From 8699b7c8fcebd916e429e26d28ac5d2257d25db3 Mon Sep 17 00:00:00 2001 From: Minyang Tian <69544994+mtian8@users.noreply.github.com> Date: Mon, 6 Oct 2025 20:08:43 -0500 Subject: [PATCH] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 4e8327d..4765b42 100644 --- a/README.md +++ b/README.md @@ -24,7 +24,7 @@ This repo contains the evaluation code for the paper "[SciCode: A Research Codin **[2024-07-24]: We add the scientist-annotated background and support setup for w/ background evaluation.** ## Introduction -SciCode is a challenging benchmark designed to evaluate the capabilities of language models (LMs) in generating code for solving realistic scientific research problems. It has a diverse coverage of **16** subdomains from **6** domains: Physics, Math, Material Science, Biology, and Chemistry. Unlike previous benchmarks that consist of exam-like question-answer pairs, SciCode is converted from real research problems. SciCode problems naturally factorize into multiple subproblems, each involving knowledge recall, reasoning, and code synthesis. In total, SciCode contains **338** subproblems decomposed from **80** challenging main problems, and it offers optional descriptions specifying useful scientific background information and scientist-annotated gold-standard solutions and test cases for evaluation. OpenAI o1-preview, the best-performing model among those tested, can solve only **7.7%** of the problems in the most realistic setting. Broadly, SciCode demonstrates a realistic and scientists' everyday workflow of identifying critical science concepts and facts and then transforming them into computation and simulation code. We believe SciCode not only helps demonstrate contemporary LLMs' progress towards helpful assistant for scientists but also helps shed light on future building and evaluation of scientific AI. +SciCode is a challenging benchmark designed to evaluate the capabilities of language models (LMs) in generating code for solving realistic scientific research problems. It has a diverse coverage of **16** subdomains from **5** domains: Physics, Math, Material Science, Biology, and Chemistry. Unlike previous benchmarks that consist of exam-like question-answer pairs, SciCode is converted from real research problems. SciCode problems naturally factorize into multiple subproblems, each involving knowledge recall, reasoning, and code synthesis. In total, SciCode contains **338** subproblems decomposed from **80** challenging main problems, and it offers optional descriptions specifying useful scientific background information and scientist-annotated gold-standard solutions and test cases for evaluation. OpenAI o1-preview, the best-performing model among those tested, can solve only **7.7%** of the problems in the most realistic setting. Broadly, SciCode demonstrates a realistic and scientists' everyday workflow of identifying critical science concepts and facts and then transforming them into computation and simulation code. We believe SciCode not only helps demonstrate contemporary LLMs' progress towards helpful assistant for scientists but also helps shed light on future building and evaluation of scientific AI.