Selection

Christoph Schottmüller

Outline

1 Adverse selection with fixed coverage

2 Screening with coverage: Rothschild-Stiglitz

Premium risk, community rating and risk adjustment

Section 1

Adverse selection with fixed coverage

Model

- fixed insurance contract, e.g. full coverage
- large heterogeneous population:
 - differ in willingness to pay for contract
 - differ in expected costs
- heterogeneity is unobserved by insurers (expected costs and willingness to pay are "private information of consumers")
- insurers set premium
- for now: insurances have no administrative costs

Question

• Who is likely to have a higher willingness to pay for insurance: those with low or high expected costs?

Demand and marginal cost

Competitive equilibrium I

- "equilibrium":
 - no market participant wants to change his behavior (stability)
 - outside prediction of market outcome with rational market participants
- consumers buy at the lowest offered premium and only if this premium is below WTP
- lowest offered premium has to be equal or above average costs of those consumers that buy (otherwise selling insurance company makes losses and would rather not sell)
- lowest offered premium has to be *equal or below* average costs of those consumers that buy (otherwise an insurance company could increase its profits by slightly undercutting)

Competitive equilibrium II

• if many insurers compete on premium, equilibrium premium equals average costs ("Bertrand competition" or "perfect competition")

$$p^* = AC_{\text{buying consumers}}$$

- possible inefficiency: too little insurance in equilibrium Result:
 - adverse selection leads to too little insurance
 - insurance mandate (?)
 - premium subsidy

Special cases

- no inefficiency
- complete unravelling

Gender specific premia

- suppose women tend to have lower expected costs than men
 - who will have the lower premium, if insurance companies are allowed to discriminate based on gender?
 - if insurance companies are prohibited to discriminate based on gender, who benefits? who loses?
 - does discrimination lead to a more or less efficient outcome?

Gender specific premia

- unisex tarif were introduced in Montana, US in 1983 by law
- Wall Street Journal (1987) reported the following changes in premia

	women	men
life insurance	+15%	-3%
health insurance	-13%	+28%
car insurance	+49%	-16%

Loading factors

- insurance companies have administrative costs
- MC curve is expected payout + administrative costs of the contract
- admin costs shift MC up
- "loading": difference between premium and expected payout Results:
 - $\bullet\,$ not necessarily optimal to insure everyone $\rightarrow\,$ insurance mandate not optimal
 - effects of adverse selection as before (underinsurance in equilibrium)

Evidence for self selection

- recipients of Medicare can in many parts of the US choose between traditional plan and HMO plan (limited network and benefits)
 - expenditures 6 months before enrolling in HMO: 63% of average
 - expenditures 6 months after disenrolling from HMO: 160% of average
- Ellis (1985) reports of an employer that switched from offering one insurance plan to offering 3 insurance plans with different coverage levels
 - employees choosing high coverage plan had four times as high expenditures than the one in the low coverage plan

Section 2

Screening with coverage: Rothschild-Stiglitz

Rothschild-Stiglitz Model (screening with perfect competition)

consumers

- two risk types: prob of loss either α_l or $\alpha_h > \alpha_l$
- otherwise identical (utility function u with u' > 0 and u'' < 0, wealth W, loss L)
- risk type is private information of consumer
- insurers
 - risk neutral (i.e maximize expected profits)
 - zero administrative costs
 - offer menus of coverage/premium pairs
 - many insurance companies
 - know share of high risk type in population $\gamma \in (0,1)$

Rothschild-Stiglitz equilibrium

system of contracts, i.e. coverage/premium pairs, such that

- every offered contract yields non-negative expected profits,
- no insurance can increase its expected profits by offering another contract,
- Onsumers maximize expected utility.

Rothschild-Stiglitz: first best (no information asymmetry)

- benchmark: risk types are known by insurances
- what is equilibrium?

Rothschild-Stiglitz: curves and slopes I

Aside:

Implicit function theorem

Let the function p(q) be implicitly defined by the equation

F(p,q)=0

where F is a continuously differentiable function. Then,

$$p'(q) = -rac{\partial F/\partial q}{\partial F/\partial p}$$

at all points where $\partial F / \partial p \neq 0$.

