Permalink
1879 lines (1482 sloc) 51.8 KB
"""Functions for converting between color spaces.
The "central" color space in this module is RGB, more specifically the linear
sRGB color space using D65 as a white-point [1]_. This represents a
standard monitor (w/o gamma correction). For a good FAQ on color spaces see
[2]_.
The API consists of functions to convert to and from RGB as defined above, as
well as a generic function to convert to and from any supported color space
(which is done through RGB in most cases).
Supported color spaces
----------------------
* RGB : Red Green Blue.
Here the sRGB standard [1]_.
* HSV : Hue, Saturation, Value.
Uniquely defined when related to sRGB [3]_.
* RGB CIE : Red Green Blue.
The original RGB CIE standard from 1931 [4]_. Primary colors are 700 nm
(red), 546.1 nm (blue) and 435.8 nm (green).
* XYZ CIE : XYZ
Derived from the RGB CIE color space. Chosen such that
``x == y == z == 1/3`` at the whitepoint, and all color matching
functions are greater than zero everywhere.
* LAB CIE : Lightness, a, b
Colorspace derived from XYZ CIE that is intended to be more
perceptually uniform
* LUV CIE : Lightness, u, v
Colorspace derived from XYZ CIE that is intended to be more
perceptually uniform
* LCH CIE : Lightness, Chroma, Hue
Defined in terms of LAB CIE. C and H are the polar representation of
a and b. The polar angle C is defined to be on ``(0, 2*pi)``
:author: Nicolas Pinto (rgb2hsv)
:author: Ralf Gommers (hsv2rgb)
:author: Travis Oliphant (XYZ and RGB CIE functions)
:author: Matt Terry (lab2lch)
:author: Alex Izvorski (yuv2rgb, rgb2yuv and related)
:license: modified BSD
References
----------
.. [1] Official specification of sRGB, IEC 61966-2-1:1999.
.. [2] http://www.poynton.com/ColorFAQ.html
.. [3] https://en.wikipedia.org/wiki/HSL_and_HSV
.. [4] https://en.wikipedia.org/wiki/CIE_1931_color_space
"""
from warnings import warn
import numpy as np
from scipy import linalg
from ..util import dtype, dtype_limits
def guess_spatial_dimensions(image):
"""Make an educated guess about whether an image has a channels dimension.
Parameters
----------
image : ndarray
The input image.
Returns
-------
spatial_dims : int or None
The number of spatial dimensions of `image`. If ambiguous, the value
is ``None``.
Raises
------
ValueError
If the image array has less than two or more than four dimensions.
"""
if image.ndim == 2:
return 2
if image.ndim == 3 and image.shape[-1] != 3:
return 3
if image.ndim == 3 and image.shape[-1] == 3:
return None
if image.ndim == 4 and image.shape[-1] == 3:
return 3
else:
raise ValueError("Expected 2D, 3D, or 4D array, got %iD." % image.ndim)
def convert_colorspace(arr, fromspace, tospace):
"""Convert an image array to a new color space.
Valid color spaces are:
'RGB', 'HSV', 'RGB CIE', 'XYZ', 'YUV', 'YIQ', 'YPbPr', 'YCbCr', 'YDbDr'
Parameters
----------
arr : array_like
The image to convert.
fromspace : valid color space
The color space to convert from. Can be specified in lower case.
tospace : valid color space
The color space to convert to. Can be specified in lower case.
Returns
-------
out : ndarray
The converted image.
Notes
-----
Conversion is performed through the "central" RGB color space,
i.e. conversion from XYZ to HSV is implemented as ``XYZ -> RGB -> HSV``
instead of directly.
Examples
--------
>>> from skimage import data
>>> img = data.astronaut()
>>> img_hsv = convert_colorspace(img, 'RGB', 'HSV')
"""
fromdict = {'rgb': lambda im: im, 'hsv': hsv2rgb, 'rgb cie': rgbcie2rgb,
'xyz': xyz2rgb, 'yuv': yuv2rgb, 'yiq': yiq2rgb,
'ypbpr': ypbpr2rgb, 'ycbcr': ycbcr2rgb, 'ydbdr': ydbdr2rgb}
todict = {'rgb': lambda im: im, 'hsv': rgb2hsv, 'rgb cie': rgb2rgbcie,
'xyz': rgb2xyz, 'yuv': rgb2yuv, 'yiq': rgb2yiq,
'ypbpr': rgb2ypbpr, 'ycbcr': rgb2ycbcr, 'ydbdr': rgb2ydbdr}
fromspace = fromspace.lower()
tospace = tospace.lower()
if fromspace not in fromdict:
msg = '`fromspace` has to be one of {}'.format(fromdict.keys())
raise ValueError(msg)
if tospace not in todict:
msg = '`tospace` has to be one of {}'.format(todict.keys())
raise ValueError(msg)
return todict[tospace](fromdict[fromspace](arr))
def _prepare_colorarray(arr):
"""Check the shape of the array and convert it to
floating point representation.
"""
arr = np.asanyarray(arr)
if arr.ndim not in [3, 4] or arr.shape[-1] != 3:
msg = ("the input array must be have a shape == (.., ..,[ ..,] 3)), " +
"got (" + (", ".join(map(str, arr.shape))) + ")")
raise ValueError(msg)
return dtype.img_as_float(arr)
def _prepare_rgba_array(arr):
"""Check the shape of the array to be RGBA and convert it to
floating point representation.
"""
arr = np.asanyarray(arr)
if arr.ndim not in [3, 4] or arr.shape[-1] != 4:
msg = ("the input array must have a shape == (.., ..,[ ..,] 4)), "
"got {0}".format(arr.shape))
raise ValueError(msg)
return dtype.img_as_float(arr)
def rgba2rgb(rgba, background=(1, 1, 1)):
"""RGBA to RGB conversion.
