Decision making under uncertainty

Christoph Schottmüller

Introduction

- so far:
- preference aggregation:
- what if preferences are private information and have to be elicited?
- possibilities for gaming the system
- proper analysis: incomplete information
- market equilibrium:
- auction metaphor
- auction: game with incomplete information
- today:
- how to model decision making under uncertainty

Motivation: game theory

Table: prisoner's dilemma

- What do the numbers in the game table actually mean?
- What if the other player plays C and D with 50% probability? How to evaluate that?
- can we model a rational decision maker as expected utility maximizer?

Setup I

- today: no game, just decision problem of 1 decision maker under uncertainty
- basic setup: a decision maker has to choose among lotteries over outcomes in a set C
- set of outcomes $C=\left\{c_{1}, c_{2} \ldots c_{n}\right\}$
- a simple lottery L is a probability distribution $\left(p_{1}, p_{2} \ldots p_{n}\right)$ with $p_{i} \geq 0$ and $\sum_{i=1}^{n} p_{i}=1$ where p_{i} is the probability of outcome c_{i}

vacation lottery

You book a vacation in the south. Depending on the weather your vacation has the outcomes
$C=\{$ lying on the beach, stuck in the hotel room $\}$.
Given the weather forecast you assign probabilities $(0.9,0.1)$ to the two possible outcomes.

Setup II

- we start from preferences
- the decision maker has a complete and transitive preference relation \succeq on the set of all simple lotteries

Compound lotteries I

vacation lottery II

- third outcome: "being stuck at home", i.e. $C=$ \{lying on the beach, stuck in hotel room, stuck at home\}
- probabiltiy 0.2 that your tour operator goes bankrupt before you go on holidays (and 0.8 that your holiday goes through)
- compound lottery: with probability $\alpha_{1}=0.8$ you get the vacation lottery; with probability 0.2 you get the "lottery" that puts all probability on the outcome "stuck at home"

Compound lotteries II

A compound lotteries $\left(L_{1}, \ldots, L_{K} ; \alpha_{1}, \ldots, \alpha_{K}\right)$ yields with probability α_{k} the simple lottery $L_{k}\left(\alpha_{k} \geq 0\right.$ and $\left.\sum_{k=1}^{K} \alpha_{k}=1\right)$

- What is the probability that you lie on the beach?
- Is there a simple lottery that is similar to the compound lottery (same outcome probabilities)? ("reduced lottery")

Assumption

The decision maker evaluates compound lotteries like their reduced lotteries, i.e. the decision maker is indifferent between a compound lottery and the corresponding reduced lottery.

axioms for preference relation \succeq : continuity

continuity axiom:

for all lotteries $L, L^{\prime}, L^{\prime \prime}$, the sets

$$
\left\{\alpha \in[0,1]: \alpha L+(1-\alpha) L^{\prime} \succeq L^{\prime \prime}\right\}
$$

and

$$
\left\{\alpha \in[0,1]: L^{\prime \prime} \succeq \alpha L+(1-\alpha) L^{\prime}\right\}
$$

are closed.

- no sudden jumps in preferences
- best understood as (mild) mathematical regularity assumption

axioms for preference relation \succeq : independence

independence axiom

 for all lotteries $L, L^{\prime}, L^{\prime \prime}$ and $\alpha \in(0,1)$ we have$L \succeq L^{\prime} \quad$ if and only if $\quad \alpha L+(1-\alpha) L^{\prime \prime} \succeq \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}$

- main assumption for what follows
- appealing but some experimental violations are known

Example

There are three prices:
(1) 2.500.000 \$
(2) $500.000 \$$
(3) $0 \$$

An individual prefers the lottery $L_{1}=(0.1,0.8,0.1)$ to the lottery $L_{1}^{\prime}=(0,1,0)$.
If the independence axiom is satisfied (as well as transitivity and monotonicity), can we say which of the following lotteries the individual prefers?
$L_{2}=(0.55,0.4,0.05) \quad L_{2}^{\prime}=(0.5,0.5,0)$

Some implications I

Lemma

Assume the independence axiom holds for the preference relation \succeq on the set of lotteries \mathcal{L}. Then the following holds:
$L \sim L^{\prime} \quad$ if and only if $\quad \alpha L+(1-\alpha) L^{\prime \prime} \sim \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}$
$L \succ L^{\prime} \quad$ if and only if $\quad \alpha L+(1-\alpha) L^{\prime \prime} \succ \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}$

