Imperfect Information in Health Care Markets
 Exercise Session 5

Marius Gramb

Exercise 8

Consider a person with utility of income $u(x)=\sqrt{x}$. The person has an income of 2500 Euros but loses 1500 Euros with probability $1 / 4$. Assume there is an insurance company that offers to insure an arbitrary coverage $C \in[0,1500]$ at premium $p C$. Determine the amount of coverage $C(p)$ that the person will buy. (If you find this too hard, let p be 0.3.)

Exc. 8
Judea: Look at expected utility, maximize with respect to C.
(with no insurance)
With insurance: $E(u)=\frac{1}{4} \sqrt{2500-1500+C-p C}+\frac{3}{4} \sqrt{2500-p C}$
Find $\max _{c} E(u)$. FOC: $\frac{\partial E(u)}{\partial C}=0$

$$
\begin{aligned}
& \frac{\partial E(u)}{\partial C}=\frac{1}{4}(1-p) \cdot \frac{1}{2} \frac{1}{\sqrt{2500-000+c-p c}}+\frac{3}{4} \cdot(-p) \cdot \frac{1}{2} \frac{1}{\sqrt{2500-p C}} \\
= & \frac{(1-p)}{8} \frac{1}{\sqrt{2500-100+c-p c}}-\frac{3}{8} \cdot p \frac{1}{\sqrt{2500-p C}} \doteq 0 \\
\Leftrightarrow & \frac{1-p}{\sqrt{2500-1500+c-p c}}=\frac{3 p}{\sqrt{2500-p c}} \\
\Rightarrow & \frac{(1-p)^{2}}{1000+c-p c}=\frac{9 p^{2}}{2500-p c} \\
\Leftrightarrow & (2500-p c)(1-p)^{2}=9 p^{2}(1000+c-p c) \\
\Leftrightarrow & -9 p 2 c+9 p^{3} c-(1-p)^{2} p c=9000 p^{2}-2500(1-p)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow C \cdot\left(-9 p^{2}+9 p^{3}-(1-p)^{2} \cdot p\right)=9000 p^{2}-2500(1-p)^{2} \\
& \Leftrightarrow C=\frac{9000 p^{2}-2500(1-p)^{2}}{-9 p^{2}+9 p^{3}-(1-p)^{2} \cdot p}
\end{aligned}
$$

\Longrightarrow This is the coverage the individual wold choose
(For $p=0,3$, this gives $\quad C \approx 581,2$)

Exercise 9

Consider the same person as in the previous exercise. Let $p=0.3$ and suppose the government guarantees a minimum income of 1500. Will the person still buy insurance? Discuss what features of the health care sector are similar to a minimum income guarantee in the model.

Exc. 9

$$
E^{\text {ins }}(u)=\frac{1}{4} \cdot \sqrt{2500-1500+581,2-0,3 \cdot 581,2}+\frac{3}{4} \sqrt{2500-0,3 \cdot 581,2} \approx 45,55
$$

$$
\rightarrow \text { exp. cricity of not basis on insurance }
$$

$$
E^{n o \text { ins }}(n)=\frac{1}{4} \sqrt{1500} \quad+\frac{3}{4} \sqrt{2500} \approx 47,18>45,55
$$

income gramante, the government pays the person 500 ,

$$
\text { as } 2500-1500=1000<1500 .
$$

\Rightarrow With an income guerountee, the person will nt buy an indurate, as the government will pay part of the loss in case it occurs.

Similar feature of heath care sector to the in cone guarantee:
Hospitals are obliged to treat you, even if you cannot (folly) pay the treatment.