Example (IFT) 3p - 4q = 0 implicitly defines the function

$$p(q) =$$

Check p'(q) according to IFT and by directly differentiating p(q). ^{17/49}

Rothschild-Stiglitz: curves and slopes II

• iso-profit curve for profit level $\bar{\pi}$

- all (q,p) combination leading to profit $ar{\pi}$
- profits: $\pi = p \alpha q L$
- iso- profit: $p(q|\pi=\bar{\pi})=\bar{\pi}+lpha qL$ with slope lpha L

• indifference curve for expected utility \bar{u}

- all (q, p) combinations leading to expected utility \bar{u}
- exp. utility: $\mathbb{E}[u] = \alpha u(W p (1 q)L) + (1 \alpha)u(W p)$
- slope indifference curve via implicit function theorem:

$$p'(q|\mathbb{E}[u] = \bar{u}) = \alpha L \frac{u'(W - p - (1 - q)L)}{\alpha u'(W - p - (1 - q)L) + (1 - \alpha)u'(W - p)} \ge \alpha L$$

for $q \leq 1$ (with strict inequality if q < 1) and rearranging gives

$$p'(q|\mathbb{E}[u]=ar{u})=Lrac{u'(W-p-(1-q)L)}{u'(W-p-(1-q)L)+rac{1-lpha}{lpha}u'(W-p)}$$

and therefore slope indifference curve higher for higher $\boldsymbol{\alpha}$

Rothschild-Stiglitz: curves and slopes III

important features to remember:

- through a (q, p) point the slope p'(q) of the indifference curve is higher for higher risk types
- for q < 1: through a (q, p) point the slope p'(q) of the indifference curve of type α is higher than the slope of the isoprofit line of type α
- for q = 1: through a (q, p) point the slope p'(q) of the indifference curve of type α equals the slope of the isoprofit line of type α

Rothschild-Stiglitz: second best (no pooling)

- high risk type has higher demand for coverage
- single crossing:
 - in coverage, premium diagram, *h* has a steeper indifference curve
- pooling equilibrium: both risk types buy the same contract Result:
 - pooling equilibrium does not exist

Rothschild-Stiglitz: second best (separating equilibrium)

- one contract for each risk type and each prefers his contract
- properties in a separating equilibrium:
 - as *h* is more eager to buy insurance, he has more coverage (higher *q*) in equilibrium
 - competition leads to zero profits

Results:

- equilibrium construction:
 - *h* gets contract where his zero profit line intersects full insurance
 - *l* gets contract where *h*'s indifference curve through *h*'s contract intersects *l*'s zero profit line
- first best contract for h
- underinsurance for *I*

Rothschild-Stiglitz: second best (non-existence of equilibrium)

• if γ small, there exists a pooling contract with positive profits from the above constructed "equilibrium"

 \rightarrow no equilibrium exists in this case

• other equilibrium concepts for this case (Wilson 1977, Miyazaki 1977, Spence 1978, Netzer and Scheuer 2014)

Rothschild-Stiglitz: minimum coverage level

- $\bullet\,$ suppose a law makes it impossible to offer coverage below some threshold \bar{q}
- how does this affect equilibrium?

Section 3

Application: genetic tests

Genetic tests: possible regulatory frameworks

- genetic tests can be used to determine risk (but usually not perfectly)
- what is the right regulatory framework:
 - private information: test results (if existing) are private information of insured (and insurance policies cannot depend on them)
 - voluntary disclosure: test results can be presented to insurer but do not have to be presented
 - mandatory disclosure: existing results have to be disclosed
 - laissez faire: insurers can (but do not have to) require (additional) tests

Genetic tests: model

model:

• same as Rothschild-Stiglitz but without test consumers do not know their risk type and have an average type $\bar{\alpha} = \gamma \alpha_h + (1 - \gamma) \alpha_l$

equilibria under different scenarios:

- benchmark: test is impossible
- everyone is tested and results are disclosed to insurers (mandatory disclosure)
- everyone is tested and results are private

Genetic tests:

Proposition

With risk averse consumers, expected utility of consumers is in (1) higher than in (2), and in (2) higher than in (3).

Genetic tests: how to think about risk

• two kind of risk:

- risk of having bad genetics
- risk of falling ill given your genetic predisposition
- without tests:
 - combination of both risks is insured
- with tests:
 - only risk conditional on genetic disposition is insured
 - (risk averse!) consumer bears risk of bad genetic disposition

Genetic tests: (partial) misunderstandings

- "genetic tests make health insurance impossible because insurance is about unpredictable risks"
- "accurately predicting risks will simplify the calculation of premia; that's great for insurers"
- "voluntary disclosure is best for consumers as they then can use the test to get a better insurance when the test is favorable and they simply do not use the test otherwise"

Genetic tests: trade-off

- make tests available to insurer
 - consumers bare risk of bad genetic test (double punishment in case of bad genetic disposition)
- keep tests private
 - increased adverse selection

