Imperfect Information in Health Care Markets

 Exercise Session 8 - Genetic Tests and Premium RiskQuestions about the lecture

Exercise 17

Assume that all people in our economy are similar and have the same Bernoulli utility function $u(x)=\sqrt{x}$. A person has wealth $W=9$ and falls ill with probability $1 / 2$. When falling ill the person needs treatment costing $L=5$. Assume that many insurance companies without administrative costs compete perfectly in the insurance market.
a) Determine the risk premium of a consumer for a full coverage contract. What contract will be offered in equilibrium?

Exc. 17 a)
RP = chat the consumer wald pay more than his needed coifs to avoid the lottery.

$$
E(x)=\frac{1}{2} \cdot 9+\frac{1}{2} \cdot(9-5)-6,5 \quad \text { expected in cone }
$$

$$
E(u)=\frac{1}{2} \cdot \sqrt{9}+\frac{1}{2} \sqrt{9-5}=2,5
$$ insurance

$R P$ is given by

$$
\begin{aligned}
& u(E(x)-R P)=E(u) \\
\Rightarrow & \sqrt{6,5-R P}=2,5 \\
\Rightarrow & 6,5-R P=6,25 \\
\Leftrightarrow & R P=0,25
\end{aligned}
$$

in equilibrium: Full coverage contract at a fair premium $p=0,5 \cdot 5=2,5$
(this leads to an expected virility $E(u)=\sqrt{9-2,5} \approx 2,55$)
\longrightarrow expected utility from insurance

Exercise 17 b)

Suppose a genetic test becomes available: The test results can be either "high risk" (h) or "low risk" (I). Those that test have a 50% chance of getting either result. High risk people have probability $3 / 4$ and low risk people have the probability $1 / 4$ of falling ill.

1. Calculate the risk premium of an h type and the risk premium of an / type (again using a full coverage contract).
2. Assume everyone gets tested and the insurance companies can make their contracts dependent on the test result. What contracts will they offer? How do profits and expected utility change compared to a)?
3. Assume that insurance companies are prohibited from making their contracts contingent upon the test results. How do expected utility and insurance profits change compared to a)? (Note: you do not have to calculate the equilibrium contracts to answer this question qualitatively.)

Exc. 17b)

1. K-type's utility of no insurance:

$$
\begin{aligned}
& E(u)=\frac{3}{4} \cdot \sqrt{9-5}+\frac{1}{4} \sqrt{9}=\frac{9}{4} \\
& \rightarrow \frac{9}{4} \leq \frac{\sqrt{9-\frac{3}{4} \cdot 5-R P}}{5,25=\frac{84}{16}}
\end{aligned} \Leftrightarrow R P=\frac{3}{16}
$$

l-the's utility of wo inference:

$$
\begin{aligned}
& E(u)=\frac{1}{4} \sqrt{9-5}+\frac{3}{4} \sqrt{9}=\frac{11}{4} \\
& \Leftrightarrow \frac{11}{4}=\sqrt{9-\frac{5}{4}-R P}
\end{aligned} \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

2. offered contacts with observability:
full coverage contracts af premium $P_{n}=\frac{3}{4} \cdot 5=3,75$ for lion type

$$
\text { and } \mathrm{Pe}=\frac{1}{4} \cdot 5=1,25 \text { for low tope }
$$

Profits are arr for insurances (potato ompention)
Expected utilities:

$$
\begin{array}{ll}
E\left(u_{n}\right)=\sqrt{9-3,75} \approx 2,29 & \text { for cush the } \\
E\left(u_{l}\right)=\sqrt{9-1,25} \approx 2,78 & \text { for low tope }
\end{array}
$$

7 on average, $E(u)=2,53<2,5$ El) in a) wheat
3. equilibrium contracts given by the RS -model:

- h-type gets the save contract as in the observable case
- l-type gets a partial coverage contract he likes bor then in the observable case
\Rightarrow Couruner surplus is lover than in the observable case, hence aho lower than without tests.
Jusurances still macle zero profits.

Exercise 17 c)

Consider now a profit maximizing insurance monopolist. How does your answer in a) and b.1) and b.2) change?

Exc. 17c)
Remember from a): RP $=\frac{1}{4}$ without the test
in 6.1): RP $=\frac{3}{16}$ for both types
\Rightarrow the monopolist will offer the contacts

$$
P_{h}^{\text {non }}=0,75 \cdot 5+\frac{3}{16}=\frac{63}{16}, q_{n}^{\text {mon }}=1 \quad \text { for the high tope }
$$

and $\quad P_{e}^{\text {mon }}=0,25 \cdot 5+\frac{3}{16}=\frac{23}{16}, q_{e}^{\text {mon }}=1$ for the las type
RP

exp. utility of the high tope: $E_{h}(u)=\sqrt{9-\frac{63}{16}}=\sqrt{\frac{81}{16}}=\frac{9}{4} \quad \rightarrow$ on average, E(u) $=\frac{10}{4}=2,5$,
-4 - low type: $\quad E_{l}(u)=\sqrt{9-\frac{23}{16}}=\sqrt{\frac{121}{16}}=\frac{\mu}{4}$
the sure whity consumers had without the test

Exercise 18

In Germany (private) health insurers are required to charge a constant premium over the life cycle. We use the premium risk model from the lecture: 2 periods, income W in each period, everyone has low risk $\alpha_{\text {I }}$ of a loss L in period 1 , probability $1-\lambda$ of an increase of risk to α_{h} in period 2, perfect competition.
a) Calculate the constant premium that yields zero expected profits to insurers under the assumption that no one switches insurers in period 2.