Exercise 10 af-el: Whatis the equilibricm? flwhy is it ineficicent?

 g) - jl: what can be done to fix this?We now have a continuum of people of length $1 / 2$. More precisely, we have a person i for each $i \in[0,1 / 2]$. All people have the same utility function $u(x)=\sqrt{x}$ and the same income of 2500 . However, they differ in terms of risk: Person i loses 1600 with probability i. We consider an insurance policy with full coverage, i.e. a policy that pays out 1600 in case of a loss. Every person knows his own risk but insurance companies cannot distinguish people (and will therefore have to offer the same premium to everybody).
a) Determine the willingness to pay for the insurance of person i.
b) For every possible insurance premium, how many people will buy insurance? Use your results to draw the demand for insurance.
c) Determine the marginal cost of person i.
d) Determine the average cost of insuring all people $i \geq j$, i.e. everyone in [j,1/2].

these are all the different people, the position on the line corresponds to their risk

Exercise 10 (cont.)

e) If many risk neutral insurance companies with no administrative costs are active on this market, what is the market equilibrium?
f) Is the market equilibrium efficient? If not, determine the size of the inefficiency. What would be welfare in "first best", i.e. in a situation in which everyone with a willingness to pay above marginal cost gets insurance? Determine the relative inefficiency due to adverse selection.
g) Consider an insurance subsidy to insurers, i.e. each insurer receives for each sold insurance a subsidy payment s. How high does s have to be to ensure efficiency?
h) Consider an insurance mandate (without subsidies), i.e. everyone is forced to buy an insurance contract. What is the equilibrium insurance premium? Who will benefit from the mandate? Who will lose out with the mandate?

Exercise 10 (cont.)

i) Suppose insurers can now distinguish two groups: The people $i \geq 0.3$ and the people $i<0.3$. Assume that insurers are allowed to offer different contracts to these two groups. Consequently, there are now two separate markets. What is the equilibrium on the "high risk market"? What is the equilibrium on the "low risk" market? Is the new situation more or less efficient than the one considered in the previous subquestions? Who benefits from group discrimination and who does not?
j) With the previous subquestion in mind, what happens if insurers can identify people better? (For example, distinguish more and more subgroups as in the previous subquestion.) What are the consequences for welfare? Who benefits and who loses?

Exc. 10 a)
WTP = number that, if paid, gives you the same crility as the ester = (maximal) willingness to pay to avoid the lottery Certainty Equivalent $\Leftrightarrow C E=W$ - \Rightarrow WP)

$$
\begin{aligned}
\Rightarrow & u(\overbrace{2500-\omega T P)} \quad \text { Certainty Equivalent }^{250}+i \cdot \sqrt{2500-1600}+(1-i) \cdot \sqrt{2500} \\
& \sqrt{2500-\omega T P} \\
\Leftrightarrow & \sqrt{2500-\omega T P}=30 i+50(1-i)=50-20 i \\
\Rightarrow & 2500-W T P=2500-2000 i+400 i^{2} \\
\Leftrightarrow & 2000 i-400 i^{2}=\text { WTP }(=\text { WTP(i) })
\end{aligned}
$$

Exercise 10 b)

For every possible insurance premium, how many people will buy insurance? Use your results to draw the demand for insurance.

Exc. 10 b)
\rightarrow as the WTP goes up when i goes up $\left(\frac{d 2000 i-400 i^{2}}{d i}=2000-800 i>0\right.$ for $i \in\left[0 ; \frac{1}{2}\right]$)
First, note that $i=\frac{1}{2}$ has the highest WTP of $\operatorname{WTP}\left(\frac{1}{2}\right)=2000 \cdot \frac{1}{2}-400\left(\frac{1}{2}\right)^{2}$
So, nobody will buy an isrurence it $\rho>900$.

$$
=1000-400 \cdot \frac{1}{4}=900
$$

For every premium P, we know that someone with UTP(i) $=P$ will buy this insurance, as will everybody with WTP $>P$.
\Rightarrow for every p, ar cook for the person with LTTP(i) $=P$.

$$
\begin{aligned}
& \rho=W T P(i)=2000 i-400 i^{2} \\
& \Leftrightarrow 400 i^{2}-2000 i+\rho=0 \\
& \Leftrightarrow i^{2}-5 i+\frac{p}{400}=0
\end{aligned}
$$

$\Rightarrow \quad i=2,5 * \sqrt{6,25-\frac{p}{400}} \rightarrow$ for every p, this gives as the lowest person i that still bugs

Plot of $D(p)=\sqrt{6.25-\frac{p}{400}}-2$

Exercise 10 c)

Determine the marginal cost of person i.

