Imperfect Information in Health Care Markets Exercise Session 4 - Insurance Demand

Marius Gramb

Questions about the lecture

Exercise 4

Consider a person with utility of income $u(x) = \sqrt{x}$. Is this person risk averse? For the following lotteries, compute the expected income, the certainty equivalent and the risk premium.

- a) Probability 1/3 for each 1600, 2500, and 3600 Euros.
- b) Income is uniformly distributed between 1600 and 2500 Euros.

in general: U(a, b) uniform distribution => density: g(x)= 1 b-a Exc. 4 b) for XE [a,6] Now: Income is distributed as U (1600; 2500) (uniform distribution) C) density $g(x) = \frac{1}{300}$ for $x \in [1600, 2500]$ $E(x) = \int x \frac{1}{300} dx = \frac{1}{300} \int \frac{1}{2} x^2 \int_{100}^{2500} = 2050 \quad expected income$ $\frac{1600}{1600} \quad How to compute expected rates of continuous random variables (and coly?) ???$ $E(u) = \int \frac{1}{x} \cdot \frac{1}{300} dx = \frac{1}{300} \int \frac{2}{3} x^2 \int_{1000}^{2} \frac{3}{3} \int \frac{2500}{1600} = \frac{1}{300} \cdot \frac{2}{3} (125000 - 64.000) = \frac{61000 \cdot 2}{2700}$ $\frac{1600}{1600} = u(x)$ expected whility R 45, 185=> u(CE) = E(u) = 45, 185 G> VCE = 45,185 Bar) $=) CE \approx 2041,7 < 2050 =) person is risk-average$ Certainty Equivalent RP = E(k) - CE = 2050-2041,7 = 8,3 >0. Risk preusium

Consider a person with utility of income $u(x) = \sqrt{x}$. The person has an income of 2500 Euros but loses *L* Euros with probability α . Determine the certainty equivalent and the risk premium as a function of α and *L*. Is the risk premium increasing or decreasing in *L*? Is the risk premium increasing or decreasing in α ?

 $d - d^{2}(d^{2} - d) g(L) = 2500 - L$ Exc. 5 First, let us compute the expected income: $= 2500 - x \cdot L \qquad f(x) = V \cdot X$ $E(x) = \alpha \cdot (2500 - L) + (1 - \alpha) \cdot 2500$ $E(u) = \alpha \cdot \sqrt{2500 - L} + (1 - a) \sqrt{2600} = a \cdot \sqrt{2500 - L} + 50(1 - a)$ 4f(g(4) $u(2500-L) \qquad u(2500)$ $u(CE) = E(u) \qquad binomial formula ...$ (=) TCE = E(u)= 7 CE = E(u) $= 7 CE = (\alpha \cdot 72500 - 2 + 50(n-\alpha))^{2} = \alpha^{2} (2500 - 2) + 100(n-\alpha)\alpha \cdot 72500 - 2 + 2500(n-\alpha)^{2}$ $RP = E(x) - CE = 2500 - \alpha L - \alpha^{2}(2500 - L) - 100(1-\alpha)\alpha^{7} - 2500(1-\alpha)^{2}$ $= -\kappa L + 5000 L - 2\kappa^{2} \cdot 2500 + \kappa^{2} \cdot L - 100 (1-\kappa)\kappa \cdot \sqrt{2500 - 2}^{1}$ Is the decreasing increasing in a and $L^{3} = 2 \operatorname{cook} af$ derivatives: 2RP(d,L) $= -\alpha + \kappa^2 - 100(1-\alpha) \cdot \kappa \cdot \frac{1}{2} \cdot (-1) \cdot \frac{1}{\sqrt{2500-L^2}} \quad Chain rule for derivation$ $= \left(\frac{\alpha^2 - \alpha}{\sqrt{1 - \frac{60}{12\sqrt{50} - 1}}} \right) > 0 \Rightarrow When \ L increases, RP will increase as well$ greek "del" (indicates partial, < 0 (as & e (0, 1)) < 0, since 72500 - 2 < 50 for L>0 derivatives)

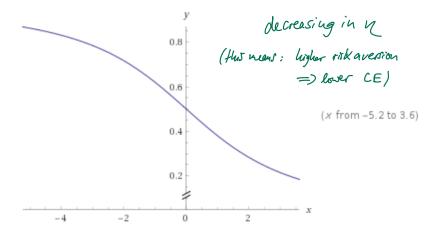
 $\frac{\partial RP(a,L)}{\partial x} = -L + 5000 - 10000a + 2aL - (1-2a) - 100 \sqrt{2500-L}$ This is heither always =0 nor always =0. For example, for L= 900, we get $\frac{\partial RP(a, 300)}{\partial x} = 100 - 200 d$ $20 \quad \text{for } a \leq \frac{1}{2}$ $0 \quad \text{for } a > \frac{1}{2}$

Exercise 6

Consider the utility function $u(x) = -e^{-\eta x}$. The person has an income of 1 and experiences a loss of 1 with probability α . The coefficient of absolute risk aversion is defined as -u''(x)/u'(x). Compute this coefficient. Let now $\alpha = 0.5$ and check whether the certainty equivalent in- or decreases in η .

Exc. 6			
$u(x) = -e^{-nx}$ $u'(x) = -(-n)e^{-nx}$		(derivative & expanantial	- tanchious
$u''(x) = = \chi \cdot (-\chi) \cdot e$	$-k^{*} = -k^{2} e^{-k^{*}}$		
$=) - \frac{u''(x)}{u'(x)} = -$	$\frac{-u^2 e^{-ux}}{u e^{-ux}} = \mathcal{N} =$	=7 M measures risk queenion	n .1
$E(u) = \lambda \cdot u(0) +$	(1-d) u(1)		
$= \chi \cdot l \cdot e^{\circ} +$	$(1-\alpha)\cdot(-e^{-n})=-\alpha$	$f(1-\alpha) \cdot (-e^{-n})$	
$\mathcal{U}(CE) \stackrel{!}{=} E(u)$			
=) $-e^{-h \cdot CE} =$ (=) $e^{-h \cdot CE} =$		Natural legentra	(Lu)
	$k \neq (n-\alpha) \in \mathbb{R}$ $Rn \left(\kappa + (n-\alpha) e^{-n} \right)$		
(=) CE =	- ln (x + (1-x)e-n) N	- for d = 0,5:	n (0,5+0,5e ⁻ⁿ) N

CE depending on η for $\alpha = 0.5$



Exercise 7

The Wall Street Journal reported in 2006 of "mini-medical insurance plans". These plans cover routine services, but little hospital coverage and usually have a cap on payouts (say of \$10.000). The premium, however, is only \$50 per month. Why might people buy a mini-medical plan? Why are such insurance plans not more popular (in a country where a substantial part of the population did/does not have health insurance)?

<u>Exc. 7</u>

Why people might like such a plan: - they might have alow WTP and \$50 a month is quite cheap (also, they are risk accesse)

- acts as a kind of "conkemption succoffing" -> don't pay one big amount once, but several mall amounts more often

Why are these plans not much more popular ?

- large risks are not covered, so it is not really an insurance in the proper sense (people might anticipate /fear higher pagments)

- in practice, these plans would probably be too expensive for insurances, since they compare

50 > K. L + administrative casts (+ profit margin) risk das