Genetic tests: some (in)efficiencies

- some risk factors can lead to prevention efforts or cheaper early treatment
- test taking is costly
 - tests for risk of untreatable diseases

Genetic tests: models of endogenous information acquisition I

- suppose consumers decide themselves whether to take test at cost c ≥ 0 and afterwards choose an insurance contract (or stay uninsured)
- insurers cannot verify whether consumer did (not) take a test
- equilibria in different scenarios
 - **(**) c = 0 and private information
 - 2 c = 0 and voluntary disclosure
 - **3** c > 0 and voluntary disclosure
 - ④ c > 0 and private information

(for details, see Doherty and Thistle, Journal of Public Economics, 1996, 63, pp. 83-102)

Genetic tests: models of endogenous information acquisition II

- let genetic test results be private information
- insurer(s) offer menu of contracts
- consumer observes menu, then decides how much money/effort to spend on genetic tests to get a better idea of his own risk, then decides which contract to buy

Results:

- the more the offered contracts differ, the higher the incentives to acquire information
- $\bullet\,$ more similar contracts $\rightarrow\,$ less informed consumers $\rightarrow\,$ higher profits
- distort h contract as well to make contracts more similar! (additional inefficiency)

(source: Lagerlöf and Schottmüller, International Economic Review, 2018, 59(1), pp. 233-255)

Section 4

Premium risk, community rating and risk adjustment

Premium risk: basics

- premium (and coverage) can depend on information health insurer has
 - age, chronical illness, ZIP code etc.
- consumer faces risk of higher premium due to future change in characteristic
 - getting older, becoming chronically ill, moving to bad ZIP code etc.

Premium risk: simple model

- 2 periods
- risk of loss L in period 1 is α_l
- risk of loss *L* in period 2 is
 - α_l with probability λ
 - $\alpha_h > \alpha_I$ with probability 1- λ
- perfect competition of profit maximizing insurers
- period 2 risk type is observable in period 2 by everyone but not in period 1

Equilibrium:

- premium/coverage in period 1:
- premium/coverage in period 2 for α_I :
- premium/coverage in period 2 for α_h :
- risk averse consumer suffers from premium risk:

Premium risk: Long term contracts

- insurance contract covering both periods at premium
 - premium in period 1: $\alpha_I L$
 - premium in period 2: $(\lambda \alpha_l + (1 \lambda)\alpha_h)L$
- potential problems:

Premium risk: Guaranteed renewal

- against an up front fee of $[(\lambda \alpha_l + (1 \lambda)\alpha_h) \alpha_l]L$ the insurer offers the option to renew contract at first period premium $\alpha_l L$
- potential problems:

Premium risk: premium insurance

- (other) insurers offer full insurance against health premium increase at price $[(\lambda \alpha_l + (1 \lambda)\alpha_h) \alpha_l]L$
- advantage over guaranteed renewal:
- potential problems:

Premium risk: community rating

- regulation: all insured pay the same premium, $\alpha_I L$ in period 1 and $(\lambda \alpha_I + (1 - \lambda)\alpha_h)L$ in period 2, that must not depend on risk type
 - problem:
- community rating + mandatory insurance
 - problem:
- community rating + mandatory insurance + open enrollment
 - problem:
- community rating + mandatory insurance + open enrollment
 - $+ \ {\rm regulated} \ {\rm coverage}$
 - problem:
- community rating + mandatory insurance + regulated coverage + open enrollment + single payer (NHS, Scandinavia)
 - problem:
- community rating + mandatory insurance + regulated coverage + open enrollment + risk adjustment (Netherlands?)

Risk adjustment

- "cream skimming" as problem:
 - insurers avoid high cost consumers and try to attract low cost consumers (how?)
- risk adjustment tries to eliminate this incentive
 - internal transfer payments from insurances with low risk insured to insurances with high risk insured
 - risk estimates based on observable characteristics (gender, age, chronically ill etc.)
 - if well designed, transfer exactly compensates additional cost
 - level playing field -> more intense competition
 - risk factors should be outside of the control of the insurer to avoid manipulability
- problems of community rating + mandatory insurance + regulated coverage + open enrollment + risk adjustment:

Risk adjustment: how good is prediction?

- 1997, 1998 data from large German insurer (800.000 insured)
- $\bullet~\%$ of variance explained by the following covariates

	concurrent exp	prospective exp
age and gender	3.2%	3.2%
age, gender and invalid status	5.1%	4.5%
above + HCC	37%	12%

 $\mathsf{HCC} = \mathsf{hierarchical} \ \mathsf{coexisting} \ \mathsf{conditions}$

(source: Behrend et al. 2007. European Journal of Health Economics 8 (1): 31-39.)

