Introduction

Christoph Schottmüller

Outline

2 Economic modeling: Choice under certainty

3 Economic modeling: Choice under uncertainty

Section 1

Course information

Course information

- website: https://github.com/schottmueller/ infohealthecon/blob/master/plan.org
 - information
 - plan
 - reading
 - Zweifel, Breyer, Kifmann "Health economics"
 - exercises
- exam
 - date: to be announced on course website later
 - registration via KLIPS

Goal and content

- introduce basic concepts and models of information economics applied to health care markets
 - asymmetric information
 - own characteristics \rightarrow "selection" (e.g. is diabetes prevalent in my family?)
 - own actions \rightarrow "moral hazard" (e.g. am I driving carefully?)
 - state of the environment (e.g. how ill is the patient?)
 - how does asymmetric information impact behavior and market outcomes?
 - how does the institutional environment affect behavior and outcomes?
- tools
 - decision and game theoretic models
 - some empirical evidence testing and illustrating the theory

Section 2

Economic modeling: Choice under certainty

Choices and trade-offs

- economics is about the allocation of *scarce* ressources (time, capital, slots etc.)
- individuals make economic decisions all the time
 - come to the early lecture or sleep longer
 - what to buy for dinner?
- choices in health care
 - patients: pick up a prescription medicine (and pay your copayment) or not
 - doctors: which test? which treatment?
 - insurers: what to cover? what to charge?
 - politicians and regulators:...

(Hypothetical) Choice

• primitive of economic modeling: (hypothetical) choice

- what would person *i* choose if he had to choose among alternatives x_1, x_2, \ldots, x_n ?
- (hypothetically) chosen alternative is *best* (for *i*)

Example (Hypothetical choice)

- Should a health care system offer a new treatment that costs 100€ more than the old treatment?
- Would those that can be treated with the new treatment prefer (i) old treatment and a payment of 100€ or (ii) the new treatment?

Preference representation

- convenient notation for "person *i* would choose x₁ if he had to choose one among the two alternatives x₁ and x₂": x₁ ≽_i x₂ (read: "*i* prefers x₁ to x₂")
- few choices are observed
 - make assumptions to infer preferences for not observed choices
 - completeness: for each pair of alternatives x_1 , x_2 , either $x_1 \succeq_i x_2$ or $x_2 \succeq_i x_1$
 - transitivity: if $x_1 \succeq_i x_2$ and $x_2 \succeq_i x_3$, then $x_1 \succeq_i x_3$

Utility representation

- even more convenient than preferences
 - can we find a function u_i(x) such that u_i(x₁) ≥ u_i(x₂) if and only if x₁ ≿_i x₂? (if yes, we say "u_i represents i's preferences")
 - if yes, person *i*'s choice behavior (in all possible choice situations!) will then be *as if person i maximized the function* u_i *by his choice*

Theorem (Representation)

If the number of alternatives is finite and person i's preferences are complete and transitive, then there exists a function u_i representing i's preferences.

• utility representation allows us to use mathematical maximization techniques for economic analysis!

Remarks on utility

- utility has nothing to do with happiness!
- utility (maximization) is not (necessarily) egoistic!
- there are also representation theorems for infinite choice sets
- completeness and transitivity are necessary assumptions for a meaningful analysis but not totally innocent

Section 3

Economic modeling: Choice under uncertainty

Decision making under uncertainty

• "alternatives" will often be uncertain

Example (Uncertainty)

outcome/treatment	treatment x_1	treatment x_2
healthy	0.4	0.5
ill	0.4	0.25
dead	0.2	0.25

Table gives probability for three outcomes given each treatment. Alternative x_1 is a lottery (0.4, 0.4, 0.2) over the three outcomes. Alternative x_2 is the lottery (0.5, 0.25, 0.25).

