Imperfect Information in Health Care Markets

Exercise Session 4 - Insurance Demand

Marius Gramb

Questions about the lecture

1. In the lecture, I did not quite understand why $\mathrm{RP}^{\prime}(\mathrm{L})$ is greater than 0 (and thus RP increases with L):

$$
R P^{\prime}(L)=\alpha\left(\left(u^{\prime}(W-L) / u^{\prime}(C E)\right)-1\right)
$$

I know that the fraction ($\left.u^{\prime}(W-L) / u^{\prime}(C E)\right)$ needs to be greater than 1 and therefore $W-L>C E$, but I don't understand why that is the case.
S no!

Answer: Marginal utility is decreasing in income!

$$
\text { So } u^{\prime}(\tilde{x})<u^{\prime}(x) \text { for } \hat{x}>x
$$

CE has to be greaterflian $W-L$ (since $W-L$ is worst care)

$$
\begin{aligned}
& \Rightarrow u^{\prime}(C E)<u^{\prime}(W-L) \\
& \Rightarrow \frac{u^{\prime}(W-L)}{u^{\prime}(C E)}>1
\end{aligned}
$$

Exercise 4

Consider a person with utility of income $u(x)=\sqrt{x}$. Is this person risk averse? For the following lotteries, compute the expected income, the certainty equivalent and the risk premium.
a) Probability $1 / 3$ for each 1600,2500 , and 3600 Euros.
b) Income is uniformly distributed between 1600 and 2500 Euros.

Exc. 4 b)
in general: $U(a, b)$ uniform acistication \Rightarrow density: $\rho(x)=\frac{1}{b-a}$
Now: Income is distributed as $U(1600 ; 2500) \quad$ (uniform distribution) for $x \in[a, b]$
\Leftrightarrow density $\rho(x)=\frac{1}{900}$ for $x \in[1600,2500]$

$$
E(x)=\int_{1600}^{2500} x \frac{1}{900} d x=\frac{1}{900}\left[\frac{1}{2} x^{2}\right]_{1600}^{2000}=2050 \text { expected income }
$$

$$
\begin{aligned}
E(u)=\int_{1600}^{2500} \underbrace{\sqrt{x}}_{\substack{x \\
\text { ext (x) coded utility } \\
\text { ext }}} \frac{1}{900} d x=\frac{1}{900}\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1600}^{2000}=\frac{1}{900} \cdot \frac{2}{3}(125000-64.000) & =\frac{61000 \cdot 2}{2700} \\
& \approx 40,185
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow u(C E) & \stackrel{\prime}{=} E(u)=45,185 \\
& \Leftrightarrow \sqrt{C E}=45,185 \\
& \Rightarrow C E \approx 2041,7<2050 \Rightarrow \text { person is nijk-averse } \\
& R P=E(x)-C E=2050-2041,7=8,3>0 .
\end{aligned}
$$

Certainty Equivalent
Risk premium

Exercise 5

Consider a person with utility of income $u(x)=\sqrt{x}$. The person has an income of 2500 Euros but loses L Euros with probability α. Determine the certainty equivalent and the risk premium as a function of α and L. Is the risk premium increasing or decreasing in L ? Is the risk premium increasing or decreasing in α ?

Exc. 5
First, let us compute the expected income:

$$
\begin{aligned}
& E(x)=\alpha \cdot(2500-L)+(1-\alpha) \cdot 2500=2500-\alpha \cdot L \\
& E(u)=\alpha \cdot \frac{\sqrt{25000-L}}{}+(1-\alpha) \underbrace{\sqrt{2500}}_{u(2500)}=\alpha \cdot \sqrt{2500-L}+50(1-\alpha) \\
& u(C E) \quad E E(u)
\end{aligned}
$$

$$
\Leftrightarrow \sqrt{C E}=E(u)
$$

$$
\Rightarrow C E=(\alpha \cdot \sqrt{2000-L}+50(1-\alpha))^{2}=\alpha^{2} \cdot(2500-L)+100(1-\alpha) \alpha \sqrt{2500-L}+2500(1-\alpha)^{2}
$$

$$
\begin{aligned}
R P=E(x)-C E & =2500-\alpha L-\alpha^{2}(2500-L)-100(1-x) \alpha \sqrt{2000-L}-2500(1-\alpha)^{2} \\
& =-\alpha L+5000 \alpha-2 \alpha^{2} \cdot 2500+\alpha^{2} \cdot L-100(1-\alpha) \alpha \cdot \sqrt{2500-L}
\end{aligned}
$$

Is thy decreasing/ increasing in a and $L ? \Rightarrow$ look af derivatives:

$$
\frac{\partial R P(\alpha, L)}{\partial \alpha}=-L+5000-10000 \alpha+2 \alpha L-(1-2 \alpha) \cdot 100 \sqrt{2500-L}
$$

This is neither always ≥ 0 nor always ≤ 0.
For example, for $L=900$, we get

$$
\frac{\partial R P(\alpha, 900)}{\alpha \alpha}=100-200 \alpha \rightarrow \geq 0 \text { for } \alpha \leq \frac{1}{2}
$$

Exercise 6

Consider the utility function $u(x)=-e^{-\eta x}$. The person has an income of 1 and experiences a loss of 1 with probability α. The coefficient of absolute risk aversion is defined as $-u^{\prime \prime}(x) / u^{\prime}(x)$. Compute this coefficient. Let now $\alpha=0.5$ and check whether the certainty equivalent in- or decreases in η.

Exc. 6

$$
\begin{aligned}
& u(x)=-e^{-n x} \\
& u^{\prime}(x)=-(-\eta) e^{-\eta x}=\eta \cdot e^{-n x} \\
& u^{\prime \prime}(x)==\eta \cdot(-\eta) \cdot e^{-n x}=-\eta^{2} e^{-n x}
\end{aligned}
$$

$$
\Rightarrow-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=-\frac{-n^{2} e^{-n x}}{n e^{-n t}}=n \quad \Rightarrow n \text { mearars nisk aversion! }
$$

$$
\begin{aligned}
E(u) & =\alpha \cdot u(0)+(1-\alpha) u(1) \\
& \left.=\alpha \cdot 1 \cdot e^{0}\right)+(1-\alpha) \cdot\left(\cdot e^{-n}\right)=-\alpha+(1-\alpha) \cdot\left(-e^{-n}\right)
\end{aligned}
$$

$$
\Leftrightarrow e^{-n \cdot C E}=\alpha \neq(1-\alpha) e^{-n}
$$

Uatural loganittam (ln)
(derivative el exporantiol fanctions

$$
u(C E) \stackrel{!}{=} E(u)
$$

$$
\Rightarrow-e^{-\eta \cdot C E} \stackrel{!}{=}-\alpha-(1-\alpha) e^{-\eta}
$$

$$
\begin{aligned}
\Rightarrow-\eta \cdot C E= & \ln \left(\alpha+(1-\alpha) e^{-\eta}\right) \\
& -\ln \left(\alpha+(1-\alpha) e^{-}\right.
\end{aligned}
$$

CE depending on η for $\alpha=0.5$

