdot p \frac{1}{\sqrt{2500-p c}}=0 \\
& \Leftrightarrow \\
& \Leftrightarrow \frac{1-p}{\sqrt{1000+c-p c}}-\frac{3 p}{\sqrt{2500-p c}}=0 \tag{2}\\
& \Leftrightarrow \\
& \Leftrightarrow
\end{align*}
$$

$$
\begin{aligned}
& \Leftrightarrow\left(\frac{1-p}{\sqrt{1000+c-p}}\right)^{2}=\left(\frac{3 p}{\sqrt{2500-p c}}\right)^{2} \\
& \Leftrightarrow \frac{(1-p)^{2}}{1000+c-p c}=\frac{(3 p)^{2}-3^{2} p^{2}=9 p^{2}}{2500-p c} \quad \text { For } p=0,3 \\
& \Leftrightarrow(1-p)^{2} \cdot(2500-p c)=9 p^{2} \cdot(1000+c-p c) \quad c \approx 581,2 \\
& \Leftrightarrow(1-p)^{2} \cdot 2500-(1-p)^{2} p c=9000 p^{2}+9 p^{2} c-9 p^{3} C \\
& \Leftrightarrow-(1-p)^{2} \cdot p C-9 p^{2} C+9 p^{3} C=9000 p^{2}-(1-p)^{2} \cdot 2500 \\
& \Leftrightarrow C \cdot\left(-(1-p)^{2} \cdot p-9 p^{2}+9 p^{3}\right)=9000 p^{2}-(1-p)^{2} \cdot 2500
\end{aligned}
$$

$\Leftrightarrow \quad C=\frac{9000 p^{2}-(1-p)^{2} \cdot 2500}{-(1-p)^{2} \cdot p-9 p^{2}+9 p^{3}} \rightarrow$ This is the covege the person