Parameters
----------
rgba : array_like
The image in RGBA format, in a 3-D array of shape ``(.., .., 4)``.
background : array_like
The color of the background to blend the image with. A tuple
containing 3 floats between 0 to 1 - the RGB value of the background.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `rgba` is not a 3-D array of shape ``(.., .., 4)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
Examples
--------
>>> from skimage import color
>>> from skimage import data
>>> img_rgba = data.logo()
>>> img_rgb = color.rgba2rgb(img_rgba)
"""
arr = _prepare_rgba_array(rgba)
if isinstance(background, tuple) and len(background) != 3:
raise ValueError('the background must be a tuple with 3 items - the '
'RGB color of the background. Got {0} items.'
.format(len(background)))
alpha = arr[..., -1]
channels = arr[..., :-1]
out = np.empty_like(channels)
for ichan in range(channels.shape[-1]):
out[..., ichan] = np.clip(
(1 - alpha) * background[ichan] + alpha * channels[..., ichan],
a_min=0, a_max=1)
return out
def rgb2hsv(rgb):
"""RGB to HSV color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Returns
-------
out : ndarray
The image in HSV format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `rgb` is not a 3-D array of shape ``(.., .., 3)``.
Notes
-----
Conversion between RGB and HSV color spaces results in some loss of
precision, due to integer arithmetic and rounding [1]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/HSL_and_HSV
Examples
--------
>>> from skimage import color
>>> from skimage import data
>>> img = data.astronaut()
>>> img_hsv = color.rgb2hsv(img)
"""
arr = _prepare_colorarray(rgb)
out = np.empty_like(arr)
# -- V channel
out_v = arr.max(-1)
# -- S channel
delta = arr.ptp(-1)
# Ignore warning for zero divided by zero
old_settings = np.seterr(invalid='ignore')
out_s = delta / out_v
out_s[delta == 0.] = 0.
# -- H channel
# red is max
idx = (arr[:, :, 0] == out_v)
out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx]
# green is max
idx = (arr[:, :, 1] == out_v)
out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx]
# blue is max
idx = (arr[:, :, 2] == out_v)
out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx]
out_h = (out[:, :, 0] / 6.) % 1.
out_h[delta == 0.] = 0.
np.seterr(**old_settings)
# -- output
out[:, :, 0] = out_h
out[:, :, 1] = out_s
out[:, :, 2] = out_v
# remove NaN
out[np.isnan(out)] = 0
return out
def hsv2rgb(hsv):
"""HSV to RGB color space conversion.
Parameters
----------
hsv : array_like
The image in HSV format, in a 3-D array of shape ``(.., .., 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `hsv` is not a 3-D array of shape ``(.., .., 3)``.
Notes
-----
Conversion between RGB and HSV color spaces results in some loss of
precision, due to integer arithmetic and rounding [1]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/HSL_and_HSV
Examples
--------
>>> from skimage import data
>>> img = data.astronaut()
>>> img_hsv = rgb2hsv(img)
>>> img_rgb = hsv2rgb(img_hsv)
"""
arr = _prepare_colorarray(hsv)
hi = np.floor(arr[:, :, 0] * 6)
f = arr[:, :, 0] * 6 - hi
p = arr[:, :, 2] * (1 - arr[:, :, 1])
q = arr[:, :, 2] * (1 - f * arr[:, :, 1])
t = arr[:, :, 2] * (1 - (1 - f) * arr[:, :, 1])
v = arr[:, :, 2]
hi = np.dstack([hi, hi, hi]).astype(np.uint8) % 6
out = np.choose(hi, [np.dstack((v, t, p)),
np.dstack((q, v, p)),
np.dstack((p, v, t)),
np.dstack((p, q, v)),
np.dstack((t, p, v)),
np.dstack((v, p, q))])
return out
# ---------------------------------------------------------------
# Primaries for the coordinate systems
# ---------------------------------------------------------------
cie_primaries = np.array([700, 546.1, 435.8])
sb_primaries = np.array([1. / 155, 1. / 190, 1. / 225]) * 1e5
# ---------------------------------------------------------------
# Matrices that define conversion between different color spaces
# ---------------------------------------------------------------
# From sRGB specification
xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]])
rgb_from_xyz = linalg.inv(xyz_from_rgb)
# From https://en.wikipedia.org/wiki/CIE_1931_color_space
# Note: Travis's code did not have the divide by 0.17697
xyz_from_rgbcie = np.array([[0.49, 0.31, 0.20],
[0.17697, 0.81240, 0.01063],
[0.00, 0.01, 0.99]]) / 0.17697
rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie)
# construct matrices to and from rgb:
rgbcie_from_rgb = rgbcie_from_xyz @ xyz_from_rgb
rgb_from_rgbcie = rgb_from_xyz @ xyz_from_rgbcie
gray_from_rgb = np.array([[0.2125, 0.7154, 0.0721],
[0, 0, 0],
[0, 0, 0]])
yuv_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ],
[-0.14714119, -0.28886916, 0.43601035 ],
[ 0.61497538, -0.51496512, -0.10001026 ]])
rgb_from_yuv = linalg.inv(yuv_from_rgb)
yiq_from_rgb = np.array([[0.299 , 0.587 , 0.114 ],
[0.59590059, -0.27455667, -0.32134392],
[0.21153661, -0.52273617, 0.31119955]])
rgb_from_yiq = linalg.inv(yiq_from_rgb)
ypbpr_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ],
[-0.168736,-0.331264, 0.5 ],
[ 0.5 ,-0.418688,-0.081312]])
rgb_from_ypbpr = linalg.inv(ypbpr_from_rgb)
ycbcr_from_rgb = np.array([[ 65.481, 128.553, 24.966],
[ -37.797, -74.203, 112.0 ],
[ 112.0 , -93.786, -18.214]])
rgb_from_ycbcr = linalg.inv(ycbcr_from_rgb)
ydbdr_from_rgb = np.array([[ 0.299, 0.587, 0.114],
[ -0.45 , -0.883, 1.333],
[ -1.333, 1.116, 0.217]])
rgb_from_ydbdr = linalg.inv(ydbdr_from_rgb)
