Imperfect Information in Health Care Markets Exercise Session

Marius Gramb

Why do people struggle with this course?

- Prerequisites for this course:
- High school level math knowledge
- Problem: Students often lack important knowledge about basic math concepts (or forgot it over the years)
- This deflects them from the (economic) concepts taught in class

Suggested work flow for the process of understanding the lectures

- After each lecture, you will typically not understand the whole content directly (which is perfectly normal)
- This is why you need to study it carefully afterwards
- As a first step, try to identify all the mathematical steps/tools that are used within this lecture
- Recall these mathematical concepts and make sure you fully understand them (again)
- Once this is done, have a second look at the lecture and try to understand what was taught to you (not being distracted by mathematics that might have scared you off before)
- If you still have difficulties with the understanding, discuss the topic with your peers (or ask a concrete question in the exercise session in case you can formulate one)
- Repeat this procedure every week before the next lecture

Suggested work flow for the process of understanding the lectures (cont.)

- The exercises are also helpful in understanding the lecture material
- To get the most out of the exercise sessions, try to solve the exercises that are going to be discussed on your own or in groups
- This way, you will understand the correct solutions quicker, even if you have not reached these solutions yourself
- The final exam will be based on understanding of the lecture and you WILL be asked to transfer your built up knowledge to new exercises
- Therefore, it does not pay off to learn some exercises or lecture material by heart without understanding them!

Exercise 1

1. Recall the notion of a random variable and how to compute the expected value of discrete and continuous random variables.
2. Let X and Y be two random variables with $Y \sim \mathrm{U}([0,1])$ and X taking a value of 1 with the probability 0.4 and a value of 0 with the probability 0.6 . Calculate $\mathbb{E}(X)$ and $\mathbb{E}(2 Y)$.
3. Consider the random experiment "rolling a regular die once" and define a random variable Z that gives the number that is rolled. How is Z distributed? Assume that you receive a payment of z^{2} when the die shows the number z. What is the expected payment you get?

Exc. 1.1
A random variable X is a map $X: Q \rightarrow \mathbb{R}$
\rightarrow the "universe" of a random experiment
= set of events that can occur in this experiment
How to compute the expected value of a random variable?
i) discrete random variables: number of possible ontcomes/events is countable, that means finite or Countably infinite.
more precises: $\mathbb{P}\left(\omega: X(\omega)=x_{i}\right)$, probability that any ω leading to a roche of x_{i} is realized
$\Rightarrow \mathbb{E}(X)=\sum_{i=1}^{n} x_{i} \cdot \vec{P}\left(X=x_{i}\right)$, where $x_{1}, x_{2}, \ldots, x_{n}$ are the valuer that X an take
ii) continuous random variable: there are uncountable infinitely many possible outcomes
\rightarrow this usually happens when possible sames are in some interval of red numbers
Expected value of a continuous random variable X defined on the internal $[a, b]$:
$\Rightarrow \mathbb{E}(x)=\int_{a}^{b} x \cdot \rho(x) d x$, where $\rho(x)$ is the density function of x

Exc. 1.2

$$
\mathbb{E}(X)=\sum_{i=0}^{1} ; \mathbb{P}(X=i)=\begin{aligned}
& \mathbb{P}(X=0) \quad \mathbb{R}(X=0,4) \\
& 0 \cdot 0,6+1 \cdot 0,4=0,4 \\
& \rho_{\frac{1}{/ 1}}(y)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathbb{E}(Y)=\int_{0}^{1} y \cdot \rho_{y}(y) d y=\int_{0}^{1} y \cdot 1 d y=\left[\frac{1}{2} y^{2}\right]_{0}^{1}=\frac{1}{2} \cdot 1^{2}-\frac{1}{2} \cdot 0^{2} \\
&=\frac{1}{2} \\
& \mathbb{E}(2 Y)=\int_{0}^{1} 2 y \cdot f_{y}(y) d y=\int_{0}^{1} 2 y \cdot 1 d y=\left[y^{2}\right]_{0}^{1}=1^{2} \cdot 0^{2}=1
\end{aligned}
$$

