Skip to content
This repository was archived by the owner on Jan 7, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions examples/tmva/plot_multiclass.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,17 +38,19 @@
factory = TMVA.Factory('classifier', output,
'AnalysisType=Multiclass:'
'!V:Silent:!DrawProgressBar')

data = TMVA.DataLoader('.')
for n in range(2):
factory.AddVariable('f{0}'.format(n), 'F')
data.AddVariable('f{0}'.format(n), 'F')

# Call root_numpy's utility functions to add events from the arrays
add_classification_events(factory, X_train, y_train, weights=w_train)
add_classification_events(factory, X_test, y_test, weights=w_test, test=True)
add_classification_events(data, X_train, y_train, weights=w_train)
add_classification_events(data, X_test, y_test, weights=w_test, test=True)
# The following line is necessary if events have been added individually:
factory.PrepareTrainingAndTestTree(TCut('1'), 'NormMode=EqualNumEvents')
data.PrepareTrainingAndTestTree(TCut('1'), 'NormMode=EqualNumEvents')

# Train an MLP
factory.BookMethod('MLP', 'MLP',
factory.BookMethod(data, 'MLP', 'MLP',
'NeuronType=tanh:NCycles=200:HiddenLayers=N+2,2:'
'TestRate=5:EstimatorType=MSE')
factory.TrainAllMethods()
Expand Down
16 changes: 9 additions & 7 deletions examples/tmva/plot_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,18 +23,20 @@
factory = TMVA.Factory('regressor', output,
'AnalysisType=Regression:'
'!V:Silent:!DrawProgressBar')
factory.AddVariable('x', 'F')
factory.AddTarget('y', 'F')

add_regression_events(factory, X, y)
add_regression_events(factory, X, y, test=True)
data = TMVA.DataLoader('.')
data.AddVariable('x', 'F')
data.AddTarget('y', 'F')

add_regression_events(data, X, y)
add_regression_events(data, X, y, test=True)
# The following line is necessary if events have been added individually:
factory.PrepareTrainingAndTestTree(TCut('1'), '')
data.PrepareTrainingAndTestTree(TCut('1'), '')

factory.BookMethod('BDT', 'BDT1',
factory.BookMethod(data, 'BDT', 'BDT1',
'nCuts=20:NTrees=1:MaxDepth=4:BoostType=AdaBoostR2:'
'SeparationType=RegressionVariance')
factory.BookMethod('BDT', 'BDT2',
factory.BookMethod(data, 'BDT', 'BDT2',
'nCuts=20:NTrees=300:MaxDepth=4:BoostType=AdaBoostR2:'
'SeparationType=RegressionVariance')
factory.TrainAllMethods()
Expand Down
11 changes: 6 additions & 5 deletions examples/tmva/plot_twoclass.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,17 +36,18 @@
factory = TMVA.Factory('classifier', output,
'AnalysisType=Classification:'
'!V:Silent:!DrawProgressBar')
data = TMVA.DataLoader('.')
for n in range(n_vars):
factory.AddVariable('f{0}'.format(n), 'F')
data.AddVariable('f{0}'.format(n), 'F')

# Call root_numpy's utility functions to add events from the arrays
add_classification_events(factory, X_train, y_train, weights=w_train)
add_classification_events(factory, X_test, y_test, weights=w_test, test=True)
add_classification_events(data, X_train, y_train, weights=w_train)
add_classification_events(data, X_test, y_test, weights=w_test, test=True)
# The following line is necessary if events have been added individually:
factory.PrepareTrainingAndTestTree(TCut('1'), 'NormMode=EqualNumEvents')
data.PrepareTrainingAndTestTree(TCut('1'), 'NormMode=EqualNumEvents')

# Train a classifier
factory.BookMethod('Fisher', 'Fisher',
factory.BookMethod(data, 'Fisher', 'Fisher',
'Fisher:VarTransform=None:CreateMVAPdfs:'
'PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:'
'NsmoothMVAPdf=10')
Expand Down