Proof (indifference)

- let $L \sim L^{\prime}$
- then $L \succeq L^{\prime}$: by independence axiom equivalent to

$$
\alpha L+(1-\alpha) L^{\prime \prime} \succeq \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}
$$

- then $L^{\prime} \succeq L$: by independence axiom equivalent to $\alpha L^{\prime}+(1-\alpha) L^{\prime \prime} \succeq \alpha L+(1-\alpha) L^{\prime \prime}$
combined: $\alpha L+(1-\alpha) L^{\prime \prime} \sim \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}$

Some implications II

Lemma

If $L \sim L^{\prime}$ and $L^{\prime \prime} \sim L^{\prime \prime \prime}$ and the independence axiom holds, then $\alpha L+(1-\alpha) L^{\prime \prime} \sim \alpha L^{\prime}+(1-\alpha) L^{\prime \prime \prime}$ where $\alpha \in[0,1]$.

Proof

By the independence axiom, $L \sim L^{\prime}$ implies

$$
\alpha L+(1-\alpha) L^{\prime \prime} \sim \alpha L^{\prime}+(1-\alpha) L^{\prime \prime} .
$$

Also by the independence axiom, $L^{\prime \prime} \sim L^{\prime \prime \prime}$ implies

$$
\alpha L^{\prime}+(1-\alpha) L^{\prime \prime} \sim \alpha L^{\prime}+(1-\alpha) L^{\prime \prime \prime} .
$$

Finally, use transitivity to get the result.

Utility representation

Definition

A utility function representing the preferences \succeq on \mathcal{L} is a function $U: \mathcal{L} \rightarrow \Re$ such that $U(L) \geq U\left(L^{\prime}\right)$ whenever $L \succeq L^{\prime}$ for $L, L^{\prime} \in \mathcal{L}$.

von Neumann-Morgenstern utility

Definition (von Neumann-Morgenstern utility)

The utility function $U: \mathcal{L} \rightarrow \Re$ has expected utility form if there is an assignment of numbers $\left(u_{1}, \ldots, u_{n}\right)$ to the n outcomes in C such that for any simple lottery (p_{1}, \ldots, p_{n})

$$
U(L)=u_{1} p_{1}+\cdots+u_{n} p_{n} .
$$

Such a utility function U is called von Neumann-Morgenstern utility function.

The idea is that outcome (with certainty) c_{i} yields utility u_{i}. To evaluate lotteries, we take the expected utility (i.e. expectation over those u_{i}).

Expected utility theorem

Theorem

Assume that the preference relation \succeq satisfies transitivity, completeness, the continuity axiom and the independence axiom. Then \succeq can be represented by a von Neumann-Morgenstern utility function $U: \mathcal{L} \rightarrow \Re$, i.e. there exists a utility function of the form $U(L)=\sum_{i=1}^{n} u_{i} p_{i}$ such that

$$
L \succeq L^{\prime} \quad \text { if and only if } U(L) \geq U\left(L^{\prime}\right)
$$

Proof

somewhat lengthy, see ch. 6B in Mas-Colell, Whinston and Green (1995) or Jehle and Reny (2011) ch. 2.4.2

- under our assumptions a decision maker maximizes expected utility
- U: "von Neumann-Morgenstern utility function"
- u_{i} : "Bernoulli utilities"

Risk preferences

- suppose the outcomes are amounts of money
- instead of u_{i}, function $u: \Re \rightarrow \Re$
- risk preferences
- take an arbitrary lottery L with expected payout μ
- risk aversion: decision maker prefers getting μ (for sure!) to L
- risk love: decision maker prefers L to μ

Proposition

A decision maker is risk averse if and only if his Bernoulli utility function u is concave.
A decision maker is risk loving if and only if his Bernoulli utility function u is convex.

Risk preferences: graph

- let L pay x_{1} with probability α and x_{2} with $1-\alpha$
- expected payout $\mu=\alpha x_{1}+(1-\alpha) x_{2}$
- line connecting $\left(x_{1}, u\left(x_{1}\right)\right)$ and $\left(x_{2}, u\left(x_{2}\right)\right)$ contains point $\left(\mu, \alpha u\left(x_{1}\right)+(1-\alpha) u\left(x_{2}\right)\right)$

