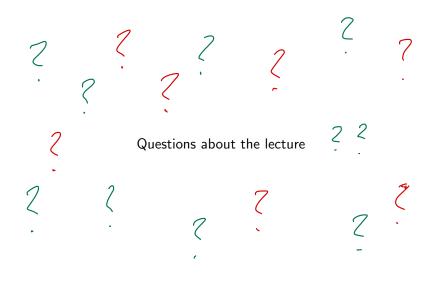
Imperfect Information in Health Care Markets Exercise Session 2 - Introduction

Marius Gramb



Exercise 1

 $f(x) = x^{2} \qquad \text{if } k^{1} = 2x$ $= 7 \qquad f(u(3)) = f(2\cdot3) = f(6)$ Assume that the utility function u_i represents *i*'s preferences over a

set of alternatives $X = \{x_1, x_2, \dots, x_n\}$. Show that $(f \circ u;)(k) = f(u; (k))$

- 1. *i*'s preferences are transitive:
- 2. the function v_i defined by $v_i(x) = f(u_i(x))$ also represents *i*'s preferences if f is a strictly increasing function.
- Assume now that there are only 2 alternatives, i.e. $X = \{x_1, x_2\}$. Assume that there are 2 people in the society and person 1 prefers x_1 over x_2 while person 2 prefers x_2 over x_1 . Choose some utility functions u_1 and u_2 to represent their preferences. Assume that society chooses the alternative xmaximizing $u_1(x) + u_2(x)$. - Which alternative does society choose with the utility functions you chose? - Show that a transformation as in the previous subquestion can change society's choice. What is the problem and how does it come about?

EXC. 1

Refinition : utility function 11; represents individual i's preferences means the following: $X_1 \gtrsim X_2 \iff U_i(X_1) \ge U_i(X_2)$ for all the the in t "weakly preferred over" is a number in R Definition 2: i's preprences are fransitive, if for all Xy, Z in X. $(X \gtrsim_i y \text{ and } y \gtrsim_i z) => X \gtrsim_i z$ then the preferences 1.1 Want to show: If i's preferences can be represented by a utility function, are transitive. Proof: Let us assume that $X \gtrsim y$ and $y \gtrsim z$ for some arbitrary X, y, z in X. Sufficient to show: X Z; Z. As the preferences are represended by u; we know that u; (x) > u; (y) and u; (y) = u; (z). Hence, U; (x) = u; (y) = u; (z) and is particular u; (x) = u; (z) as the z-relation on the real number is (naturally) fransitive (Real numbers are ordered: 0 4 10 But this implies that I 2; 2.

You that from the lecture: Preferences over a finite set of objects can be represented by a whility function if the preferences are complete and transitive. Exc. 1.2 $10 \rightarrow ln(10) \rightarrow e^{ln(10)} = 10$ Know: U: represents i's preficular Want to show: flui) also represent i's preferences, for f being a strictly increasing function (f'(x) > O for all x). $= \left(X_1 \times X_2 \iff f(u; (k_1)) = f(u; (k_2)) \text{ for all } x_1, x_2 \text{ in } F\right)$ "=>" We know that $X_1 \geq X_2$. As us represents is preferences, this means that $U_1(X_1) \mid Z \mid U_1(X_2)$. Proof: We have to show both in plications: But this implies $f(u; (x_n)) \ge f(u; \alpha_2)$ as f is strictly increasing. "(="Ue know that $f(u; (x_n)) \ge f(u; (x_2))$. To this inequality, let us apply the inverse function f^{-1} of f. $= f^{-1}(f(u; (x_n))) \ge f^{-1}(f(u; (x_2)))$ (as f^{-1} is also strictly $(=) \begin{array}{c} U_{i}(K_{n}) \geq U_{i}(K_{2}) (=) K_{n} \geq_{i} K_{2} \end{array} \begin{array}{c} \text{increasing, due to the inverse function,} \\ as u_{i} represents \geq_{i} \\ \end{array} \begin{array}{c} U_{i}(K_{2}) \leq K_{n} \geq_{i} K_{2} \\ \text{oderivative of the inverse function,} \\ nde \left(f^{-1}\right)^{\prime} (fw) = \frac{1}{f^{\prime}(M)} \end{array} \right) \left[\Box \right]$

Exc. 1.3

Assume $u_{A}(k_{A}) = 1$, $u_{A}(k_{2}) = 0$ (Person 1 prefers k_{A}) $u_{Z}(k_{A}) = 0$, $u_{Z}(k_{Z}) = 0$, 1 (Person 2 prefers k_{Z}) \sim Society would chose k_{A} , since $u_{A}(k_{A}) + u_{Z}(k_{A}) = 1 + 0 = 1 > 0, 1 = u_{A}(k_{Z}) + u_{Z}(k_{Z})$ But now, assume that person 2 reports the whilety function \hat{U}_{Z} with $\hat{U}_{Z}(k_{A}) = 0$, $\hat{U}_{Z}(k_{Z}) = 10$ $(Person 2 still prefers k_{Z})$ Usual happens? Society will choose k_{Z} , since $u_{A}(k_{A}) + \hat{u}_{Z}(k_{A}) = 1 \subset 10 = u_{A}(k_{A}) + \hat{U}_{Z}(k_{Z})$.

=> Utility is an ordinal concept !

Assume that there are *m* people in society and society has to choose an option from $X = \{x_1, x_2, \ldots, x_n\}$. The preferences of each member of society can be represented by a utility function u_i . Society chooses the alternative $\mathbf{v} \in X$ maximizing $\sum_{i=1}^{m} u_i(x)$. Show that the chosen alternative is Pareto efficient.

Exc. 2

<u>Proof</u>: Assume society chose a state $y \in X$ maximizing $\sum_{i=1}^{n} u_i(x)$. Want to show: This state y is Acrebo efficient. Proof by contradiction: We assume that y is not Pareto efficient, this means that there exists some alternative XEX that makes at least one person shickly better off than y and that makes all the other persons not worse off. This means that one person has a ligher Utility from & and all the others have at least the same utility. y was supposed to maximize Zu; (4). This is a contradiction, since =) y has to be Pareto efficient. \Box