# CIE LAB constants for Observer=2A, Illuminant=D65
# NOTE: this is actually the XYZ values for the illuminant above.
lab_ref_white = np.array([0.95047, 1., 1.08883])
# XYZ coordinates of the illuminants, scaled to [0, 1]. For each illuminant I
# we have:
#
# illuminant[I][0] corresponds to the XYZ coordinates for the 2 degree
# field of view.
#
# illuminant[I][1] corresponds to the XYZ coordinates for the 10 degree
# field of view.
#
# The XYZ coordinates are calculated from [1], using the formula:
#
# X = x * ( Y / y )
# Y = Y
# Z = ( 1 - x - y ) * ( Y / y )
#
# where Y = 1. The only exception is the illuminant "D65" with aperture angle
# 2, whose coordinates are copied from 'lab_ref_white' for
# backward-compatibility reasons.
#
# References
# ----------
# .. [1] https://en.wikipedia.org/wiki/Standard_illuminant
illuminants = \
{"A": {'2': (1.098466069456375, 1, 0.3558228003436005),
'10': (1.111420406956693, 1, 0.3519978321919493)},
"D50": {'2': (0.9642119944211994, 1, 0.8251882845188288),
'10': (0.9672062750333777, 1, 0.8142801513128616)},
"D55": {'2': (0.956797052643698, 1, 0.9214805860173273),
'10': (0.9579665682254781, 1, 0.9092525159847462)},
"D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white`
'10': (0.94809667673716, 1, 1.0730513595166162)},
"D75": {'2': (0.9497220898840717, 1, 1.226393520724154),
'10': (0.9441713925645873, 1, 1.2064272211720228)},
"E": {'2': (1.0, 1.0, 1.0),
'10': (1.0, 1.0, 1.0)}}
def get_xyz_coords(illuminant, observer):
"""Get the XYZ coordinates of the given illuminant and observer [1]_.
Parameters
----------
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
(x, y, z) : tuple
A tuple with 3 elements containing the XYZ coordinates of the given
illuminant.
Raises
------
ValueError
If either the illuminant or the observer angle are not supported or
unknown.
References
----------
.. [1] https://en.wikipedia.org/wiki/Standard_illuminant
"""
illuminant = illuminant.upper()
try:
return illuminants[illuminant][observer]
except KeyError:
raise ValueError("Unknown illuminant/observer combination\
(\'{0}\', \'{1}\')".format(illuminant, observer))
# Haematoxylin-Eosin-DAB colorspace
# From original Ruifrok's paper: A. C. Ruifrok and D. A. Johnston,
# "Quantification of histochemical staining by color deconvolution.,"
# Analytical and quantitative cytology and histology / the International
# Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4,
# pp. 291-9, Aug. 2001.
rgb_from_hed = np.array([[0.65, 0.70, 0.29],
[0.07, 0.99, 0.11],
[0.27, 0.57, 0.78]])
hed_from_rgb = linalg.inv(rgb_from_hed)
# Following matrices are adapted form the Java code written by G.Landini.
# The original code is available at:
# http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html
# Hematoxylin + DAB
rgb_from_hdx = np.array([[0.650, 0.704, 0.286],
[0.268, 0.570, 0.776],
[0.0, 0.0, 0.0]])
rgb_from_hdx[2, :] = np.cross(rgb_from_hdx[0, :], rgb_from_hdx[1, :])
hdx_from_rgb = linalg.inv(rgb_from_hdx)
# Feulgen + Light Green
rgb_from_fgx = np.array([[0.46420921, 0.83008335, 0.30827187],
[0.94705542, 0.25373821, 0.19650764],
[0.0, 0.0, 0.0]])
rgb_from_fgx[2, :] = np.cross(rgb_from_fgx[0, :], rgb_from_fgx[1, :])
fgx_from_rgb = linalg.inv(rgb_from_fgx)
# Giemsa: Methyl Blue + Eosin
rgb_from_bex = np.array([[0.834750233, 0.513556283, 0.196330403],
[0.092789, 0.954111, 0.283111],
[0.0, 0.0, 0.0]])
rgb_from_bex[2, :] = np.cross(rgb_from_bex[0, :], rgb_from_bex[1, :])
bex_from_rgb = linalg.inv(rgb_from_bex)
# FastRed + FastBlue + DAB
rgb_from_rbd = np.array([[0.21393921, 0.85112669, 0.47794022],
[0.74890292, 0.60624161, 0.26731082],
[0.268, 0.570, 0.776]])
rbd_from_rgb = linalg.inv(rgb_from_rbd)
# Methyl Green + DAB
rgb_from_gdx = np.array([[0.98003, 0.144316, 0.133146],
[0.268, 0.570, 0.776],
[0.0, 0.0, 0.0]])
rgb_from_gdx[2, :] = np.cross(rgb_from_gdx[0, :], rgb_from_gdx[1, :])
gdx_from_rgb = linalg.inv(rgb_from_gdx)
# Hematoxylin + AEC
rgb_from_hax = np.array([[0.650, 0.704, 0.286],
[0.2743, 0.6796, 0.6803],
[0.0, 0.0, 0.0]])
rgb_from_hax[2, :] = np.cross(rgb_from_hax[0, :], rgb_from_hax[1, :])
hax_from_rgb = linalg.inv(rgb_from_hax)
# Blue matrix Anilline Blue + Red matrix Azocarmine + Orange matrix Orange-G
rgb_from_bro = np.array([[0.853033, 0.508733, 0.112656],
[0.09289875, 0.8662008, 0.49098468],
[0.10732849, 0.36765403, 0.9237484]])
bro_from_rgb = linalg.inv(rgb_from_bro)
# Methyl Blue + Ponceau Fuchsin
rgb_from_bpx = np.array([[0.7995107, 0.5913521, 0.10528667],
[0.09997159, 0.73738605, 0.6680326],
[0.0, 0.0, 0.0]])
rgb_from_bpx[2, :] = np.cross(rgb_from_bpx[0, :], rgb_from_bpx[1, :])
bpx_from_rgb = linalg.inv(rgb_from_bpx)