Exc. 1.3

$$
\Omega=\{1,2,3,4,5,6\}
$$

$\begin{aligned} Z: \Omega & \rightarrow \mathbb{R} \\ \omega & \longmapsto \omega\end{aligned} \quad$ How is Z distributed?
small onega
The die is regular $\Rightarrow z \sim U_{\text {if }}(\{1,2,3,4,5,6\})$
\leftrightarrow milforu deistritation in the discrete case
Z^{2} is the random variable teat defines our payment. What is our expected payment?

$$
\begin{aligned}
\mathbb{E}\left(Z^{2}\right)=\sum_{i=1}^{6} i^{2} \cdot \mathbb{P}(Z=i)= & 1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+3^{2} \cdot \frac{1}{6}+4^{2} \cdot \frac{1}{6} \\
& +5^{2} \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6} \\
= & \frac{1}{6}(1+4+9+16+25+36)=\frac{1}{6} \cdot 91=15 \frac{1}{6}
\end{aligned}
$$

the continuous miform distribution in gerered:

$$
u([a, b]) \text {, with } a<b
$$

\Rightarrow the density of His distribution is $\rho(x)=\left\{\begin{array}{l}\frac{1}{b-a}, \text { for } x \text { in }[a, b] \\ 0,\end{array}\right.$
$\hat{2 f} f_{f}(x)=1$
0, else
$f_{y}(x)=\frac{1}{2} \rightarrow$ Area: $2 \cdot \frac{1}{2}=1$

$$
x \sim u([0,1])
$$

$$
y \sim u([3,5])
$$

Exercise 2

1. Let $f(x, y)=y^{2} \ln (x)-y$. Compute $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.

What is the geometric interpretation of $\frac{\partial f(x, y)}{\partial x}$?
2. Recall the definition of concave functions in one real variable.
3. Compute $\max _{x \in \mathbb{R}} g(x)$ with $g(x)=-2 x^{2}+32 x+7$.

Exc. 2.1

$$
\begin{aligned}
& f(x, y)=y^{2} \ln (x)-y \\
& \frac{\partial f(x, y)}{\partial x}=y^{2} \cdot \frac{1}{x}-0=\frac{\partial y}{\frac{\partial y}{\partial x}} \\
& \frac{\partial f(x, y)}{\partial y}=\ln (x) \cdot 2 y-1
\end{aligned}
$$

3D plot:

Exc. 2.2
Def.: A function f is called concave, if $f((1-\alpha) x+\alpha y) \geq(1-\alpha) f(x)+\alpha f(y)$ for all $\alpha \in[0,1]$

Graphically:

What is this number?!

$$
\begin{aligned}
& \text { for } \alpha=0: x \\
& \text { for } \alpha=1: y
\end{aligned}
$$

intuitive meaning of concavity: if you connect two points on the graph, the line will auras be below the graph
for differentiable functions: f concave $\Leftrightarrow f^{\prime \prime} \leq 0$

Exc. 2.3

Exc. 2.3

$$
\max _{x \in \mathbb{R}} g(x)=-2 x^{2}+32 x+7
$$

FOC: $\quad g^{\prime}(x) \doteq 0$
\rightarrow first-order condition

$$
\begin{aligned}
g^{\prime}(x) & \left.=-4 x+32 \stackrel{!}{=} 0 \quad \begin{array}{|}
\text { Gsecond-onter coultion } \\
g^{\prime \prime}(x)=-4
\end{array}\right) \\
& \Leftrightarrow 32=4 x \\
& \Leftrightarrow 8=x
\end{aligned}
$$

\Rightarrow maximim is atfained at $x=8$
and this maximum value is $g(8)=-2 \cdot 8^{2}+32 \cdot 8+7$

$$
=-128+256+7=135
$$

Here are some of the mathematical concepts you should master:

- rearranging terms
- computing the average of two (or more) numbers
- binomial formulas
- basic algebraic notations, such as $x^{\frac{1}{2}}=\sqrt{x}$ and $x^{-a}=\frac{1}{x^{a}}$, as well as rules of calculation with fractions, exponents and (square-)roots
- extreme value problems (maximizing a function under some constraints)
- integration, e.g. $\int_{0}^{1} \sqrt{x} d x=$?
- differentiation, in particular product rule, quotient rule and chain rule
- understanding and interpreting graphs and functions, computing points of intersection of two curves
- In the course schedule, you will find mathematical prerequisites for the chapters