Exc. 18 al
What are the expected costs for the issuance in period 1 and 2?
Tu period 1: $\quad \alpha_{e} \cdot L$
In period 2: $\quad\left(\lambda \cdot \alpha_{e}+(1-\lambda) \cdot \alpha_{n}\right) \cdot L$
\Rightarrow to make exactly zero profits, insurances will charge the consfout premium

$$
P=\frac{\frac{\alpha_{l}+\lambda \cdot \alpha_{l}+(1-\lambda) \cdot \alpha_{n}}{2} \cdot L}{\text { average expected copts per }} \begin{aligned}
& \text { period }
\end{aligned}
$$

Exercise 18 b)

Given the premium from the previous subquestion, what would happen if consumers could switch insurers in period 2?

Exc. 18b)
low risk types would count to switch insurers as $\alpha_{e}<\frac{\alpha_{c}+\lambda \alpha_{e}+(a-\lambda) \alpha_{n}}{2}$ $S_{\text {in period } 2}$
and insurances would offer them contracts at premium α_{l} due to perfect conception.

Exercise 18 c)

Compare the premium of the first subquestion with the premiums under "guaranteed renewal". What are the implications?

Exc. 18c)
guaranteed revival: the insurance guarantees the same premium in the second as in the first period for sone fee the consumer pays in the first period (additional to his premise)
\rightarrow consumer pays for the risk of an increase in risk level in period 2 already in period 1 , hence us one has an incentive to switch in period 2
premial under guaranteed renewal:

$$
\begin{aligned}
& P_{1}^{g}=\alpha_{\substack{\downarrow \\
\text { fair inmumace } \\
\text { penmen }}}^{\alpha_{l} \cdot L}+\underbrace{(1-\lambda)\left(\alpha_{4}-\alpha_{l}\right) \cdot L}_{\begin{array}{r}
\text { fee for premium guarrutfee } \\
\text { expected added cost for insurances } \\
\text { in period } 2
\end{array}} \\
& P_{2}^{g}=\alpha_{l} \cdot L
\end{aligned}
$$

implications: wow, the consumer pays in total a higher amount in period 1 and a lower amount in period 2. This might lead to budget constraints.

Exercise 18 d)

Suppose now that in period 2 everyone's health deteriorates. More precisely, assume that the risk is $\alpha_{m}>\alpha_{I}$ with probability λ and $\alpha_{h}>\alpha_{m}$ with probability $1-\lambda$.

1. Calculate the constant premium that yields zero profits to insurers (without switching).
2. Compare it to the premiums with "guaranteed renewal".

Exc. 18d)

1. constant premium that yields zero profits to isfarers:

$$
p^{\text {cost }}=\frac{\alpha_{l}+\lambda \alpha_{m}+(1-\lambda) \alpha_{m}}{2} \cdot L
$$

2. guaranteed renewal: (where the lower premium $\alpha_{m} \cdot L<\alpha_{n} \cdot L$ is guarantied

$$
\begin{aligned}
& p_{1}^{g}=\alpha_{l} \cdot L+(1-\lambda)\left(\alpha_{n}-\alpha_{m}\right) \cdot L \\
& p_{2}^{g}=\alpha_{m} \cdot L
\end{aligned}
$$

- noe: for $\alpha_{m} \approx \alpha_{n}$ being very lane compare to α_{l},
 $p^{\text {canst }}<\rho_{2}^{g}$ is passible. So you would pay more in the second period
\Rightarrow in general, it is not so dear whether budget constraints are relaxed more by the constant premium

Exercise 19

Discuss the advantages and disadvantages of using "last year health care expenditures of insured" as an explanatory variable in a risk adjustment scheme.

ExC. 19
advantages: - reduces the incentives for insurances to engage in risk selection (but this might be achieved with other measures as well)

- in theory, much higher prediction power as health care expenditures tend to be serially correlated
disadvantages: - reduced incentives for insurers to cut costs (high expenditures today lead to high payments next year)
\Rightarrow more wast has to be expected
- variable not available for new inflow (Kids, people fromabrad,...)

Condusion: - expenditure should not include administrative casts or costs of tonus benefits (gym subscription,-)

- HCC might be a better measure since it is harder for the insurance to misrepresent it L, "hierarchical coexisting conditions"

