Bayes Nash equilibrium

Christoph Schottmüller

Introduction

- so far
- need to look at games of incomplete information (preference aggregation when preferences are private, auctions)
- under certain assumptions decision makers can be modeled as expected utility maximizers
- still missing
- how to react to information?
- strategic interaction under uncertainty

Bayes' rule: A simple example

- I know someone who lives in Munich. What is the probability that this person is male?
- I know someone who lives in Munich and who is 1.90 m tall. What is the probability that this person is male?
- I know someone who lives in Munich and has green eyes. What is the probability that this person is male?

Bayes' rule

Bayes' rule

For two events A and B

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- easier to remember as $P(A \mid B) P(B)=P(B \mid A) P(A)$ which is also equal to $P(A \cap B)$
- hence, $P(A \mid B)=P(A \cap B) / P(B)$

Bayes' rule: example

- an antigen test for a certain virus is 70% reliable at detecting an illness and 99.5% reliable at correctly reporting that somebody is healthy
- suppose about 80.000 people are currently infected with the virus
- suppose 80 million people live in Germany
- if a random person is takes a test and the test is positive, what is the probability that this person is infected?

Bayes' rule: comments

- calculations are reasonably simple
- intuition often goes wrong when the prior is extremely skewed
- make sure to understand it as it will often loom in the background

Independence

Independence

Two random variables X and Y are independent if

$$
P(X=x, Y=y)=P(X=x) P(Y=y) .
$$

- by Bayes' rule, $P(X=x \mid Y=y)=P(X=x)$ if X and Y are independent
- knowing Y does not affect my belief about X
- independence will often be assumed to keep the models simple

Games of incomplete information I: an example

- an incumbent decides whether to build a new plant (I for invest) at cost c
- entrant simultaneously decides whether to enter (E)
- entrant does not know whether c is "low" (I) or "high" (h)

Table: Payoffs with $c=h$

	E	NE
I	$0,-1$	2,0
NI	2,1	3,0

Table: Payoffs with $c=1$

	E	NE
I	$1.5,-1$	$3.5,0$
NI	2,1	3,0

- how to solve this game?

Games of incomplete information II: an example

- entrant has to think about
- how likely is it that incumbent has low cost or high cost?
- what will incumbent do if he has high cost? what if he has low cost?
- what should I do?
- incumbent with low cost has to think about
- what will entrant do?
- partly depends on what he thinks I would do if I had high costs. . .
- we will return to this example later on!

Games of incomplete information III: general thoughts

- say two firms do not know the cost of the respective other firm
- the main trick:
- add beliefs about costs of other firm (i.e. a probability distribution over possible costs)
- maximize expected utility
- we might want to allow this belief to depend on own costs
- e.g. a high cost firm may think it is more likely that the other firm has also high costs

Games of incomplete information IV: formal

description

- finite set of players: $i=1, \ldots, N$
- each player has a set of pure strategies S_{i}
- to capture uncertainty of other players:
- player i has a type t_{i} from a set T_{i}
- player i knows his own type t_{i} but other players do not
- player i maximizes expected utility with Bernoulli utility function $u_{i}: S \times T \rightarrow \Re$
- $T=\times_{i=1}^{N} T_{i}$ is set of all type profiles
- $S=\times_{i=1}^{N} S_{i}$ is set of all strategy profiles
- actions and types of all players can affect i 's payoff
- each type of each player has a belief $p_{i}\left(t_{-i} \mid t_{i}\right)$ about other players' types
- $p_{i}\left(t_{-i} \mid t_{i}\right) \in[0,1]$
- $\sum_{t_{-i} \in T_{-i}} p_{i}\left(t_{-i} \mid t_{i}\right)=1$ where T_{-i} is the set of type profiles of all players but i

Games of incomplete information V: formal description (short)

A N-player game of incomplete information can be denoted as $G=\left(S_{i}, T_{i}, p_{i}, u_{i}\right)_{i=1}^{N}$ where

- S_{i} is the strategy set of player i
- T_{i} is the type set of player i
- p_{i} assigns to each $t_{i} \in T_{i}$ a belief over T_{-i}
- $u_{i}: S \times T \rightarrow \Re$ is player i 's utility function.