Exc. 10c)

The marginal cost of person $;$ for the insanonce is inst $i \cdot 1600$.
= cost of the "marginal" person i for the insurance

Exercise 10 d)

Determine the average cost of insuring all people $i \geq j$, i.e. everyone in [j, 1/2].

Exc. 10d)
Let us denote the average costs of restring all people in $\left[j, \frac{1}{2}\right]$ by $A C(j)$.
We know that for every i in $\left[j, \frac{1}{2}\right]$, the marginal cost are $i \cdot 1600$.

$$
\Rightarrow A C(j)=\frac{1}{2}\left(j \cdot 1600+\frac{1}{2} \cdot 1600\right)=800\left(\frac{1}{2}+j\right)
$$

Why? This jut tales the average between both borders of the internal $\left[j, \frac{1}{2}\right]$ lrespectivey both cots for there person).

Alternatively, you can also compute the integral

$$
\frac{1}{\frac{1}{2}-j} \int_{j}^{\frac{1}{2}} i \cdot 1600 d i \stackrel{\text { compute }}{=} 800\left(\frac{1}{2}+j\right)
$$

Exercise 10 e)

If many risk neutral insurance companies with no administrative costs are active on this market, what is the market equilibrium?

Exc. 10 e$)$
When there is perfect competition, the premium p will equal the avenge cats the insurance has from insuring everyone who wants to bay insurance at this premicon.

$$
A C\left(i^{*}\right)=p=\operatorname{LrP} P\left(i^{*}\right)
$$

\rightarrow holds due to perfect competition lingurances will mole zero prosit in equilibrium)
$\bigcup_{i k}$ is the lavest person who buys isurpuce at premium. P.
(we want to find this person)
5 this holds because the lavers person that bugs the Thrumance is exacts indifferent betiven buying and cot buying (because his LTP is exadly P)

$$
\begin{aligned}
& \Rightarrow A C\left(i^{*}\right) \stackrel{!}{=} \text { LTTP(i*) } \\
& \Leftrightarrow 800\left(\frac{1}{2}+i^{*}\right)=2000 i^{*}-400 i^{*} \\
& \Leftrightarrow 400 i^{*}-1200 i^{*}+400=0 \\
& \Rightarrow i^{*}-3 i^{*}+1=0 \\
& \Rightarrow i^{*}=1,5-\sqrt{2,25-1} \approx 0,38 \\
& \quad P=A C(0,38)=800 .\left(\frac{1}{2}+0,38\right)=704
\end{aligned}
$$

\Rightarrow In equilitrime, the prumitm will be 704 and the full isurance contract will e be bought by everyone in $[0,38,0,5]$ and everybody else remains uninsured.

Exercise 10 f)

Is the market equilibrium efficient? If not, determine the size of the inefficiency. What would be welfare in "first best", i.e. in a situation in which everyone with a willingness to pay above marginal cost gets insurance? Determine the relative inefficiency due to adverse selection.

Exc. 10f)
Let us compute total welfare in the equilibrium from e):

$$
\begin{aligned}
& =\int_{0,38}^{0,5} 2000 i-400 i^{2}-1600 i d i=400 \int_{0,38}^{0,5} i-i^{2} d i=400\left[\frac{1}{2} i^{2}-\frac{1}{3} i 3\right]_{0,38}^{0,5} \approx 11,584
\end{aligned}
$$

Efficiency: Everyone with WTP $>M C$ is insured.

$$
\begin{aligned}
W T P(i)-\mu C(i)=2000 i-400 i^{2} & -1600:=400:-400 ; 2 \geq 0 \text { for all: in }\left[0, \frac{1}{2}\right] \\
& \Rightarrow \text { efficient to insure everyone. }
\end{aligned}
$$

Total welfare from insuring everyone:

$$
\begin{aligned}
& \text { exergue } \\
& \text { insured }
\end{aligned}
$$

$$
W T P(i)-\mu c(i) d i=400\left[\frac{1}{2} \cdot i^{2}-\frac{1}{3} \cdot 3\right]_{0}^{95} \approx 33,333
$$

Relative inefficiency: $\quad \frac{33,333-11,584}{33,333} \approx 0,653 \quad \Rightarrow$ There isquite an efficiency loss due to adverse selection