# Alcian Blue + Hematoxylin
rgb_from_ahx = np.array([[0.874622, 0.457711, 0.158256],
[0.552556, 0.7544, 0.353744],
[0.0, 0.0, 0.0]])
rgb_from_ahx[2, :] = np.cross(rgb_from_ahx[0, :], rgb_from_ahx[1, :])
ahx_from_rgb = linalg.inv(rgb_from_ahx)
# Hematoxylin + PAS
rgb_from_hpx = np.array([[0.644211, 0.716556, 0.266844],
[0.175411, 0.972178, 0.154589],
[0.0, 0.0, 0.0]])
rgb_from_hpx[2, :] = np.cross(rgb_from_hpx[0, :], rgb_from_hpx[1, :])
hpx_from_rgb = linalg.inv(rgb_from_hpx)
# -------------------------------------------------------------
# The conversion functions that make use of the matrices above
# -------------------------------------------------------------
def _convert(matrix, arr):
"""Do the color space conversion.
Parameters
----------
matrix : array_like
The 3x3 matrix to use.
arr : array_like
The input array.
Returns
-------
out : ndarray, dtype=float
The converted array.
"""
arr = _prepare_colorarray(arr)
return arr @ matrix.T.copy()
def xyz2rgb(xyz):
"""XYZ to RGB color space conversion.
Parameters
----------
xyz : array_like
The image in XYZ format, in a 3-D array of shape ``(.., .., 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `xyz` is not a 3-D array of shape ``(.., .., 3)``.
Notes
-----
The CIE XYZ color space is derived from the CIE RGB color space. Note
however that this function converts to sRGB.
References
----------
.. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2xyz, xyz2rgb
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)
>>> img_rgb = xyz2rgb(img_xyz)
"""
# Follow the algorithm from http://www.easyrgb.com/index.php
# except we don't multiply/divide by 100 in the conversion
arr = _convert(rgb_from_xyz, xyz)
mask = arr > 0.0031308
arr[mask] = 1.055 * np.power(arr[mask], 1 / 2.4) - 0.055
arr[~mask] *= 12.92
np.clip(arr, 0, 1, out=arr)
return arr
def rgb2xyz(rgb):
"""RGB to XYZ color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
Returns
-------
out : ndarray
The image in XYZ format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``.
Notes
-----
The CIE XYZ color space is derived from the CIE RGB color space. Note
however that this function converts from sRGB.
References
----------
.. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space
Examples
--------
>>> from skimage import data
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)
"""
# Follow the algorithm from http://www.easyrgb.com/index.php
# except we don't multiply/divide by 100 in the conversion
arr = _prepare_colorarray(rgb).copy()
mask = arr > 0.04045
arr[mask] = np.power((arr[mask] + 0.055) / 1.055, 2.4)
arr[~mask] /= 12.92
return _convert(xyz_from_rgb, arr)
def rgb2rgbcie(rgb):
"""RGB to RGB CIE color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Returns
-------
out : ndarray
The image in RGB CIE format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `rgb` is not a 3-D array of shape ``(.., .., 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2rgbcie
>>> img = data.astronaut()
>>> img_rgbcie = rgb2rgbcie(img)
"""
return _convert(rgbcie_from_rgb, rgb)
def rgbcie2rgb(rgbcie):
"""RGB CIE to RGB color space conversion.
Parameters
----------
rgbcie : array_like
The image in RGB CIE format, in a 3-D array of shape ``(.., .., 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `rgbcie` is not a 3-D array of shape ``(.., .., 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2rgbcie, rgbcie2rgb
>>> img = data.astronaut()
>>> img_rgbcie = rgb2rgbcie(img)
>>> img_rgb = rgbcie2rgb(img_rgbcie)
"""
return _convert(rgb_from_rgbcie, rgbcie)
def rgb2gray(rgb):
"""Compute luminance of an RGB image.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3-D or 4-D array of shape
``(.., ..,[ ..,] 3)``, or in RGBA format with shape
``(.., ..,[ ..,] 4)``.
Returns
-------
out : ndarray
The luminance image - an array which is the same size as the input
array, but with the channel dimension removed.
Raises
------
ValueError
If `rgb2gray` is not a 3-D or 4-D arrays of shape
``(.., ..,[ ..,] 3)`` or ``(.., ..,[ ..,] 4)``.
References
----------
.. [1] http://www.poynton.com/PDFs/ColorFAQ.pdf
Notes
-----
The weights used in this conversion are calibrated for contemporary
CRT phosphors::
Y = 0.2125 R + 0.7154 G + 0.0721 B
If there is an alpha channel present, it is ignored.
Examples
--------
>>> from skimage.color import rgb2gray
>>> from skimage import data
>>> img = data.astronaut()
>>> img_gray = rgb2gray(img)
"""
if rgb.ndim == 2:
return np.ascontiguousarray(rgb)
rgb = _prepare_colorarray(rgb[..., :3])
coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=rgb.dtype)
return rgb @ coeffs
rgb2grey = rgb2gray
def gray2rgb(image, alpha=None):
"""Create an RGB representation of a gray-level image.
