Selection

Christoph Schottmüller

Outline

(1) Adverse selection with fixed coverage
(2) Screening with coverage: Rothschild-Stiglitz
(3) Application: genetic tests

4 Premium risk, community rating and risk adjustment
(5) Advantageous selection

Section 1

Adverse selection with fixed coverage

Model

- fixed insurance contract, e.g. full coverage
- large heterogeneous population:
- differ in willingness to pay for contract
- differ in expected costs
- heterogeneity is unobserved by insurers (expected costs and willingness to pay are "private information of consumers")
- insurers set premium
- for now: insurances have no administrative costs

Question

- Who is likely to have a higher willingness to pay for insurance: those with low or high expected costs?

Demand and marginal cost

Competitive equilibrium I

- "equilibrium":
- no market participant wants to change his behavior (stability)
- outside prediction of market outcome with rational market participants
- consumers buy at the lowest offered premium and only if this premium is below WTP
- lowest offered premium has to be equal or above average costs of those consumers that buy (otherwise selling insurance company makes losses and would rather not sell)
- lowest offered premium has to be equal or below average costs of those consumers that buy (otherwise an insurance company could increase its profits by slightly undercutting)

Competitive equilibrium II

- if many insurers compete on premium, equilibrium premium equals average costs ("Bertrand competition" or "perfect competition")

$$
p^{*}=A C_{\text {buying consumers }}
$$

- possible inefficiency: too little insurance in equilibrium Result:
- adverse selection leads to too little insurance
- insurance mandate (?)
- premium subsidy

Special cases

- no inefficiency
- complete unravelling

Gender specific premia

- suppose women tend to have lower expected costs than men
- who will have the lower premium, if insurance companies are allowed to discriminate based on gender?
- if insurance companies are prohibited to discriminate based on gender, who benefits? who loses?
- does discrimination lead to a more or less efficient outcome?

Gender specific premia

- unisex tarif were introduced in Montana, US in 1983 by law
- Wall Street Journal (1987) reported the following changes in premia

	women	men
life insurance	$+15 \%$	-3%
health insurance	-13%	$+28 \%$
car insurance	$+49 \%$	-16%

Loading factors

- insurance companies have administrative costs
- MC curve is expected payout + administrative costs of the contract
- admin costs shift MC up
- 'loading": difference between premium and expected payout

Results:

- not necessarily optimal to insure everyone \rightarrow insurance mandate not optimal
- effects of adverse selection as before (underinsurance in equilibrium)

Evidence for self selection

- recipients of Medicare can in many parts of the US choose between traditional plan and HMO plan (limited network and benefits)
- expenditures 6 months before enrolling in HMO: 63% of average
- expenditures 6 months after disenrolling from HMO: 160% of average
- Ellis (1985) reports of an employer that switched from offering one insurance plan to offering 3 insurance plans with different coverage levels
- employees choosing high coverage plan had four times as high expenditures than the one in the low coverage plan

Section 2

Screening with coverage: Rothschild-Stiglitz

Rothschild-Stiglitz Model (screening with perfect competition)

- consumers
- two risk types: prob of loss either $\alpha_{\text {I }}$ or $\alpha_{h}>\alpha_{I}$
- otherwise identical (utility function u with $u^{\prime}>0$ and $u^{\prime \prime}<0$, wealth W, loss L)
- risk type is private information of consumer
- insurers
- risk neutral (i.e maximize expected profits)
- zero administrative costs
- offer menus of coverage/premium pairs
- many insurance companies
- know share of high risk type in population $\gamma \in(0,1)$

Rothschild-Stiglitz equilibrium

system of contracts, i.e. coverage/premium pairs, such that
(1) every offered contract yields non-negative expected profits,
(2) no insurance can increase its expected profits by offering another contract,
(3) consumers maximize expected utility.

Rothschild-Stiglitz: first best (no information asymmetry)

- benchmark: risk types are known by insurances
- what is equilibrium?

