Markets and the First Fundamental Theorem of Welfare Economics

Christoph Schottmüller

Introduction

so far

- how to aggregate preferences
- Arrow's impossibility theorem
- today: a special aggregation problem
 - exchange economy
 - similar to standard micro model in Bachelor
 - try to make the link:
 - how is this a special case of the social choice model?
 - what additional structure/assumptions are in place?
 - which normative criteria do we use?
 - how do we avoid Arrow's impossibility theorem?

A standard exchange economy

- 1 consumers
- *n* goods
- consumer *i* has initial endowment $e^i = (e_1^i, e_2^i, \dots, e_n^i)$ where $e_i^i \in \Re_+$
 - assumption: each good exists in strictly positive quantities, $\sum_{i=1}^{l} e_j^i > 0$ for all $j = 1, \ldots, n$
- consumers preferences over consumption are represented by a utility function $u^i: \Re^n_+ \to \Re$
 - assumption: u^i is strictly increasing in each component
 - assumption: u^i is strictly quasi-concave
 - assumption: u^i is continuous
- consumers can exchange endowments
 - who should/will eventually consume what?

Notation

e = (e¹, e²,..., e^l) is the vector of endowments
allocations are denoted by x = (x¹, x²,..., x^l)
xⁱ ∈ ℜⁿ₊ is agent *i*'s allocation of the *n* good
feasible allocations:

$$F(e) = \{x | \sum_{i=1}^{l} x^{i} = \sum_{i=1}^{l} e^{i}\}$$

where each $x^i \in \Re^n_+$

Efficiency

Pareto efficiency

An allocation $x \in F(e)$ is Pareto efficient if there is no $y \in F(e)$ such that $u^i(y^i) \ge u^i(x^i)$ for all i = 1, ..., I with strict inequality for at least one i.

Comparison

• does Arrow's impossibility theorem apply in this framework?

Prices and the consumer problem

- p = (p₁,..., p_n) be a vector of prices (p_j is the price of good j) and assume p_j > 0 for all j = 1,..., n
- assumption: each consumer takes the vector of prices as given
- consumer *i*'s problem:

$$\max_{x^i\in\Re^n_+}u^i(x^i) \qquad s.t.: \quad \sum_{j=1}^n p_j x^i_j \leq \sum_{j=1}^n p_j e^i_j$$

- think of $m^i(p) = \sum_{j=1}^n p_j e^i_j$ as consumer *i*'s income
- given our assumptions a unique solution xⁱ(p, mⁱ(p)) exists and this function is continuous in p

Excess demand

• aggregate excess demand for good *j* is defined as

$$z_j(p) = \sum_{i=1}^l x_j^i(p, m^i(p)) - \sum_{i=1}^l e_j^i$$

- if z_j(p) > 0 demand for good j is higher than its supply at price p
- if z_j(p) < 0 demand for good j is lower than its supply at price p
- aggregate excess demand is defined as

$$z(p) = (z_1(p), z_2(p), \ldots, z_n(p))$$

Walrasian equilibrium

Definition: Walrasian equilibrium

A vector $p^* \in \Re_{++}^n$ is called a Walrasian equilibrium if $z(p^*) = 0$.

- all market demands connected
- "general equilibrium"

Walrasian equilibrium: Existence

Existence theorem

A Walrasian equilibrium p^* exists.

Proof existence theorem

somewhat technical, see Jehle and Reny (2011), ch. 5.2.1

Walrasian equilibrium: Efficiency

First fundamental theorem of welfare economics Let p^* be a Walrasian equilibrium. The equilibrium allocation $x^* = (x^1(p^*), x^2(p^*), \dots, x^l(p^*))$ is Pareto efficient.

