Mechanism Design

Christoph Schottmüller

Outline

(1) How (not) to sell nuclear weapons
(2) Optimal contests
(3) Revision questions and exercises etc.

How (not) to sell nuclear weapons: Intro

- after break up of Soviet Union, the Ukraine inherits many old-fashioned nuclear weapons
- maintenance is rather expensive
- modern nuclear powers are not interested in buying (too old)
- some other states were interested but US/Russia did not want these states to get nuclear weapons
- what to do?

How (not) to sell nuclear weapons: Mechanism Design

- What is the optimal sales mechanism if there are externalities of trade?
- externality: selling nuclear weapons to Lybia/Irak/North Korea etc. affects other countries' safety
- you can get payments from non-buyers (in exchange for not selling to their enemies)

How (not) to sell nuclear weapons: Setup

- if buyer $i \in B=\{1, \ldots, n\}$ buys the good at price p, i 's payoff equals $\pi^{i}-p$
- payoff to buyer i if j gets the good: $-\alpha_{j i} \leq 0$
- if seller (buyer 0) keeps the good, utilities of all agents normalized to $0: \alpha_{0 j}=0$ for all j
- let $\alpha^{i}=\max _{j} \alpha_{j i}$ denote i's worst outcome if the good is sold but not to i
- $v(i)=\left\{j \mid \alpha_{j i}=\alpha^{i}\right\}$: set of players j that (when one of them buys) leads to i's worst outcome
- to be able to break ties; let ϵ denote the smallest money unit
- for simplicity: all π^{i} and $\alpha_{i j}$ are commonly known (see section IV in the paper for private info case)

How (not) to sell nuclear weapons: Optimal mechanism I

- first, what is the maximum revenue R^{*} that the seller can get?
two cases:
- seller does not sell:
- what is the maximum i might pay in this case?
- what is the maximum revenue the seller can make?
- seller sells to i :
- what is the maximum i might pay?
- what is the maximum $j \neq i$ might pay?
- what is the maximum revenue the seller can make?
- if we find a mechanism that achieves the maximum possible revenue we are done
- any suggestions?

How (not) to sell nuclear weapons: Optimal mechanism II

- case 1: $\sum_{i} \alpha^{i} \geq \max _{i}\left\{\pi^{i}+\alpha^{i}+\sum_{j \neq i}\left(\alpha^{j}-\alpha_{i j}\right)\right\}$
- if everyone participates, no sale and every i has to pay $\alpha^{i}-\epsilon$
- if all but i participate, sell to $k \in v(i)$
- some arbitrary rules for cases where less than $n-1$ players participate
- check: participating is NE
- case 2: $\sum_{i} \alpha^{i}<\max _{i}\left\{\pi^{i}+\alpha^{i}+\sum_{j \neq i}\left(\alpha^{j}-\alpha_{i j}\right)\right\}$
- if all participate, sell to
$j=\arg \max _{i}\left\{\pi^{i}+\alpha^{i}+\sum_{j \neq i}\left(\alpha^{j}-\alpha_{i j}\right)\right\}$ and charge $\alpha^{i}-\alpha_{i j}-\epsilon$ to all $i \neq j$, charge $\pi^{j}+\alpha^{j}-\epsilon$ to j
- if all but i participate, sell to $k \in v(i)$
- some arbitrary rules for cases where less than $n-1$ players participate
- check: participating is NE

How (not) to sell nuclear weapons: Optimal mechanism III

- in both cases revenues approach maximal revenues as $\epsilon \rightarrow 0$
- "arbitrary rules" can be chosen such that participating is even a dominant strategy (see exercise)

Galton's problem (Biometrika, Vol. 1, 1902)

Galton's problem (Biometrika, Vol. 1, 1902)

A certain sum, say $100 €$, is available for two prizes to be awarded at a forthcoming competition; the larger one for the first of the competitors, the smaller one for the second. How should the $100 €$ be most suitably divided between the two? What ratio should a first prize bear to that of a second one? Does it depend on the number of competitors, and if so, why?

Contests

- sports contests
- R\&D contests (many "best entry" prizes)
- examinations (at least when "grading on a curve")
- elections

How to interpret Galton's problem?

- "most suitably divided": what is the objective?
- today: objective is to maximize overall effort of participants
- how to allocate prizes if
- the total prize budget is fixed
- total expected effort should be maximized
- for simplicity we assume
- agents are risk neutral
- we only consider whether one should award 1 or 2 prizes (and how much bigger the first prize should be if one awards 2)
- there are at least 3 contestants

Setup

- two prizes V_{1} and V_{2}
- prize budget is $1: V_{1}+V_{2}=1$
- $k \geq 3$ contestants
- a contestant i receiving prize V_{j} and exerting effort x_{i} has a payoff of

$$
V_{j}-c_{i} x_{i}
$$

where c_{i} is the contestant's type which is private information

- c_{i} are distributed according to strictly positive density f and distribution function F on $[m, 1]$ where $0<m<1$
- contestants maximize expected payoff
- the contestant with the highest (second highest) x_{i} wins $V_{1}\left(V_{2}\right)$
- contest designer maximizes the expected value of $\sum_{i} x_{i}$ by choosing V_{1} and V_{2}

How much effort to exert for given V_{1} and V_{2} ?

- similar to an auction problem
- we assume that the equilibrium effort is $b(c)$ which is strictly decreasing and differentiable and the same for each contestant (and based on this assumption derive an equilibrium that actually has these properties)
- if you exert effort x, what is the probability of winning the first prize?
- if you exert effort x, what is the probability of winning the second prize?
- what is the optimal effort of the worst type, i.e. of $c=1$?