Parameters
----------
image : array_like
Input image of shape ``(M[, N][, P])``.
alpha : bool, optional
Ensure that the output image has an alpha layer. If None,
alpha layers are passed through but not created.
Returns
-------
rgb : ndarray
RGB image of shape ``(M[, N][, P], 3)``.
Raises
------
ValueError
If the input is not a 1-, 2- or 3-dimensional image.
Notes
-----
If the input is a 1-dimensional image of shape ``(M, )``, the output
will be shape ``(M, 3)``.
"""
is_rgb = False
is_alpha = False
dims = np.squeeze(image).ndim
if dims == 3:
if image.shape[2] == 3:
is_rgb = True
elif image.shape[2] == 4:
is_alpha = True
is_rgb = True
if is_rgb:
if alpha is False:
image = image[..., :3]
elif alpha is True and is_alpha is False:
alpha_layer = (np.ones_like(image[..., 0, np.newaxis]) *
dtype_limits(image, clip_negative=False)[1])
image = np.concatenate((image, alpha_layer), axis=2)
return image
elif dims in (1, 2, 3):
image = image[..., np.newaxis]
if alpha:
alpha_layer = (np.ones_like(image) * dtype_limits(image, clip_negative=False)[1])
return np.concatenate(3 * (image,) + (alpha_layer,), axis=-1)
else:
return np.concatenate(3 * (image,), axis=-1)
else:
raise ValueError("Input image expected to be RGB, RGBA or gray.")
grey2rgb = gray2rgb
def xyz2lab(xyz, illuminant="D65", observer="2"):
"""XYZ to CIE-LAB color space conversion.
Parameters
----------
xyz : array_like
The image in XYZ format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : ndarray
The image in CIE-LAB format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
Raises
------
ValueError
If `xyz` is not a 3-D array of shape ``(.., ..,[ ..,] 3)``.
ValueError
If either the illuminant or the observer angle is unsupported or
unknown.
Notes
-----
By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values
x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for
a list of supported illuminants.
References
----------
.. [1] http://www.easyrgb.com/index.php?X=MATH&H=07#text7
.. [2] https://en.wikipedia.org/wiki/Lab_color_space
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2xyz, xyz2lab
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)
>>> img_lab = xyz2lab(img_xyz)
"""
arr = _prepare_colorarray(xyz)
xyz_ref_white = get_xyz_coords(illuminant, observer)
# scale by CIE XYZ tristimulus values of the reference white point
arr = arr / xyz_ref_white
# Nonlinear distortion and linear transformation
mask = arr > 0.008856
arr[mask] = np.power(arr[mask], 1. / 3.)
arr[~mask] = 7.787 * arr[~mask] + 16. / 116.
x, y, z = arr[..., 0], arr[..., 1], arr[..., 2]
# Vector scaling
L = (116. * y) - 16.
a = 500.0 * (x - y)
b = 200.0 * (y - z)
return np.concatenate([x[..., np.newaxis] for x in [L, a, b]], axis=-1)
def lab2xyz(lab, illuminant="D65", observer="2"):
"""CIE-LAB to XYZcolor space conversion.
Parameters
----------
lab : array_like
The image in lab format, in a 3-D array of shape ``(.., .., 3)``.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : ndarray
The image in XYZ format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `lab` is not a 3-D array of shape ``(.., .., 3)``.
ValueError
If either the illuminant or the observer angle are not supported or
unknown.
UserWarning
If any of the pixels are invalid (Z < 0).
Notes
-----
By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values x_ref
= 95.047, y_ref = 100., z_ref = 108.883. See function 'get_xyz_coords' for
a list of supported illuminants.
References
----------
.. [1] http://www.easyrgb.com/index.php?X=MATH&H=07#text7
.. [2] https://en.wikipedia.org/wiki/Lab_color_space
"""
arr = _prepare_colorarray(lab).copy()
L, a, b = arr[:, :, 0], arr[:, :, 1], arr[:, :, 2]
y = (L + 16.) / 116.
x = (a / 500.) + y
z = y - (b / 200.)
if np.any(z < 0):
invalid = np.nonzero(z < 0)
warn('Color data out of range: Z < 0 in %s pixels' % invalid[0].size)
z[invalid] = 0
out = np.dstack([x, y, z])
mask = out > 0.2068966
out[mask] = np.power(out[mask], 3.)
out[~mask] = (out[~mask] - 16.0 / 116.) / 7.787
# rescale to the reference white (illuminant)
xyz_ref_white = get_xyz_coords(illuminant, observer)
out *= xyz_ref_white
return out
def rgb2lab(rgb, illuminant="D65", observer="2"):
"""RGB to lab color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : ndarray
The image in Lab format, in a 3- or 4-D array of shape
``(.., ..,[ ..,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(.., ..,[ ..,] 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Standard_illuminant
Notes
-----
This function uses rgb2xyz and xyz2lab.
By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values
x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for
a list of supported illuminants.
"""
return xyz2lab(rgb2xyz(rgb), illuminant, observer)
def lab2rgb(lab, illuminant="D65", observer="2"):
"""Lab to RGB color space conversion.
Parameters
----------
lab : array_like
The image in Lab format, in a 3-D array of shape ``(.., .., 3)``.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `lab` is not a 3-D array of shape ``(.., .., 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/Standard_illuminant
Notes
-----
This function uses lab2xyz and xyz2rgb.
By default Observer= 2A, Illuminant= D65. CIE XYZ tristimulus values
x_ref=95.047, y_ref=100., z_ref=108.883. See function `get_xyz_coords` for
a list of supported illuminants.