If all S_{i} and T_{i} are finite, the G is called a finite game of incomplete information.

Games of incomplete information VI: assumptions on beliefs

- usually, it is assumed that types have a joint distribution p (over T) and beliefs are derived using Bayes' rule:

$$
p_{i}\left(t_{-i} \mid t_{i}\right)=\frac{p\left(t_{i}, t_{-i}\right)}{\sum_{t_{-i}^{\prime} \in T_{-i}} p\left(t_{i}, t_{-i}^{\prime}\right)}
$$

then p is called the common prior

- often we assume independence of types, i.e. the belief $p_{i}\left(t_{-i} \mid t_{i}\right)$ is the same for all t_{i}

Bayesian Nash equilibrium I

each player maximizes expected utility given his type and others strategies
\rightarrow trick:

- think of each type of every type as an own player maximizing expected utility (with utility function u_{i} and beliefs $\left.p_{i}\left(t_{-i} \mid t_{i}\right)\right)$
- a Bayesian Nash equilibrium consists of one strategy for each type of each player such that
- the strategy of type t_{i} maximizes expected utility of player i given the strategies of the others and the belief $p_{i}\left(\cdot \mid t_{i}\right)$

Bayesian Nash equilibrium II (formal)

For Bayesian game $G=\left(S_{i}, T_{i}, p_{i}, u_{i}\right)_{i=1}^{N}$, define the auxiliary game of complete information G^{\prime} :

- set of players is $T_{1} \cup T_{2} \cup \cdots \cup T_{N}$
- strategy set of player t_{i} is S_{i}
- von Neumann-Morgenstern utility

$$
v_{t_{i}}(s)=\mathbb{E}_{t_{-i} \in T_{-i}}\left[u_{i}\left(s\left(t_{1}\right), \ldots, s\left(t_{N}\right), t, \ldots, t_{N}\right)\right]
$$

- where $s\left(t_{i}\right)$ is the strategy of player t_{i} and $s=\left(s\left(t_{1}\right), \ldots, s\left(t_{N}\right)\right)$
- where expectation is take using the belief $p_{i}\left(\cdot \mid t_{i}\right)$

Definition: Bayesian Nash equilibrium (BNE)

A (mixed) Bayesian Nash equilibrium of game G is a (mixed) Nash equilibrium of the corresponding auxiliary game G^{\prime}.

Bayesian Nash equilibrium III: back to example

- assume the belief $p_{E}(I)=p_{E}(h)=1 / 2$

Table: Payoffs with $c=h$

	E	NE
I	$0,-1$	2,0
NI	2,1	3,0

Table: Payoffs with $c=1$

	E	NE
I	$1.5,-1$	$3.5,0$
NI	2,1	3,0

- what is the optimal strategy for type h ?
- if type $/$ invests with probability $s(I)$, what is the entrant's best response?
- if the entrant enters with probability $s(e)$, what is type I's best response?

public good example I

- N guests at a garden party
- each guest has to decide whether to bring a speaker to play music, $S_{i}=\{0,1\}$
- payoff of player i :
- zero if no one brings a speaker
- t_{i} if someone else brought a speaker
- $t_{i}-1 / 2$ if person i brought a speaker
- t_{i} are independently distributed and 1 (high) with probability $2 / 3$ and 0 (low) with probability $1 / 3$
- we want to find a symmetric BNE, i.e. one where all high types use one strategy and all low types use one other strategy

public good example II

- what is the optimal strategy of a low type?
- suppose all high types bring a speaker with probability α
- for player i : what is the probability that no one else brings a speaker?
- what is the expected payoff for a high type of player i when bringing the speaker?
- what is the expected payoff for a high type of player i when not bringing the speaker?
- which value of α gives a BNE?
α
$3 / 4$
$1 / 2$$\uparrow$

