Decision making under uncertainty

Christoph Schottmüller

Introduction

- so far:
 - preference aggregation:
 - what if preferences are private information and have to be elicited?
 - possibilities for gaming the system
 - proper analysis: incomplete information
 - market equilibrium:
 - auction metaphor
 - auction: game with incomplete information
- today:
 - how to model decision making under uncertainty

Motivation: game theory

Table: prisoner's dilemma

- What do the numbers in the game table actually mean?
- What if the other player plays *C* and *D* with 50% probability? How to evaluate that?
- can we model a rational decision maker as expected utility maximizer?

Setup I

- today: no game, just decision problem of 1 decision maker under uncertainty
- basic setup: a decision maker has to choose among lotteries over outcomes in a set *C*
 - set of outcomes $C = \{c_1, c_2 \dots c_n\}$
 - a simple lottery L is a probability distribution
 (p₁, p₂...p_n) with p_i ≥ 0 and ∑ⁿ_{i=1} p_i = 1 where p_i is
 the probability of outcome c_i

vacation lottery

You book a vacation in the south. Depending on the weather your vacation has the outcomes $C = \{ \text{lying on the beach, stuck in the hotel room} \}$. Given the weather forecast you assign probabilities (0.9, 0.1) to the two possible outcomes.

Setup II

- we start from preferences

Compound lotteries I

vacation lottery II

- third outcome: "being stuck at home", i.e. C = {lying on the beach, stuck in hotel room, stuck at home}
- probabiltiy 0.2 that your tour operator goes bankrupt before you go on holidays (and 0.8 that your holiday goes through)
- compound lottery: with probability $\alpha_1 = 0.8$ you get the vacation lottery; with probability 0.2 you get the "lottery" that puts all probability on the outcome "stuck at home"

Compound lotteries II

A compound lotteries $(L_1, \ldots, L_K; \alpha_1, \ldots, \alpha_K)$ yields with probability α_k the simple lottery L_k ($\alpha_k \ge 0$ and $\sum_{k=1}^K \alpha_k = 1$)

- What is the probability that you lie on the beach?
- Is there a simple lottery that is similar to the compound lottery (same outcome probabilities)? ("reduced lottery")

Assumption

The decision maker evaluates compound lotteries like their *reduced lotteries*, i.e. the decision maker is indifferent between a compound lottery and the corresponding reduced lottery.

axioms for preference relation \succeq : continuity

continuity axiom:

for all lotteries L, L', L'', the sets

$$\{\alpha \in [0,1] : \alpha L + (1-\alpha)L' \succeq L''\}$$

and

$$\{\alpha \in [0,1] : L'' \succeq \alpha L + (1-\alpha)L'\}$$

are closed.

- no sudden jumps in preferences
- best understood as (mild) mathematical regularity assumption

axioms for preference relation \succeq : independence

independence axiom

for all lotteries L, L', L'' and $\alpha \in (0, 1)$ we have

- $L \succeq L'$ if and only if $\alpha L + (1 \alpha)L'' \succeq \alpha L' + (1 \alpha)L''$
 - main assumption for what follows
 - appealing but some experimental violations are known

Example

There are three prices:

- 2.500.000 \$
- 2 500.000 \$
- 3 0 \$

An individual prefers the lottery $L_1 = (0.1, 0.8, 0.1)$ to the lottery $L'_1 = (0, 1, 0)$.

If the independence axiom is satisfied (as well as transitivity and monotonicity), can we say which of the following lotteries the individual prefers?

$$L_2 = (0.55, 0.4, 0.05)$$
 $L'_2 = (0.5, 0.5, 0)$

Some implications I

Lemma

Assume the independence axiom holds for the preference relation \succeq on the set of lotteries \mathcal{L} . Then the following holds:

$$L \sim L'$$
 if and only if $lpha L + (1-lpha)L'' \sim lpha L' + (1-lpha)L''$

 $L \succ L'$ if and only if $\alpha L + (1 - \alpha)L'' \succ \alpha L' + (1 - \alpha)L''$

Proof (indifference)

- let $L \sim L'$
 - then $L \succeq L'$: by independence axiom equivalent to $\alpha L + (1 \alpha)L'' \succeq \alpha L' + (1 \alpha)L''$
 - then $L' \succeq L$: by independence axiom equivalent to $\alpha L' + (1 \alpha)L'' \succeq \alpha L + (1 \alpha)L''$

combined: $\alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L''$

Some implications II

Lemma

If $L \sim L'$ and $L'' \sim L'''$ and the independence axiom holds, then $\alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L'''$ where $\alpha \in [0, 1]$.

Proof

By the independence axiom, $L \sim L'$ implies

$$\alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L''.$$

Also by the independence axiom, $L'' \sim L'''$ implies

$$\alpha L' + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L'''.$$

Finally, use transitivity to get the result.

Utility representation

Definition

A utility function representing the preferences \succeq on \mathcal{L} is a function $U : \mathcal{L} \to \Re$ such that $U(L) \ge U(L')$ whenever $L \succeq L'$ for $L, L' \in \mathcal{L}$.

von Neumann-Morgenstern utility

Definition (von Neumann-Morgenstern utility)

The utility function $U : \mathcal{L} \to \Re$ has expected utility form if there is an assignment of numbers (u_1, \ldots, u_n) to the *n* outcomes in *C* such that for any simple lottery (p_1, \ldots, p_n)

$$U(L) = u_1 p_1 + \cdots + u_n p_n.$$

Such a utility function U is called von Neumann-Morgenstern utility function.

The idea is that outcome (with certainty) c_i yields utility u_i . To evaluate lotteries, we take the expected utility (i.e. expectation over those u_i).

Expected utility theorem

Theorem

Assume that the preference relation \succeq satisfies transitivity, completeness, the continuity axiom and the independence axiom. Then \succeq can be represented by a von Neumann-Morgenstern utility function $U : \mathcal{L} \to \Re$, i.e. there exists a utility function of the form $U(L) = \sum_{i=1}^{n} u_i p_i$ such that

$$L \succeq L'$$
 if and only if $U(L) \ge U(L')$.

Proof

somewhat lengthy, see ch. 6B in Mas-Colell, Whinston and Green (1995) or Jehle and Reny (2011) ch. 2.4.2

- under our assumptions a decision maker maximizes expected utility
- U: "von Neumann-Morgenstern utility function"
- *u_i*: "Bernoulli utilities"

Risk preferences

- suppose the outcomes are amounts of money
- instead of u_i , function $u : \Re \to \Re$
- risk preferences
 - take an arbitrary lottery L with expected payout μ
 - risk aversion: decision maker prefers getting μ (for sure!) to L
 - risk love: decision maker prefers L to μ

Proposition

A decision maker is risk averse if and only if his Bernoulli utility function u is concave.

A decision maker is risk loving if and only if his Bernoulli utility function u is convex.

Risk preferences: graph

- let L pay x_1 with probability α and x_2 with 1α
- expected payout $\mu = \alpha x_1 + (1 \alpha)x_2$
- line connecting $(x_1, u(x_1))$ and $(x_2, u(x_2))$ contains point $(\mu, \alpha u(x_1) + (1 \alpha)u(x_2))$