"""
return xyz2rgb(lab2xyz(lab, illuminant, observer))
def xyz2luv(xyz, illuminant="D65", observer="2"):
"""XYZ to CIE-Luv color space conversion.
Parameters
----------
xyz : (M, N, [P,] 3) array_like
The 3 or 4 dimensional image in XYZ format. Final dimension denotes
channels.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : (M, N, [P,] 3) ndarray
The image in CIE-Luv format. Same dimensions as input.
Raises
------
ValueError
If `xyz` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``.
ValueError
If either the illuminant or the observer angle are not supported or
unknown.
Notes
-----
By default XYZ conversion weights use observer=2A. Reference whitepoint
for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100.,
108.883)``. See function 'get_xyz_coords' for a list of supported
illuminants.
References
----------
.. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16
.. [2] https://en.wikipedia.org/wiki/CIELUV
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2xyz, xyz2luv
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)
>>> img_luv = xyz2luv(img_xyz)
"""
arr = _prepare_colorarray(xyz)
# extract channels
x, y, z = arr[..., 0], arr[..., 1], arr[..., 2]
eps = np.finfo(np.float).eps
# compute y_r and L
xyz_ref_white = np.array(get_xyz_coords(illuminant, observer))
L = y / xyz_ref_white[1]
mask = L > 0.008856
L[mask] = 116. * np.power(L[mask], 1. / 3.) - 16.
L[~mask] = 903.3 * L[~mask]
u0 = 4 * xyz_ref_white[0] / ([1, 15, 3] @ xyz_ref_white)
v0 = 9 * xyz_ref_white[1] / ([1, 15, 3] @ xyz_ref_white)
# u' and v' helper functions
def fu(X, Y, Z):
return (4. * X) / (X + 15. * Y + 3. * Z + eps)
def fv(X, Y, Z):
return (9. * Y) / (X + 15. * Y + 3. * Z + eps)
# compute u and v using helper functions
u = 13. * L * (fu(x, y, z) - u0)
v = 13. * L * (fv(x, y, z) - v0)
return np.concatenate([q[..., np.newaxis] for q in [L, u, v]], axis=-1)
def luv2xyz(luv, illuminant="D65", observer="2"):
"""CIE-Luv to XYZ color space conversion.
Parameters
----------
luv : (M, N, [P,] 3) array_like
The 3 or 4 dimensional image in CIE-Luv format. Final dimension denotes
channels.
illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional
The name of the illuminant (the function is NOT case sensitive).
observer : {"2", "10"}, optional
The aperture angle of the observer.
Returns
-------
out : (M, N, [P,] 3) ndarray
The image in XYZ format. Same dimensions as input.
Raises
------
ValueError
If `luv` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``.
ValueError
If either the illuminant or the observer angle are not supported or
unknown.
Notes
-----
XYZ conversion weights use observer=2A. Reference whitepoint for D65
Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See
function 'get_xyz_coords' for a list of supported illuminants.
References
----------
.. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16
.. [2] https://en.wikipedia.org/wiki/CIELUV
"""
arr = _prepare_colorarray(luv).copy()
L, u, v = arr[:, :, 0], arr[:, :, 1], arr[:, :, 2]
eps = np.finfo(np.float).eps
# compute y
y = L.copy()
mask = y > 7.999625
y[mask] = np.power((y[mask] + 16.) / 116., 3.)
y[~mask] = y[~mask] / 903.3
xyz_ref_white = get_xyz_coords(illuminant, observer)
y *= xyz_ref_white[1]
# reference white x,z
uv_weights = np.array([1, 15, 3])
u0 = 4 * xyz_ref_white[0] / (uv_weights @ xyz_ref_white)
v0 = 9 * xyz_ref_white[1] / (uv_weights @ xyz_ref_white)
# compute intermediate values
a = u0 + u / (13. * L + eps)
b = v0 + v / (13. * L + eps)
c = 3 * y * (5 * b - 3)
# compute x and z
z = ((a - 4) * c - 15 * a * b * y) / (12 * b)
x = -(c / b + 3. * z)
return np.concatenate([q[..., np.newaxis] for q in [x, y, z]], axis=-1)
def rgb2luv(rgb):
"""RGB to CIE-Luv color space conversion.
Parameters
----------
rgb : (M, N, [P,] 3) array_like
The 3 or 4 dimensional image in RGB format. Final dimension denotes
channels.
Returns
-------
out : (M, N, [P,] 3) ndarray
The image in CIE Luv format. Same dimensions as input.
Raises
------
ValueError
If `rgb` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
This function uses rgb2xyz and xyz2luv.
References
----------
.. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16
.. [2] http://www.easyrgb.com/index.php?X=MATH&H=02#text2
.. [3] https://en.wikipedia.org/wiki/CIELUV
"""
return xyz2luv(rgb2xyz(rgb))
def luv2rgb(luv):
"""Luv to RGB color space conversion.
Parameters
----------
luv : (M, N, [P,] 3) array_like
The 3 or 4 dimensional image in CIE Luv format. Final dimension denotes
channels.
Returns
-------
out : (M, N, [P,] 3) ndarray
The image in RGB format. Same dimensions as input.
Raises
------
ValueError
If `luv` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
This function uses luv2xyz and xyz2rgb.
"""
return xyz2rgb(luv2xyz(luv))
def rgb2hed(rgb):
"""RGB to Haematoxylin-Eosin-DAB (HED) color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Returns
-------
out : ndarray
The image in HED format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `rgb` is not a 3-D array of shape ``(.., .., 3)``.
References
----------
.. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical
staining by color deconvolution.," Analytical and quantitative
cytology and histology / the International Academy of Cytology [and]
American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001.