How much effort to exert for given V_{1} and V_{2} ?

- maximization problem for contestant i

$$
\begin{aligned}
\max _{x}\left[V_{1}(1\right. & \left.-F\left(b^{-1}(x)\right)\right)^{k-1} \\
& \left.+V_{2}(k-1) F\left(b^{-1}(x)\right)\left(1-F\left(b^{-1}(x)\right)\right)^{k-2}-c x\right]
\end{aligned}
$$

- first order condition:
- denote the inverse function of b as y, i.e. $y(x)=b^{-1}(x)$, and for brevity drop the argument (x), then the foc is:

$$
\begin{aligned}
c=-(k-1) V_{1}(1- & F(y))^{k-2} f(y) y^{\prime}+(k-1) V_{2}(1-F(y))^{k-2} f(y) y^{\prime} \\
& -(k-1)(k-2) V_{2} F(y)(1-F(y))^{k-3} f(y) y^{\prime}
\end{aligned}
$$

- this is a differential equation in y with the boundary condition $y(0)=1$
not easy to solve but doable (see appendix A of the paper)
- the solution is strictly decreasing and differentiable

How much effort to exert for given V_{1} and V_{2} ?

Proposition 1

Take V_{1} and V_{2} as given. There is a symmetric equilibrium in which each contestant exerts effort $b(c)=V_{1} A(c)+V_{2} B(c)$ where

$$
\begin{gathered}
A(c)=(k-1) \int_{c}^{1} \frac{1}{a}(1-F(a))^{k-2} f(a) d a \\
B(c)=(k-1) \int_{c}^{1} \frac{1}{a}(1-F(a))^{k-3}[(k-1) F(a)-1] f(a) d a .
\end{gathered}
$$

The designer's problem I

- take $V_{2}=\alpha$ and $V_{1}=1-\alpha$ where $0 \leq \alpha \leq 1 / 2$
- the designer maximizes expected effort
- a contestant's effort is

$$
b(c)=(1-\alpha) A(c)+\alpha B(c)=A(c)+\alpha(B(c)-A(c))
$$

- expected effort of one contestant is therefore

$$
\int_{m}^{1}[A(c)+\alpha(B(c)-A(c))] f(c) d c
$$

- the designer's problem is therefore

$$
\max _{\alpha \in[0,1 / 2]} k \int_{m}^{1}[A(c)+\alpha(B(c)-A(c))] f(c) d c
$$

The designer's problem II

- the designer's problem is equivalent to

$$
\max _{\alpha \in[0,1 / 2]} \alpha \int_{m}^{1}(B(c)-A(c)) f(c) d c
$$

- which values of α could possibly be optimal?
- what are the benefits of a high α ? which types might be motivated by this?
- what are the benefits of a low α ?

The designer's problem III

Theorem (Optimal contest with linear costs)

It is optimal for the contest designer to award a single prize; i.e. $V_{1}=1$ and $V_{2}=0$.

- Proof: relatively lengthy in general (see paper) simple example: $k=3, m=1 / 2$ and F is uniform distribution, i.e. $f=2$ and $F(a)=2 a-1$, then

$$
\begin{gathered}
A(c)=2 \int_{c}^{1} \frac{2-2 a}{a} 2 d a=-8+8 c-8 \log (c) \\
B(c)=2 \int_{c}^{1} \frac{4 a-3}{a} 2 d a=16-16 c+12 \log (c) \\
\int_{1 / 2}^{1}(B(c)-A(c)) f(c) d c=2 \int_{1 / 2}^{1} 24(1-c)+20 \log (c) d c \approx-0.137
\end{gathered}
$$

The designer's problem IV

- paper looks at convex cost functions, i.e. payoff of contestant receiveing prize V_{j} and exerting effort x_{i} is $V_{j}-c_{i} \gamma\left(x_{i}\right)$ where γ is increasing and convex with $\gamma(0)=0$
- for convex γ it can be optimal to assign two (equal) prizes: $V_{1}=V_{2}=1 / 2$
- do you have an explanation for this?

Revision questions (selling with externalities)

- What is the main research question of the paper?
- Why can it be most profitable not to sell a good? Under which circumstances will this be?
- What is the crucial threat that allows the seller to achieve the maximal possible revenues?

Revision questions (contests)

- What is the research question of the paper?
- What are the benefits of having a second prize? What are the benefits of allocating all prize money to the second prize?
- Can you give an intuition why several prizes can be optimal if the effort cost functions are convex (although a singel prize is optimal when costs are linear)?

Exercise (selling with externalities)

- we use the mechanism in the slides but specify the following additional rules (where B^{*} is the set of participating players)
- if $B^{*}=\{ \}$, seller keeps good and no payments
- if $\left|B^{*}\right| \leq n-2$, then $j=\min _{i} B^{*}$ gets the good. Define $h=\min _{i} B^{*} \backslash\{j\}$. Then j pays $\pi^{j}+\alpha_{h j}-\epsilon$ and all other participating players receive payment ϵ
- if $B^{*}=B \backslash i$, then $k \in v(i)$ gets the good and pays $\pi^{k}+\alpha_{h k}-\epsilon$ where $h=\min B^{*} \backslash\{k\}$. All other participating players m pay $\alpha_{h m}-\alpha_{k m}-\epsilon$
- show that it is a (weakly) dominant strategy to participate

Exercise (contests)

- Suppose the effort cost function γ is concave. Do you have an intuitive idea whether two or one prize will be optimal?
- We assumed that contestants are risk neutral. What do you think will happen concerning the number of optimal prizes if contestants are risk averse?

