Imperfect Information in Health Care Markets Exercise Session

Marius Gramb

Why do people struggle with this course?

- Prerequisites for this course:
- High school level math knowledge
- Problem: Students often lack important knowledge about basic math concepts (or forgot it over the years)
- This deflects them from the (economic) concepts taught in class

Suggested work flow for the process of understanding the lectures

- After each lecture, you will typically not understand the whole content directly (which is perfectly normal)
- This is why you need to study it carefully afterwards
- As a first step, try to identify all the mathematical steps/tools that are used within this lecture
- Recall these mathematical concepts and make sure you fully understand them (again)
- Once this is done, have a second look at the lecture and try to understand what was taught to you (not being distracted by mathematics that might have scared you off before)
- If you still have difficulties with the understanding, discuss the topic with your peers (or ask a concrete question in the exercise session in case you can formulate one)
- Repeat this procedure every week before the next lecture

Suggested work flow for the process of understanding the lectures (cont.)

- The exercises are also helpful in understanding the lecture material
- To get the most out of the exercise sessions, try to solve the exercises that are going to be discussed on your own or in groups
- This way, you will understand the correct solutions quicker, even if you have not reached these solutions yourself
- The final exam will be based on understanding of the lecture and you WILL be asked to transfer your built up knowledge to new exercises
- Therefore, it does not pay off to learn some exercises or lecture material by heart without understanding them!

Exercise 1

1. Recall the notion of a random variable and how to compute the expected value of discrete and continuous random variables.
2. Let X and Y be two random variables with $Y \sim U([0,1])$ and X taking a value of 1 with the probability 0.4 and a value of 0 with the probability 0.6 . Calculate $\mathbb{E}(X)$ and $\mathbb{E}(2 Y)$.

Exc. 1.1
A random variable X is a map $X: \Omega \rightarrow \mathbb{R}$
\rightarrow the "universe" of a random experiment
= set of events that can occur in this experiment
How to compute the expected value of a random variable?
i) discrete random variables: number of possible ontcomes/events is constable, that means finite or countably infinite.
$\Rightarrow \mathbb{E}(X)=\sum_{i=1}^{n} x_{i} \cdot \mathbb{P}\left(X=x_{i}\right)$, where $x_{1}, x_{2}, \ldots, x_{n}$ are the valuer that X can take
ii) continuous random variable: there are uncountable infinitely many possible outcomes
\rightarrow this usually happens when possible acmes are in some internal of red numbers
expected value of a continuous random variable X defined on the internal $[a, b]$:
$\Rightarrow \mathbb{E}(x)=\int_{a}^{b} x \cdot \rho(x) d x$, where $\rho(x)$ is the density function of x

Exc. 1.2

$$
\begin{aligned}
\mathbb{I E}(X)=\sum_{i=0}^{1} i \cdot \mathbb{P}(X=i) & =0 \cdot 0,6+1 \cdot 0,4=0,4 \\
Y \sim U([0,1]) & \Rightarrow \rho(y)=1 \text { for } y \text { in }[0,1]
\end{aligned}
$$

C distributed as

$$
\begin{aligned}
& \Rightarrow \mathbb{E}(y)=\int_{0}^{1} y \cdot \rho(y) d y=\int_{0}^{1} y \cdot 1 d y=\left[\frac{1}{2} \cdot y^{2}\right]_{0}^{1}=\frac{1}{2} \cdot 1^{2}-\frac{1}{2} \cdot 0^{2}=\frac{1}{2} \\
& \Rightarrow \mathbb{E}(2 Y)=\int_{0}^{1} 2 y \rho(y) d y=\int_{0}^{1} 2 y d y=\left[y^{2}\right]_{0}^{1}=1^{2}-0^{2}=1
\end{aligned}
$$

Exercise 2

1. Recall the definition of concave functions in one real variable.
2. Compute $\max _{x \in \mathbb{R}} g(x)$ with $g(x)=-2 x^{2}+32 x+7$.

$$
\begin{aligned}
& \rightarrow \text { maximited for } x=8 \\
& \Rightarrow g(8) \text { is maximum }
\end{aligned}
$$

Concave functions

- informal definition: A function is concave if the straight line connecting two points on it graph will always be below the graph

Mathematical definition:
f is concave if $f((1-\alpha) \cdot x+\alpha \cdot y) \geq(1-\alpha) f(x)+\alpha f(y)$ for all $\alpha \in[0,1]$
for differentiable functions: f concave $\Leftrightarrow f " \leq 0$

Here are some of the mathematical concepts you should master:

- rearranging terms
- computing the average of two (or more) numbers
- binomial formulas
- basic algebraic notations, such as $x^{\frac{1}{2}}=\sqrt{x}$ and $x^{-a}=\frac{1}{x^{a}}$, as well as rules of calculation with fractions, exponents and (square-)roots
- extreme value problems (maximizing a function under some constraints)
- integration, e.g. $\int_{0}^{1} \sqrt{x} d x=$?
- differentiation, in particular product rule, quotient rule and chain rule
- understanding and interpreting graphs and functions, computing points of intersection of two curves
- In the course schedule, you will find mathematical prerequisites for the chapters