Rothschild-Stiglitz: curves and slopes I

Aside:

Implicit function theorem

Let the function $p(q)$ be implicitly defined by the equation

$$
F(p, q)=0
$$

where F is a continuously differentiable function. Then,

$$
p^{\prime}(q)=-\frac{\partial F / \partial q}{\partial F / \partial p}
$$

at all points where $\partial F / \partial p \neq 0$.

Example (IFT)

$3 p-4 q=0$ implicitly defines the function

$$
p(q)=
$$

Check $p^{\prime}(q)$ according to IFT and by directly differentiating $p(q)$.

Rothschild-Stiglitz: curves and slopes II

- iso-profit curve for profit level $\bar{\pi}$
- all (q, p) combination leading to profit $\bar{\pi}$
- profits: $\pi=p-\alpha q L$
- iso- profit: $p(q \mid \pi=\bar{\pi})=\bar{\pi}+\alpha q L$ with slope αL
- indifference curve for expected utility \bar{u}
- all (q, p) combinations leading to expected utility \bar{u}
- exp. utility: $\mathbb{E}[u]=\alpha u(W-p-(1-q) L)+(1-\alpha) u(W-p)$
- slope indifference curve via implicit function theorem:

$$
p^{\prime}(q \mid \mathbb{E}[u]=\bar{u})=\alpha L \frac{u^{\prime}(W-p-(1-q) L)}{\alpha u^{\prime}(W-p-(1-q) L)+(1-\alpha) u^{\prime}(W-p)} \geq \alpha L
$$

for $q \leq 1$ (with strict inequality if $q<1$) and rearranging gives

$$
p^{\prime}(q \mid \mathbb{E}[u]=\bar{u})=L \frac{u^{\prime}(W-p-(1-q) L)}{u^{\prime}(W-p-(1-q) L)+\frac{1-\alpha}{\alpha} u^{\prime}(W-p)}
$$

and therefore slope indifference curve higher for higher α

Rothschild-Stiglitz: curves and slopes III

important features to remember:

- through a (q, p) point the slope $p^{\prime}(q)$ of the indifference curve is higher for higher risk types
- for $q<1$: through a (q, p) point the slope $p^{\prime}(q)$ of the indifference curve of type α is higher than the slope of the isoprofit line of type α
- for $q=1$: through a (q, p) point the slope $p^{\prime}(q)$ of the indifference curve of type α equals the slope of the isoprofit line of type α

Rothschild-Stiglitz: second best (no pooling)

- high risk type has higher demand for coverage
- single crossing:
- in coverage, premium diagram, h has a steeper indifference curve
- pooling equilibrium: both risk types buy the same contract Result:
- pooling equilibrium does not exist

Rothschild-Stiglitz: second best (separating equilibrium)

- one contract for each risk type and each prefers his contract
- properties in a separating equilibrium:
- as h is more eager to buy insurance, he has more coverage (higher q) in equilibrium
- competition leads to zero profits

Results:

- equilibrium construction:
- h gets contract where his zero profit line intersects full insurance
- I gets contract where h 's indifference curve through h 's contract intersects l's zero profit line
- first best contract for h
- underinsurance for I

Rothschild-Stiglitz: second best (non-existence of equilibrium)

- if γ small, there exists a pooling contract with positive profits from the above constructed "equilibrium"
\rightarrow no equilibrium exists in this case
- other equilibrium concepts for this case (Wilson 1977, Miyazaki 1977, Spence 1978, Netzer and Scheuer 2014)

Rothschild-Stiglitz: minimum coverage level

- suppose a law makes it impossible to offer coverage below some threshold \bar{q}
- how does this affect equilibrium?