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2hed
>>> ihc = data.immunohistochemistry()
>>> ihc_hed = rgb2hed(ihc)
"""
return separate_stains(rgb, hed_from_rgb)
def hed2rgb(hed):
"""Haematoxylin-Eosin-DAB (HED) to RGB color space conversion.
Parameters
----------
hed : array_like
The image in the HED color space, in a 3-D array of shape
``(.., .., 3)``.
Returns
-------
out : ndarray
The image in RGB, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `hed` is not a 3-D array of shape ``(.., .., 3)``.
References
----------
.. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical
staining by color deconvolution.," Analytical and quantitative
cytology and histology / the International Academy of Cytology [and]
American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001.
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2hed, hed2rgb
>>> ihc = data.immunohistochemistry()
>>> ihc_hed = rgb2hed(ihc)
>>> ihc_rgb = hed2rgb(ihc_hed)
"""
return combine_stains(hed, rgb_from_hed)
def separate_stains(rgb, conv_matrix):
"""RGB to stain color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
conv_matrix: ndarray
The stain separation matrix as described by G. Landini [1]_.
Returns
-------
out : ndarray
The image in stain color space, in a 3-D array of shape
``(.., .., 3)``.
Raises
------
ValueError
If `rgb` is not a 3-D array of shape ``(.., .., 3)``.
Notes
-----
Stain separation matrices available in the ``color`` module and their
respective colorspace:
* ``hed_from_rgb``: Hematoxylin + Eosin + DAB
* ``hdx_from_rgb``: Hematoxylin + DAB
* ``fgx_from_rgb``: Feulgen + Light Green
* ``bex_from_rgb``: Giemsa stain : Methyl Blue + Eosin
* ``rbd_from_rgb``: FastRed + FastBlue + DAB
* ``gdx_from_rgb``: Methyl Green + DAB
* ``hax_from_rgb``: Hematoxylin + AEC
* ``bro_from_rgb``: Blue matrix Anilline Blue + Red matrix Azocarmine\
+ Orange matrix Orange-G
* ``bpx_from_rgb``: Methyl Blue + Ponceau Fuchsin
* ``ahx_from_rgb``: Alcian Blue + Hematoxylin
* ``hpx_from_rgb``: Hematoxylin + PAS
References
----------
.. [1] http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html
Examples
--------
>>> from skimage import data
>>> from skimage.color import separate_stains, hdx_from_rgb
>>> ihc = data.immunohistochemistry()
>>> ihc_hdx = separate_stains(ihc, hdx_from_rgb)
"""
rgb = dtype.img_as_float(rgb, force_copy=True)
rgb += 2
stains = np.reshape(-np.log10(rgb), (-1, 3)) @ conv_matrix
return np.reshape(stains, rgb.shape)
def combine_stains(stains, conv_matrix):
"""Stain to RGB color space conversion.
Parameters
----------
stains : array_like
The image in stain color space, in a 3-D array of shape
``(.., .., 3)``.
conv_matrix: ndarray
The stain separation matrix as described by G. Landini [1]_.
Returns
-------
out : ndarray
The image in RGB format, in a 3-D array of shape ``(.., .., 3)``.
Raises
------
ValueError
If `stains` is not a 3-D array of shape ``(.., .., 3)``.
Notes
-----
Stain combination matrices available in the ``color`` module and their
respective colorspace:
* ``rgb_from_hed``: Hematoxylin + Eosin + DAB
* ``rgb_from_hdx``: Hematoxylin + DAB
* ``rgb_from_fgx``: Feulgen + Light Green
* ``rgb_from_bex``: Giemsa stain : Methyl Blue + Eosin
* ``rgb_from_rbd``: FastRed + FastBlue + DAB
* ``rgb_from_gdx``: Methyl Green + DAB
* ``rgb_from_hax``: Hematoxylin + AEC
* ``rgb_from_bro``: Blue matrix Anilline Blue + Red matrix Azocarmine\
+ Orange matrix Orange-G
* ``rgb_from_bpx``: Methyl Blue + Ponceau Fuchsin
* ``rgb_from_ahx``: Alcian Blue + Hematoxylin
* ``rgb_from_hpx``: Hematoxylin + PAS
References
----------
.. [1] http://www.dentistry.bham.ac.uk/landinig/software/cdeconv/cdeconv.html
Examples
--------
>>> from skimage import data
>>> from skimage.color import (separate_stains, combine_stains,
... hdx_from_rgb, rgb_from_hdx)
>>> ihc = data.immunohistochemistry()
>>> ihc_hdx = separate_stains(ihc, hdx_from_rgb)
>>> ihc_rgb = combine_stains(ihc_hdx, rgb_from_hdx)
"""
from ..exposure import rescale_intensity
stains = dtype.img_as_float(stains)
logrgb2 = -np.reshape(stains, (-1, 3)) @ conv_matrix
rgb2 = np.power(10, logrgb2)
return rescale_intensity(np.reshape(rgb2 - 2, stains.shape),
in_range=(-1, 1))
def lab2lch(lab):
"""CIE-LAB to CIE-LCH color space conversion.
LCH is the cylindrical representation of the LAB (Cartesian) colorspace
Parameters
----------
lab : array_like
The N-D image in CIE-LAB format. The last (``N+1``-th) dimension must
have at least 3 elements, corresponding to the ``L``, ``a``, and ``b``
color channels. Subsequent elements are copied.
Returns
-------
out : ndarray
The image in LCH format, in a N-D array with same shape as input `lab`.
Raises
------
ValueError
If `lch` does not have at least 3 color channels (i.e. l, a, b).