Proof of the first fundamental theorem of welfare economics:

- Suppose, to the contrary, that $y = (y^1, \dots, y')$ Pareto dominates x^* .
 - Then, $\sum_{j=1}^{n} p_j^* y_j^i \ge m^i(p^*)$ for all *i* with strict inequality for at least one *i* (Why?)

$$\Rightarrow \sum_{i=1}^{l} \sum_{j=1}^{n} p_j^* y_j^i > \sum_{i=1}^{l} \sum_{j=1}^{n} p_j^* e_j^i$$

y must be feasible:

$$\sum_{i=1}^{l} y^{i} \leq \sum_{i=1}^{l} e^{i}$$

(note: there are vectors on both sides of the inequality!)

• hence, $p^* \cdot \sum_{i=1}^{l} y^i \le p^* \cdot \sum_{i=1}^{l} e^i$ as all $p_j^* > 0$ (note: this is a dot/vector product)

$$\Rightarrow \sum_{i=1}^{l} \sum_{j=1}^{n} p_{j}^{*} y_{j}^{i} \leq \sum_{i=1}^{l} \sum_{j=1}^{n} p_{j}^{*} e_{j}^{i}$$
^{12/21}

Example: 2 agents, 2 goods (Edgeworth box)

Example: 2 agents, 2 goods (Edgeworth box)

Example: 2 agents, 2 goods (Edgeworth box)

First fundamental theorem of welfare economics: comments

- market system leads to efficient allocation
- there are more general versions of this theorem
 - with production, weaker assumptions on consumer preferences, etc.
- decentralized market mechanisms can lead to efficient outcome
 - or: a centralized solution can be implemented in a decentralized way using only prices

Aside: the role of prices I

- the economic problem (putting all resources to their best use) is Herculean at society level
 - what is best use?
 - \rightarrow requires knowledge of preferences
 - what are resources?
 - \rightarrow requires knowledge of
 - possible production processes
 - natural resources
 - local conditions
 - possible labor supply and preferences concerning labor supply
 - transportation (im-)possibilities
 - . . .

Aside: the role of prices II

- planning problem becomes a problem of how to aggregate dispersed information
 - unrealistic to centralize all this information
 - decentralized solution
 - decisions should be made by those that most naturally have most of the necessary information
 - still need enough knowledge of outside world
- prices aggregate all the information a decision maker needs to make the best decision for society
 - consumer knows his own preferences
 - Walrasian price captures opportunity benefit of the resource, i.e. the value of the resource to others
 - each agent can act in interest of society without having to know/understand the interest of society
 - what does an increasing price signal?
- do you know the famous pencil clip?

First fundamental theorem of welfare economics: important (implicit) assumptions

- all agents are price takers
- complete markets
 - every good that matters for some consumer is traded on its own market
 - guaranteed property rights, i.e. voluntary trade is possible (no theft etc.)
- onote:
 - assumptions are sufficient to reach efficiency
 - an efficient equilibrium may still exist if some of the assumptions fail!

Violations of assumptions

- agents are price takers
 - examples of cases where agents are not price takers?

- complete markets assumption
 - a good is not traded on a market:

• distinct goods are traded on a common market:

The scope for policy: efficiency arguments

- policy within model:
 - guarantee property rights + enforce contracts
- Efficiency reached without policy intervention given our assumptions.
- failure of assumptions is necessary but not sufficient for existence of efficiency enhancing policy
 - outcome may still be efficient
 - efficiency enhancing policy may not be available
- reactions if assumptions fail that are motivated by model
 - competition policy and sector regulation
 - complete/create the market

Aside: The scope for policy: distributional arguments

- second fundamental theorem of welfare economics: any efficient allocation is a Walrasian equilibrium for some vector of endowments
- implication
 - realize distributional objectives by redistributing endowments only
 - then let market ensure efficiency
- some caveats to this

Walrasian equilibrium: how to get there?

- how do markets reach a Walrasian equilibrium?
- how do we obtain prices if everyone is price taker?
- metaphor of Walrasian auctioneer

- maybe a good idea to talk about the economics of auctions
 - for auction theory, we need game theory with incomplete information
 - for game theory with incomplete information we need decision making under uncertainty
 - ... that's exactly the plan for the coming weeks!