Section 3

Application: genetic tests

Genetic tests: possible regulatory frameworks

- genetic tests can be used to determine risk (but usually not perfectly)
- what is the right regulatory framework:
- private information: test results (if existing) are private information of insured (and insurance policies cannot depend on them)
- voluntary disclosure: test results can be presented to insurer but do not have to be presented
- mandatory disclosure: existing results have to be disclosed
- laissez faire: insurers can (but do not have to) require (additional) tests

Genetic tests: model

model:

- same as Rothschild-Stiglitz but without test consumers do not know their risk type and have an average type $\bar{\alpha}=\gamma \alpha_{h}+(1-\gamma) \alpha_{l}$
equilibria under different scenarios:
(1) benchmark: test is impossible
(2) everyone is tested and results are disclosed to insurers (mandatory disclosure)
(3) everyone is tested and results are private

Genetic tests:

Proposition

With risk averse consumers, expected utility of consumers is in (1) higher than in (2), and in (2) higher than in (3).

Genetic tests: how to think about risk

- two kind of risk:
- risk of having bad genetics
- risk of falling ill given your genetic predisposition
- without tests:
- combination of both risks is insured
- with tests:
- only risk conditional on genetic disposition is insured
- (risk averse!) consumer bears risk of bad genetic disposition

Genetic tests: (partial) misunderstandings

- "genetic tests make health insurance impossible because insurance is about unpredictable risks"
- "accurately predicting risks will simplify the calculation of premia; that's great for insurers"
- "voluntary disclosure is best for consumers as they then can use the test to get a better insurance when the test is favorable and they simply do not use the test otherwise"

Genetic tests: trade-off

- make tests available to insurer
- consumers bare risk of bad genetic test (double punishment in case of bad genetic disposition)
- keep tests private
- increased adverse selection

Genetic tests: some (in)efficiencies

- some risk factors can lead to prevention efforts or - cheaper early treatment
- test taking is costly
- tests for risk of untreatable diseases

Genetic tests: models of endogenous information acquisition I

- suppose consumers decide themselves whether to take test at cost $c \geq 0$ and afterwards choose an insurance contract (or stay uninsured)
- insurers cannot verify whether consumer did (not) take a test
- equilibria in different scenarios
(1) $c=0$ and private information
(2) $c=0$ and voluntary disclosure
(3) $c>0$ and voluntary disclosure
(9) $c>0$ and private information

Genetic tests: models of endogenous information acquisition II

- let genetic test results be private information
- insurer(s) offer menu of contracts
- consumer observes menu, then decides how much money/effort to spend on genetic tests to get a better idea of his own risk, then decides which contract to buy
Results:
- the more the offered contracts differ, the higher the incentives to acquire information
- more similar contracts \rightarrow less informed consumers \rightarrow higher profits
- distort h contract as well to make contracts more similar! (additional inefficiency)
(source: Lagerlöf and Schottmüller, International Economic Review, 2018, 59(1), pp. 233-255)

Section 4

Premium risk, community rating and risk adjustment

Premium risk: basics

- premium (and coverage) can depend on information health insurer has
- age, chronical illness, ZIP code etc.
- consumer faces risk of higher premium due to future change in characteristic
- getting older, becoming chronically ill, moving to bad ZIP code etc.

Premium risk: simple model

- 2 periods
- risk of loss L in period 1 is α_{I}
- risk of loss L in period 2 is
- α_{l} with probability λ
- $\alpha_{h}>\alpha_{l}$ with probability 1- λ
- perfect competition of profit maximizing insurers
- period 2 risk type is observable in period 2 by everyone but not in period 1
Equilibrium:
- premium/coverage in period 1 :
- premium/coverage in period 2 for α_{l} :
- premium/coverage in period 2 for α_{h} :
- risk averse consumer suffers from premium risk:

Premium risk: Long term contracts

- insurance contract covering both periods at premium
- premium in period 1: $\alpha_{l} L$
- premium in period 2: $\left(\lambda \alpha_{I}+(1-\lambda) \alpha_{h}\right) L$
- potential problems:

Premium risk: Guaranteed renewal

- against an up front fee of $\left[\left(\lambda \alpha_{I}+(1-\lambda) \alpha_{h}\right)-\alpha_{l}\right] L$ the insurer offers the option to renew contract at first period premium $\alpha_{l} L$
- potential problems:

Premium risk: premium insurance

- (other) insurers offer full insurance against health premium increase at price $\left[\left(\lambda \alpha_{l}+(1-\lambda) \alpha_{h}\right)-\alpha_{l}\right] L$
- advantage over guaranteed renewal:
- potential problems:

Premium risk: community rating

- regulation: all insured pay the same premium, $\alpha_{l} L$ in period 1 and $\left(\lambda \alpha_{I}+(1-\lambda) \alpha_{h}\right) L$ in period 2, that must not depend on risk type
- problem:
- community rating + mandatory insurance
- problem:
- community rating + mandatory insurance + open enrollment
- problem:
- community rating + mandatory insurance + open enrollment + regulated coverage
- problem:
- community rating + mandatory insurance + regulated coverage + open enrollment + single payer (NHS, Scandinavia)
- problem:
- community rating + mandatory insurance + regulated coverage + open enrollment + risk adjustment (Netherlands?)

Risk adjustment

- "cream skimming" as problem:
- insurers avoid high cost consumers and try to attract low cost consumers (how?)
- risk adjustment tries to eliminate this incentive
- internal transfer payments from insurances with low risk insured to insurances with high risk insured
- risk estimates based on observable characteristics (gender, age, chronically ill etc.)
- if well designed, transfer exactly compensates additional cost
- level playing field $->$ more intense competition
- risk factors should be outside of the control of the insurer to avoid manipulability
- problems of community rating + mandatory insurance + regulated coverage + open enrollment + risk adjustment:

Risk adjustment: how good is prediction?

- 1997, 1998 data from large German insurer (800.000 insured)
- \% of variance explained by the following covariates

	concurrent exp	prospective exp
age and gender	3.2%	3.2%
age, gender and invalid status	5.1%	4.5%
above + HCC	37%	12%

HCC $=$ hierarchical coexisting conditions
(source: Behrend et al. 2007. European Journal of Health Economics 8 (1): 31-39.)

- from 1996 to 2001 German risk adjustment was based on age, gender, invalid status and income
- since 2009, detailed system of hierarchical coexisting conditions

Risk adjustment: how good is prediction?

Comparison of R^{2} from various risk adjustment models from six papers

(source: Cuyler and Newhouse, eds. van de Ven and Ellis, Handbook of Health Economics, pp. 755-845, 2000)

Section 5

Advantageous selection

Empirics

- adverse selection requires that consumer has and uses information about his health status that the insurer does not have
- (premium risk required insurer to have and use information on consumer's health status)
- long term care insurance
- elderly sample (average age 78), US, 1995-2000
- 16% enter nursing home, 11% have long term care insurance
- survey in 1995 asks
- "Of course nobody wants to go to a nursing home, but sometimes it becomes necessary. What do you think are the chances that you will move to a nursing home in the next five years?"
- average answer 18%

Empirics: Explanations

- wealth
- poorer people are covered by Medicaid -> buy less insurance
- poorer people have higher risk
- "risk aversion"
- risk averse people are more likely to buy insurance
- risk averse people have lower risk

Advantageous selection

- variable A is
- negatively correlated with risk
- positively correlated with insurance purchase (or vice versa)
- can turn positive correlation between risk and insurance purchase around
- people with lower risk buy insurance
- "advantageous selection"

Other observations:

- Hemenway reports on risk aversion
- in a hospital 7% were uninsured but 46% of motorcyclists with accidents
- another hospital: 27% of helmeted motorcyclists uninsured but 41% of unhelmeted
- prevention channel
- Fang, Keane and Silverman find negative correlation in medigap market and can attribute it to wealth and cognitive ability (not risk aversion)

Advantageous selection: model with fixed coverage

Fixed coverage model:

- difference between demand and cost function captures risk premium
- suppose higher cost consumers have low risk premium
- order consumers according to (i) willingness to pay for insurance or (ii) expected costs