- from 1996 to 2001 German risk adjustment was based on age, gender, invalid status and income
- since 2009, detailed system of hierarchical coexisting conditions

Risk adjustment: how good is prediction?

Comparison of R² from various risk adjustment models from six papers

Newhouse et al., 1989	Van Vliet and van de Ven, 1992	Fowles, Weiner, et al 1996 ^b	Physician Payment Review Commission 1994	Pope et al, 1998a	Lamers, 1998b
US Privately Insured 1974-1979 N=7,690	Netherlands 1981-82 N = 20,000	US HMO enrollees 1991-1993 N = 5780	US, Medicare 1991-1992	US Medicare 1991-1993 N = 10,893	Netherlands sickness fund 1991-1994 N=10,570
0.016	0.028	0.058	0.016	0.007	0.038
	0.037				
				0.0252	
	0.071	0.111	0.032	0.0274	
0.028			0.03	0.0311	
		0.111	0.033	0.0405	
0.064				0.0413	
	0.114		0.062	0.0418	0.060
0.045		.124°		0.0727 ^d	0.080°
0.09			0.07	0.0785	0.086
	Newhouse et al., 1989 US Privately Insured 1974-1979 N=7,690 0.016 0.028 0.028 0.064 0.045 0.09	Newhouse 1, 1989 Van Vliet and 1994, 1979 N=7,590 US Privately 1974, 1979 N=7,590 Netherlands	Newhouse al., 1989 Van Vilet am 1994. Swiles, 1994. Swiles, 1994. US Privately 1974.1979 Netherlands 1981.62 US HMO enrollees 1991.1993 0.016 0.028 0.058 0.028 0.037 1 0.028 0.0111 0.111 0.028 0.114 1 0.045 0.114 124°	Newhouse et al., 1989 Van Vliet and 1992 Fowles, 1996 ^b Physician Review Commission US Privately Insured 1974-1979 Netherlands 1991-82 N = 20,000 US HMO enrollees 1991-1993 N = 5780 US, Medicare 1991-1993 0.016 0.028 0.058 0.016 0.037	Newhouse at l, 1989 Van Vliet and Van de Van, 1996 Powles, 1994 Pope et al, 1989 Pope et al, 1989 US Privately Insured 1974-1979 Netherlands 1991-1993 US, Medicare 1991-1993 US, Medicare 1991-1993 US, Medicare 1991-1993 0.016 0.028 0.058 0.016 0.07 0.037 - - 0.0252 0.028 0.111 0.032 0.0274 0.028 0.111 0.033 0.0405 0.028 0.111 0.032 0.0413 0.028 0.111 0.033 0.0405 0.028 - - 0.0413 0.029 - - 0.0413 0.045 - 124 ^e 0.077 ^d 0.09 - 124 ^e 0.0785

(source: Cuyler and Newhouse, eds. van de Ven and Ellis, Handbook of Health Economics, pp. 755-845, 2000)

Section 5

Advantageous selection

Empirics

- adverse selection requires that consumer has and uses information about his health status that the insurer does not have
- (premium risk required insurer to have and use information on consumer's health status)
- long term care insurance
- elderly sample (average age 78), US, 1995-2000
- 16% enter nursing home, 11% have long term care insurance
- survey in 1995 asks
 - "Of course nobody wants to go to a nursing home, but sometimes it becomes necessary. What do you think are the chances that you will move to a nursing home in the next five years?"
 - average answer 18%

Empirics: Explanations

- wealth
 - poorer people are covered by Medicaid -> buy less insurance
 - poorer people have higher risk
- "risk aversion"
 - risk averse people are more likely to buy insurance
 - risk averse people have lower risk

Advantageous selection

- variable A is
 - negatively correlated with risk
 - positively correlated with insurance purchase (or vice versa)
- can turn positive correlation between risk and insurance purchase around
 - people with lower risk buy insurance
 - "advantageous selection"

Other observations:

- Hemenway reports on risk aversion
 - in a hospital 7% were uninsured but 46% of motorcyclists with accidents
 - another hospital: 27% of helmeted motorcyclists uninsured but 41% of unhelmeted
- prevention channel
- Fang, Keane and Silverman find negative correlation in medigap market and can attribute it to wealth and cognitive ability (not risk aversion)

Advantageous selection: model with fixed coverage

Fixed coverage model:

- difference between demand and cost function captures risk premium
- suppose higher cost consumers have low risk premium
- order consumers according to (i) willingness to pay for insurance or (ii) expected costs