Notes
-----
The Hue is expressed as an angle between ``(0, 2*pi)``
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2lab, lab2lch
>>> img = data.astronaut()
>>> img_lab = rgb2lab(img)
>>> img_lch = lab2lch(img_lab)
"""
lch = _prepare_lab_array(lab)
a, b = lch[..., 1], lch[..., 2]
lch[..., 1], lch[..., 2] = _cart2polar_2pi(a, b)
return lch
def _cart2polar_2pi(x, y):
"""convert cartesian coordinates to polar (uses non-standard theta range!)
NON-STANDARD RANGE! Maps to ``(0, 2*pi)`` rather than usual ``(-pi, +pi)``
"""
r, t = np.hypot(x, y), np.arctan2(y, x)
t += np.where(t < 0., 2 * np.pi, 0)
return r, t
def lch2lab(lch):
"""CIE-LCH to CIE-LAB color space conversion.
LCH is the cylindrical representation of the LAB (Cartesian) colorspace
Parameters
----------
lch : array_like
The N-D image in CIE-LCH format. The last (``N+1``-th) dimension must
have at least 3 elements, corresponding to the ``L``, ``a``, and ``b``
color channels. Subsequent elements are copied.
Returns
-------
out : ndarray
The image in LAB format, with same shape as input `lch`.
Raises
------
ValueError
If `lch` does not have at least 3 color channels (i.e. l, c, h).
Examples
--------
>>> from skimage import data
>>> from skimage.color import rgb2lab, lch2lab
>>> img = data.astronaut()
>>> img_lab = rgb2lab(img)
>>> img_lch = lab2lch(img_lab)
>>> img_lab2 = lch2lab(img_lch)
"""
lch = _prepare_lab_array(lch)
c, h = lch[..., 1], lch[..., 2]
lch[..., 1], lch[..., 2] = c * np.cos(h), c * np.sin(h)
return lch
def _prepare_lab_array(arr):
"""Ensure input for lab2lch, lch2lab are well-posed.
Arrays must be in floating point and have at least 3 elements in
last dimension. Return a new array.
"""
arr = np.asarray(arr)
shape = arr.shape
if shape[-1] < 3:
raise ValueError('Input array has less than 3 color channels')
return dtype.img_as_float(arr, force_copy=True)
def rgb2yuv(rgb):
"""RGB to YUV color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in YUV format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
Y is between 0 and 1. Use YCbCr instead of YUV for the color space which
is commonly used by video codecs (where Y ranges from 16 to 235)
References
----------
.. [1] https://en.wikipedia.org/wiki/YUV
"""
return _convert(yuv_from_rgb, rgb)
def rgb2yiq(rgb):
"""RGB to YIQ color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in YIQ format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
"""
return _convert(yiq_from_rgb, rgb)
def rgb2ypbpr(rgb):
"""RGB to YPbPr color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in YPbPr format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/YPbPr
"""
return _convert(ypbpr_from_rgb, rgb)
def rgb2ycbcr(rgb):
"""RGB to YCbCr color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in YCbCr format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
Y is between 16 and 235. This is the color space which is commonly used
by video codecs, it is sometimes incorrectly called "YUV"
References
----------
.. [1] https://en.wikipedia.org/wiki/YCbCr
"""
arr = _convert(ycbcr_from_rgb, rgb)
arr[..., 0] += 16
arr[..., 1] += 128
arr[..., 2] += 128
return arr
def rgb2ydbdr(rgb):
"""RGB to YDbDr color space conversion.
Parameters
----------
rgb : array_like
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in YDbDr format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `rgb` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
This is the color space which is commonly used
by video codecs, it is also the reversible color transform in JPEG2000.
References
----------
.. [1] https://en.wikipedia.org/wiki/YDbDr
"""
arr = _convert(ydbdr_from_rgb, rgb)
return arr
def yuv2rgb(yuv):
"""YUV to RGB color space conversion.
Parameters
----------
yuv : array_like
The image in YUV format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `yuv` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/YUV
"""
return _convert(rgb_from_yuv, yuv)
def yiq2rgb(yiq):
"""YIQ to RGB color space conversion.
Parameters
----------
yiq : array_like
The image in YIQ format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `yiq` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
"""
return _convert(rgb_from_yiq, yiq)
def ypbpr2rgb(ypbpr):
"""YPbPr to RGB color space conversion.
Parameters
----------
ypbpr : array_like
The image in YPbPr format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `ypbpr` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
References
----------
.. [1] https://en.wikipedia.org/wiki/YPbPr
"""
return _convert(rgb_from_ypbpr, ypbpr)
def ycbcr2rgb(ycbcr):
"""YCbCr to RGB color space conversion.
Parameters
----------
ycbcr : array_like
The image in YCbCr format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `ycbcr` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
Y is between 16 and 235. This is the color space which is commonly used
by video codecs, it is sometimes incorrectly called "YUV"
References
----------
.. [1] https://en.wikipedia.org/wiki/YCbCr
"""
arr = ycbcr.copy()
arr[..., 0] -= 16
arr[..., 1] -= 128
arr[..., 2] -= 128
return _convert(rgb_from_ycbcr, arr)
def ydbdr2rgb(ydbdr):
"""YDbDr to RGB color space conversion.
Parameters
----------
ydbdr : array_like
The image in YDbDr format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Returns
-------
out : ndarray
The image in RGB format, in a 3- or 4-D array of shape
``(M, N, [P,] 3)``.
Raises
------
ValueError
If `ydbdr` is not a 3- or 4-D array of shape ``(M, N, [P,] 3)``.
Notes
-----
This is the color space which is commonly used
by video codecs, it is also the reversible color transform in JPEG2000.
References
----------
.. [1] https://en.wikipedia.org/wiki/YDbDr
"""
arr = ydbdr.copy()
return _convert(rgb_from_ydbdr, arr)