• it would be very convenient if preferences over lotteries could be represented by a utility function *u_i* that can be written as

$$u_i((\alpha,\beta,\gamma)) = \alpha u_i^{healthy} + \beta u_i^{ill} + \gamma u_i^{dead}$$

 preferences over all kind of treatments/lotteries could then be described by just 3 numbers: u_i^{healthy}, u_i^{ill}, u_i^{dead}

von Neumann - Morgenstern expected utility theorem

- von Neumann and Morgenstern have proven that such an "expected utility" representation is possible under one additional assumption called "independence"
- independence (roughly):
 - take our two lotteries $x_1 = (0.4, 0.4, 0.2)$ and $x_2 = (0.5, 0.25, 0.25)$
 - suppose $x_1 \succeq_i x_2$
 - take some other (hypothetical) treatment x_3 and consider the 2 options
 - 1 toss a coin, if heads take treatment x_1 if tails take x_3
 - 2 toss a coin, if heads take treatment x_2 if tails take x_3
 - independence states that *i* must prefer the first over the second option

von Neumann - Morgenstern expected utility theorem

- von Neumann and Morgenstern have proven that such an "expected utility" representation is possible under one additional assumption called "independence"
- independence (roughly):
 - take our two lotteries $x_1 = (0.4, 0.4, 0.2)$ and $x_2 = (0.5, 0.25, 0.25)$
 - suppose $x_1 \succeq_i x_2$
 - take some other (hypothetical) treatment x_3 and consider the 2 options
 - 1 toss a coin, if heads take treatment x_1 if tails take x_3
 - 2 toss a coin, if heads take treatment x_2 if tails take x_3
 - independence states that *i* must prefer the first over the second option
- we will assume throughout the course that the choices of the players in our models are such that transitivity, completeness and independence are satisfied, i.e. players choose as if they maximized a utility function in expected utility form

Section 4

Economic modeling: Welfare

Welfare

- what is good for a group of people/society?
- choices of society can be represented by a utility function called *welfare function* if they satisfy the same assumptions as before
- minimum standard for good societal decisions:
 - if all people prefer x₁ to x₂ (and someone does so strictly), then society as a whole should prefer x₁ to x₂ (Pareto criterion)
 - we say: " x_1 Pareto dominates x_2 " or " x_1 is Pareto superior to x_2 " or " x_2 is Pareto inferior to x_1 "
 - all alternatives that are not Pareto inferior to some other alternative are called Pareto efficient
 - usually there are a lot of Pareto efficient alternatives
 - good societal choices should be Pareto efficient!

Example (Splitting a euro)

2 people, who like more money better, have to split $1 \\lefthinspace{-1.5ex}$. Each cent has to be given either to one of them or be destroyed. What are the feasible alternatives? Which are Pareto efficient?

Interpersonal utility comparison and willingness to pay

- which of many Pareto efficient allocations should society choose?
 - (simple) utilitarian approach: $\max_x \sum_i u_i(x)$
 - why is this potentially problematic?
- willingness to pay
 - consider two alternatives: good treatment but you have to pay *t*, bad treatment and you have to pay nothing
 - for which value of t are you indifferent betwen the two options?
- \bullet willingness to pay is in euros \rightarrow can be aggregated
 - developing the new treatment costs *c* (the treatment itself is then costless), when is it worthwhile to invest *c* and develop the treatment?

Section 5 Economic modeling: Why mathematical models?

Maps and Models

- stylized representation of reality
- abstract from most of reality ("unrealistic on purpose")
- depending on your needs/problems, different maps/models of the same reality are useful
- if you know how to use it, immensely helpful

Mathematical models

- explicitly stated assumptions
- logical reasoning leads to conclusion/result
- goals depend on context, e.g.
 - clarify a logic/mechanism (minimal ingredients)
 - produce testable predictions
 - explore implications of some (additional) feature
 - get rough forecasts (when the model is paired with data)

Example (The need for models)

- Why are people at a high health risk overrepresented among the uninsured in the US?
- How will physician's prescription behavior change if the number of physicians increases?
- Who will benefit (or be harmed) from the availability of genetic tests?
- An insurance considers offering a supplementary insurance package (e.g. covering all dental care) and wonders what premium to charge for this package.