Demand for insurance

Christoph Schottmüller

Outline

(1) Gambles and utility functions
(2) Drivers of insurance demand
(3) Choosing coverage

Section 1

Gambles and utility functions

Certainty equivalent

Example

Flip a fair coin: If heads you have $700 €$ as monthly income, if tails $1.500 €$. What is your expected income?
If you could get $X €$ for sure as income, how high has X to be to make you indifferent to the lottery?

Definition (Certainty equivalent)

Take a lottery L. The certainty equivalent of L is the amount X such that the individual is indifferent between the lottery and receiving X for sure.

$$
u(C E)=\text { expected utility of lottery }
$$

Risk premium

Example (continued)

Flip a fair coin: If heads you have $700 €$ as monthly income, if tails $1.500 €$. What is your expected income?
How much expected income are you willing to sacrifice in order to avoid risk?

Definition (Risk premium)

The risk premium is the difference between the expected payout in a lottery L and the certainty equivalent of this lottery.
risk premium $=$ expected wealth in lottery - certainty equivalent note:
expected utility of lottery $=u$ (expected wealth of lottery - risk premium)

Plotting your utility function

Section 2

Drivers of insurance demand

The simple standard model of insurance demand

- person has wealth W
- monetary loss L with probability $\alpha \in(0,1)$
- person maximizes expected utility

$$
(1-\alpha) u(W)+\alpha u(W-L)
$$

where u is a strictly increasing function (with inverse function u^{-1})

- what is the expected wealth of the person?
- what is the formula for the certainty equivalent and the risk premium?
- how could we interpret the loss L in the context of health insurance?

Risk aversion

Definition (Risk aversion)

A person is risk averse if the risk premium is non-negative for all lotteries.

- a person is risk averse if and only if his utility function is concave

Aside: Implicit function theorem

Implicit function theorem

Let the function $C(L)$ be implicitly defined by the equation

$$
F(C, L)=0
$$

where F is a continuously differentiable function. Then,

$$
C^{\prime}(L)=-\frac{\partial F / \partial L}{\partial F / \partial C}
$$

at all points where $\partial F / \partial C \neq 0$.

Example (IFT)

$3 C-4 L=0$ implicitly defines the function

$$
C(L)=
$$

Check $C^{\prime}(L)$ according to IFT and by directly differentiating $C(L)$.

Size of the loss

- consider a wealth of W and a potential loss of $L \in(0, W)$ that occurs with probability α

Theorem (Size of the loss)

If a person is risk averse, the risk premium is increasing in L.
Proof:
definition of $C E$:

$$
\begin{gathered}
u(C E)=(1-\alpha) u(W)+\alpha u(W-L) \\
\Leftrightarrow u(C E)-(1-\alpha) u(W)-\alpha u(W-L)=0
\end{gathered}
$$

by implicit function theorem:

$$
C E^{\prime}(L)=-\frac{\alpha u^{\prime}(W-L)}{u^{\prime}(C E)}
$$

definition of RP:

$$
\begin{gathered}
R P(L)=W-\alpha L-C E(L) \\
\Rightarrow R P^{\prime}(L)=-\alpha-C E^{\prime}(L)=\alpha\left(-1+\frac{u^{\prime}(W-L)}{u^{\prime}(C E)}\right)
\end{gathered}
$$

as $W-L<C E, u^{\prime}(W-L)>u^{\prime}(C E)$ by concavity of $u \Rightarrow R P^{\prime}(L)>0$

Probability of loss

Theorem (Probability of the loss)

If a person is risk averse, the risk premium is first increasing in α (when α is small) and then decreasing in α (when α is large).

Figure: risk premia for different values of α where $\alpha_{1}<\alpha_{2}<\alpha_{3}$ and $\bar{W}_{i}=W-\alpha_{i} L$

Wealth effect

Theorem (Wealth effect)

If a person is risk averse, the effect of W on the risk premium is ambiguous. If the person becomes less risk averse as income increases - in the sense that $u^{\prime \prime \prime} \geq 0$ - then a higher W leads to a lower risk premium.

Access motive

- think of catastrophes:
- probability of an illness α is small
- costs of treatment L are higher than W
- death without treatment

Summary: Drivers of insurance demand

insurance demand (and therefore the importance of insurance) is particularly high if

- people are risk averse
- the potential loss is high
- there is uncertainty whether the risk realizes or not is high
- (people are poor and $u^{\prime \prime \prime} \geq 0$)
- insurance allows access to otherwise unaffordable treatments.

Section 3

Choosing coverage

Choosing coverage

- loss of L with probability α from wealth W
- insurance covers C at premium $p C$ and insuree chooses C
- $u^{\prime}>0, u^{\prime \prime}<0$

$$
E[u]=(1-\alpha) u(W-p C)+\alpha u(W-p C-L+C)
$$

- let $W_{1}=W-p C$ and $W_{2}=W-p C-L+C$

Theorem (Insurance demand)

The optimal decision C* leads to

$$
\begin{gathered}
-\frac{(1-\alpha) u^{\prime}\left(W_{1}^{*}\right)}{\alpha u^{\prime}\left(W_{2}^{*}\right)}=-\frac{1-p}{p} \\
\Leftrightarrow \frac{u^{\prime}\left(W_{1}^{*}\right)}{u^{\prime}\left(W_{2}^{*}\right)}=\frac{\alpha(1-p)}{(1-\alpha) p}
\end{gathered}
$$

Results:

- fair insurance $(p=\alpha)$: demand full coverage
- "unfair" insurance $(p>\alpha)$: demand partial coverage

Effects of minimum income/treatment

- suppose government guarantees income $\underline{W}>W-L$
- new option: $W_{1}=W$ and $W_{2}=\underline{W}$ (no insurance)
- no insurance is chosen if $(1-\alpha) u\left(W_{1}^{*}\right)+\alpha u\left(W_{2}^{*}\right)<(1-\alpha) u(W)+\alpha u(\underline{W})$, i.e. if \underline{W} is sufficiently high
Results:
- government guarantees crowd out insurance
- insurance mandate necessary (?)

