Imperfect Information in Health Care Markets

Exercise Session 11 - Moral Hazard

Exercise 27

Suppose a study like the RAND health insurance experiment could be redone for $\$ 200$ million. On what should the new study focus, i.e. how should it be different from the old one? Do you think it would be worth the money?

Exc. 27
What sack a ness ithedy could focus on:

- potential for consents to shop for value in heath care
- impatient care that may or may not be prevcuted by geverons dey benefits
- mental health treatment approader
- hearth savings accounts
- other forms \& cost sharing (e.g. in Gencuay the "Ouardals pausciale ")
- maybe focus more on deductibles rather than copayment
\Rightarrow Could well be worth the money since pastential savings are very high

Exercise 28

A consumer has wealth $W=64$ and faces a potential loss of $L=15$. The consumer has to decide whether to "be careful" or not. If he is careful, the loss realizes with probability $1 / 4$. If he is not careful, the loss realizes with probability $1 / 2$. Being careful costs (the money equivalent of) 1 unit of income. (The consumer is a risk averse expected utility maximizer and you can assume $u(x)=\sqrt{x}$.)
a) Consider the situation where the consumer is not insured. Will he be careful?
b) Consider the situation where the consumer is fully insured at premium $p>0$. Will he be careful?

Exc. 28
a) Consumer is careful:

$$
\begin{aligned}
E(u) & =\frac{3}{4} u\left(\omega-C^{c o s t}+\right.\text { being cretin } \\
& =\frac{1}{4} \cdot u(\omega-L-1) \\
& =\sqrt{63}+\frac{1}{4} \cdot \sqrt{48}=7,68
\end{aligned}
$$

consumer is not careful:

$$
\begin{aligned}
E(u) & =\frac{1}{2} \cdot u(w)+\frac{1}{2} \cdot u(w-L) \\
& =\frac{1}{2} \cdot \sqrt{64}+\frac{1}{2} \cdot \sqrt{49}=7,5
\end{aligned}
$$

\Rightarrow the consumer will be caredde if he has no insurance
b) with full coverage insurance:

$$
\begin{aligned}
& E(u)_{\text {careful }}=u(w-p-1) \\
& E(u)_{\text {careless }}=u(w-p)>E(u)_{\text {careful }}
\end{aligned}\left\{\begin{array}{l}
\text { he will wot be carehle } \\
\text { due to moral hazard }
\end{array}\right.
$$

Note: Being careful is socially desirable as the expected benefit is $\frac{15}{4}$ and costs are only 1.
$S_{\text {probability of losing } 15}$ reducer by $\frac{1}{4}$

Exercise 29

A consumer with Bernoulli utility $u(x)=-x^{2}+10 x$ has wealth $W=4$ and faces a potential (money equivalent) loss $L=2$ which realizes with probability $\alpha=1 / 2$. If the loss realizes the consumer can (partially) make up for the loss by treatment $M \in[0,2]$. The insurance will cover $q M$ of these treatment expenditures for some coverage rate $q \in[0,1]$. Treatment M will mitigate the loss to $L-2 M+M^{2} / 2$.
a) If the consumer is ill, what treatment intensity $M^{*}(\boldsymbol{q})$ will he choose?
b) (numerical) Assume that the insurance premium is fair, i.e. $p=\alpha q M^{*}(q)$. Write down the consumers expected utility. Which q maximizes expected consumer utility? How and why does this result differ from models without moral hazard?

Exc. 29
a) First, cute that $u^{\prime}(x)=-2 x+10>0$ for $x<5$
\rightarrow all) is a positive monotone transformation of x in this case (as income will be between O and 4) $4 \tilde{u}(x)=x$
\Rightarrow If the consumer is ill, he slues the following problem: (as we can do justice the utility function $u(t)=x$)

$$
\begin{aligned}
& \max _{\mu \in[0,2]} W-p-L+2 \mu-\frac{\mu^{2}}{2}- \\
& \text { FOX: } 2-\mu-(1-q)=0 \\
& C M *(q)=1+9
\end{aligned}
$$

b) consumer's expected unitity: $U=\alpha \cdot u(W-\frac{L+2 \mu_{\text {loss are }}(q)-\frac{\mu^{\prime}(q)^{2}}{2}}{\alpha}-\underbrace{\alpha \cdot q \cdot \mu^{*}(q)}_{\text {Coss }}-\underbrace{(1-q) \mu^{*}(q)}_{\text {preminima }})$

Optimal coverage level with Moral Hazard

29. b) (continued)

This result is interesting since without moral hazard, a risk - averse consumer would always prefer more coverage over les coverage (af a fair precuimu).
The problem here is that with higher coverage, the consumer adjusts his behavior (overconsumption) and pays a higher premium (which he dislikes).
This is shy the optimal coverage level for the consumer with the presence of moral hazard smatter then 1 (partial concage orly).

Exercise 30

Consider the following case: "I met Jane at a gas station in the outskirts of Oklahoma City where she was filling up her 8 year old Chevrolet. She was in her fourties and when I asked for the way she was happy to help me out. The moment she talked it became apparent that some of her teeth were missing which impeded her speech slightly (the pronounciation of "s" was a bit off). As a result, I misunderstood her first and had to ask her to repeat. The second time I got it and apologized for my earlier misunderstanding. 'Don't worry, it happens all the time. Ever since I had the tooth thing three years ago. It hurt so bad...After two days I begged my brother to pull them out.' she said. 'I see. Did it help?' I asked politely. 'Well first he did not want to do it. But after another day he said yes. It was terrible. He did not get them first time and then it hurt even more and there was lots of blood. But, yeah, it got better when they were out.' It took me a second to follow but then it dawned on me: 'I guess your brother is not a dentist...'

Exercise 30 (cont.)

'No, of course not,' Jane laughed, 'he did his best. I called the dentist but they said it was $500 \$$. I mean, who can pay that if you have no insurance, you know.'"

Discuss whether Jane should have had a dentist to treat her toothache from a welfare perspective.

Exc. 30
Jane has no insurance and did not see a dentist. Hence, her WTP is below the coif of a dentist and it is most efficient for her not to see a dentist.

Objections: - Maybe, it is rather aback ability to pay then about willingness to pay (however, she could have sild her car)

- you could argue that sone social Loath insurance should be paging for her treatment. In this case, we would use heath insurance to redistribute wealth.
\rightarrow potential disadvantage: If Jane were given 500 J cash for her treatment, she might still use it for something else.
\rightarrow potential advantage: negative externalities of non-theatment can be prevented, which night be socially desirable (e.g. for infections disease)

