Imperfect Information in Health Care Markets
 Exercise Session 2 - Introduction

Marius Gramb

$$
\begin{array}{cccc}
? & ? & ? & ? \\
? & ? & ? \\
? & \text { a austionss bout the e ecture e ? ? } \\
? & ? & ? & ? \\
? & ?
\end{array}
$$

Exercise 1

$$
\begin{array}{rl}
f(x)=x^{2} & u(x)=2 x \\
\Rightarrow & f(u(3))=f(2 \cdot 3)=f(6) \\
\Rightarrow
\end{array}
$$

Assume that the utility function u_{i} represents i 's preferences over $a=36$ set of alternatives $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Show that

1. i's preferences are transitive; $\quad\left(f \circ u_{i}\right)(x)=f\left(u_{i}(x)\right)$
2. the function v_{i} defined by $v_{i}(x)=f\left(u_{i}(x)\right)$ also represents i 's preferences if f is a strictly increasing function.
3. Assume now that there are only 2 alternatives, ie. $X=\left\{x_{1}, x_{2}\right\}$. Assume that there are 2 people in the society and person 1 prefers x_{1} over x_{2} while person 2 prefers x_{2} over x_{1}. Choose some utility functions u_{1} and u_{2} to represent their preferences. Assume that society chooses the alternative x maximizing $u_{1}(x)+u_{2}(x)$. - Which alternative does society choose with the utility functions you chose? - Show that a transformation as in the previous subquestion can change society's choice. What is the problem and how does it come about?

Exc. 1
Definition: utility function u i represents individual is preferences mean the following:
$x_{1} z_{i} x_{2} \Leftrightarrow u_{i}\left(x_{1}\right) \geq u_{i}\left(x_{2}\right)$ for all x_{1}, x_{2} in X
"wrath preferentover" is aunuber in R
Definition 2: i's preferences are transitive, if
($X \varepsilon_{i} y$ and $y \succsim ; z$) $\Rightarrow X \lambda_{i} z$ for all x, y, z in X.
1.1 Want to show: If is preferences can be represented by a utility function, then the presences are transitive.
Proof: Let us assume that $x \lambda_{i} y$ and $y \not z ; z$ for some arbitrary x, y, z in X. Sufficient to show: $x \succeq, z$.
As the preferences are represented by u_{i}, we thou that $u_{i}(\vec{x}) \geq u_{i}(y)$ and $u_{i}(y) \geq u_{i}(z)$.
Hence, $u_{i}(x) \geq u_{i}(y) \geq u_{i}(z)$ and in particular $u_{i}(x) \geq u_{i}(z)$ as the \geq-relation on the real number

But this implies that $x \lambda ; z$.

You thaw from the lecture: Preferences over a finite set of objects can be represented by a utility function if the preferences are complete and transitive.

Exc. 1. 2
Know: u_{i} represents i's preferences
Want to show: $f\left(u_{i}\right)$ aero represents is presences, for being a strictly increasing function $\left(f^{\prime}(x)>0\right.$ for all $\left.x\right)$.

$$
\left.\stackrel{1}{=}\left(x_{1} \succeq_{i} x_{2} \Leftrightarrow f\left(u_{i}\left(x_{1}\right)\right) \geq f\left(u_{1} ; x_{2}\right)\right) \text { for all } x_{1}, x_{2} \text { in } x\right)
$$

Proof: We have to oleo both in plications:
" \Rightarrow " We know that $x_{1} \searrow_{i} x_{2}$. As u_{i} represents is preferences, this means that $u_{i}\left(x_{1}\right) \geq u_{i}\left(x_{2}\right)$. But this implies $f\left(u_{i}\left(x_{1}\right)\right) \geq f\left(u_{i} \alpha_{2}\right)$ as f is strictly increasing.
" $="$ we hus that $f\left(u_{i}\left(x_{1}\right)\right) \geq f\left(u_{1} ;\left(x_{2}\right)\right)$. To this inequality, let us apply the inverse function f^{-1} of f.

$$
\begin{aligned}
& \Rightarrow f^{-1}\left(f\left(u_{i}\left(x_{1}\right)\right) \geq f^{-1}\left(f\left(u_{i}\left(x_{2}\right)\right)\right)\right. \\
& \Leftrightarrow u_{i}\left(x_{1}\right) \geq u_{i}\left(x_{2}\right) \Leftrightarrow \hbar_{1} \geq_{i} x_{2}
\end{aligned}
$$

Las f^{-1} is also strictly increasing, due to the $f\left(u_{i}\left(C_{2}\right)\right.$ derivative of the inverse function, den imine of the in $\left(f^{-1}\right)^{\prime}(f(f)$ (1) $\left.)=\frac{f^{\prime}(1)}{f^{\prime}}\right) \square$

Exc. 1.3
Assume $u_{1}\left(u_{1}\right)=1, u_{1}\left(x_{2}\right)=0 \quad$ (Person 1 prefers $\left.x_{1}\right)$

$$
\left.u_{2}\left(x_{1}\right)=0, u_{2}\left(x_{2}\right)=0,1 \quad \text { (Person } 2 \text { prefers } x_{2}\right)
$$

\leadsto Society would chose x_{1}, since $u_{1}\left(x_{1}\right)+u_{2}\left(x_{1}\right)=1+0=1>0,1=u_{1}\left(x_{2}\right)+u_{2}\left(x_{2}\right)$
But now, assume that person 2 reports the utility function \tilde{u}_{2} with $\tilde{u}_{2}\left(x_{1}\right)=0, \hat{u_{2}}\left(x_{2}\right)=10$
$(\rightarrow$ tran formation by $f(x)=100 \cdot x) \quad$ (Person 2 still prefers x_{2})
What happens? Society will choose x_{2}, since $u_{1}\left(x_{1}\right)+\hat{u}_{2}\left(x_{1}\right)=1<10=u_{1}\left(k_{2}\right)+\hat{u_{2}}\left(x_{2}\right)$.
\Rightarrow Utility is an ordinal concept!'

Exercise 2

Assume that there are m people in society and society has to choose an option from $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The preferences of each member of society can be represented by a utility function u_{i}. Society chooses the alternative $x \in X$ maximizing $\sum_{i=1}^{m} u_{i}(x)$. Show that the chosen alternative is Pareto efficient.

Exc. 2
Proof: Assume society chose a state $y \in X$ maximizing $\sum_{i=1}^{n} u_{i}(x)$. Want to show: This state y is Pareto efficient.
Proof by contradiction: We assume that y is not Pareto efficient, this mems that there exists some alternative $\tilde{x} \in X$ that makes at least one person strictly better off than y and that makes all the other persons nest worse off. This means that one person has a higher utility from \tilde{x} and all the others have af least the same utility.

$$
\Longrightarrow \sum_{i=1}^{n} u_{i}(\tilde{x})>\sum_{i=1}^{n} u_{i}(y)
$$

This is a contradiction, since y was supposed to maximize $\sum_{i=1}^{4} u_{i}(x)$.
$\Rightarrow y$ has to be Pareto efficient.

