Imperfect Information in Health Care Markets

Exercise Session 3 - Insurance Demand

Marius Gramb

Questions about the lecture

Exercise 3

Assume i's preferences over lotteries on the set of outcomes $\{$ healthy, ill, dead $\}$ satisfy the assumptions of the von Neumann-Morgenstern expected utility theorem and can therefore be represented by three numbers $u^{\text {healthy }}, u^{i l l}$ and $u^{\text {dead }}$. Assume that $u^{\text {healthy }}=1, u^{\text {ill }}=0.75$ and $u^{\text {dead }}=0$.
a) Treatment 1 leads to the probability distribution $(0.3,0.5,0.2)$ (over $\{$ healthy, ill, dead \}) while treatment 2 leads to the probability distribution $(0.4,0.3,0.3)$. Which treatment does i prefer?
b) Show that i's preferences over lotteries can also be represented by the three numbers $v^{\text {healthy }}=a * u^{\text {healthy }}+b$, $v^{\text {ill }}=a * u^{\text {ill }}+b$ and $v^{\text {dead }}=a * u^{\text {dead }}+b$ where $a>0$ and $b \in \mathbb{R}$ are some real numbers.

Exc. 3 a)
To see which treatment ; will choose, we compere its expected cstility form the two acternefives /treatments:

Treatment 1: $0,3 \cdot u^{\text {neatly }}+0,5 \cdot u^{\text {ill }}+0,2 \cdot u^{\text {dee }}$

$$
=0,3 \cdot 1+0,5 \cdot 0,75+0,2 \cdot 0=0,675
$$

Treatment 2: $0,4 \cdot u^{\text {heartily }}+0,3 u^{\text {ie }}+0,3 u^{\text {deed }}$

$$
=0,4 \cdot 1+0,3 \cdot 0,75+0,3 \cdot 0=0,4+0,225=0,625<0,675
$$

\Rightarrow Person; would cleoose treatment 1 .

Exc.3b)

$$
V^{\prime}=a \cdot u \cdot+b
$$

To show that the individual's preferences can also be represented by the numbers v; let us compute its utility from some random lottery ($p, q, 1-p-q$), with $p, q, 1-p-q$ in $[0,1]$.

$$
\begin{aligned}
& \text { expected citify person i gets } \\
& \text { from the } V^{\circ} \text { mummers }
\end{aligned}
$$

$$
\rightarrow \text { exp rom the } V^{0} \text { numbers }
$$

by the i's

So we just applied the transformation function $f(x)=a \cdot x+6$ to the old cuility.
Since $f^{\prime}(x)=a>0$ (by assumption), this is a positive monotone transformation and results in the same preferences by Exercise 1.2.

$$
\begin{aligned}
& E(v(p, q, 1-p-q))=p \cdot v^{\text {healthy }}+q \cdot v^{\text {ide }}+(1-p-q) \cdot v^{\text {dead }}
\end{aligned}
$$

Exercise 3 (cont.)

c) Show by means of an example that i 's preferences are not necessarily represented by $v^{\text {healthy }}=f\left(u^{\text {healthy }}\right), v^{\text {ill }}=f\left(u^{\text {ill }}\right)$ and $v^{\text {dead }}=f\left(u^{\text {dead }}\right)$ for some strictly increasing function f. Why does this not contradict our result from exercise 1 above?

Exc. 3 Cl
Example: Lefts take the function $f(x)=\sqrt{x}$, which is strictly increasing on $(0, \infty)$.

$$
\Rightarrow v^{\text {healthy }}=f\left(u^{\text {weactly }}\right)=\sqrt{1}=1 \quad f^{\prime}(x)=\frac{1}{2} \cdot x^{-\frac{1}{2}}=\frac{1}{2} \cdot \frac{1}{\sqrt{x}}>0 \text { for } x>0
$$

$$
v^{i l e}=\sqrt{0,75} \approx 0,866
$$

$$
v^{\text {dead }}=\sqrt{0}=0
$$

derivative of \sqrt{x}-function
Now let us compare two lotteries:
Lottery 1: $(0,1,0)$
Lottery 2: $\quad(0,4 ; 0,5 ; 0,1)$
Before the transformation:

$$
E(u(0,1,0))=1 \cdot 0,75, E(u(0,4 ; 0,5 ; 0,1))=0,4 \cdot u^{\text {heathy }}+0,5 \cdot u^{\text {ire }}+0,1 \cdot u^{\text {dead }}
$$

\rightarrow Here, the perron choorss coffers 2.
After the transformation:

$$
\begin{aligned}
& \text { Fer the transformation: } \\
& \qquad E(v(0,1,0))=1 \cdot v^{\text {ieee }}=1 \cdot \sqrt{0,75}=0,866 \neq 0,4 \cdot 1+0,5 \cdot 0,75+0,1 \cdot 0 \\
& E(v(0,4 ; 0,5 ; 0,1))=0,4 \cdot \sqrt{1}+0,5 \cdot \sqrt{0,75}+0,1 \cdot \sqrt{0}=0,4+0,433=0,833<0,866
\end{aligned}
$$

\Rightarrow Jut this case, the peron decider for lottery 1 !!!
The point is: The transformation was not applied to the core utility function, but just to each of the $4^{\prime \prime}$'s separately.

Chapter 2 - Insurance Demand

In all exercises let the person be an expected utility maximizer, i.e. the person's choices satisfy the assumptions of the von Neumann-Morgenstern expected utility theorem.

Exercise 4

Consider a person with utility of income $u(x)=\sqrt{x}$. Is this person risk averse? For the following lotteries, compute the expected income, the certainty equivalent and the risk premium.
a) Probability $1 / 3$ for each 1600,2500 , and 3600 Euros.
b) Income is uniformly distributed between 1600 and 2500 Euros.

Exc. 4 a)

$$
u(x)=\sqrt{x}, u^{\prime}(x)=\frac{1}{2 \sqrt{x}}, u^{\prime \prime}(x)=-\frac{1}{4} \cdot x^{-\frac{3}{2}}=-\frac{1}{4 x^{\frac{3}{2}}}<0 \text { for } x>0
$$

Expected income: $E(x)=\frac{1}{3} \cdot 1600+\frac{1}{3} \cdot 2500+\frac{1}{3} \cdot 3600=2566,66$
\Rightarrow concave utility function
\rightarrow as u"cy<0
Expected utility

$$
\begin{aligned}
E(u) & =\frac{1}{3} \cdot \sqrt{1600}+\frac{1}{3} \cdot \sqrt{2500}+\frac{1}{3} \cdot \sqrt{3600} \\
& =\frac{1}{3}(40+50+60)=50
\end{aligned}
$$

Show rok aversion by concavity of the unity function

Certainty Equivabut (CE) measures the safe income that makes me indifferent to playing the lottery or not. In mather matical terms: $u(\overline{C E})=E(u)$ defining equation of the CE

$$
\Rightarrow u(C E) \stackrel{\vdots}{=} E(u)=50
$$

$$
\Leftrightarrow \sqrt{C E}=50 \quad \Rightarrow \text { indication that }
$$

$\Rightarrow C E=2500 \Rightarrow$ the individual is risk-averse since this member is smaller then $E(x)$

The rick premium (RP) is just the difference in expected payment from playing the lottery or taking the certainty equivalent.

$$
R P=E(x)-C E
$$

[if $R P<0$: individual is rikk-loving]
Here: $R P=2566,66-2500=66,66>0 \Rightarrow$ indicivionsel is nisk-averge since the RP is greater than O

