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1 Cox datafit

Let’s X ∈ Rn×p be a matrix of p predictors and n samples xi ∈ Rp, y ∈ Rn a vector recording
the time of events occurrences, and s ∈ {0, 1}n a binary vector where 1 means event occurred,
and finally β ∈ Rp the vector of coefficient to be estimated.

1.1 Breslow

Proposition 1. [Lin, 2007, Section 2] The expression of the negative log-likelihood according
to Breslow estimate reads

l(β) =
n∑

i=1

−si⟨xi, β⟩+ si log(
∑

yj≥yi
e⟨xj ,β⟩) . (1)

To get a more compact expression, we introduce the matrix B ∈ Rn×n defined as

Bi,j = 1yj≥yi =

{
1, if yj ≥ yi,

0, otherwise
, (2)

and we let bi be its i-th row.

Proposition 2. The expression in Equation (1) is equivalent to

l(β) = −⟨s,Xβ⟩+ ⟨s, log(BeXβ)⟩ . (3)

Proof. We can observe that the sum can be split into two parts. The first one,

n∑
i=1

−si⟨xi, β⟩ = −⟨s,Xβ⟩ .

And the second part,

n∑
i=1

si log(
∑

yj≥yi
e⟨xj ,β⟩) =

n∑
i=1

si log(
∑n

j=1 1yj≥yie
⟨xj ,β⟩)

=
n∑

i=1

si log(
∑n

j=1 bije
⟨xj ,β⟩)

=
n∑

i=1

si log⟨bi, eXβ⟩

= ⟨s, log(BeXβ)⟩ .

Combining the two expressions we get the desired expression.

The latter defines the Cox datafit. We note that it only depends on Xβ. Indeed, by
considering F : Rn → R such that

F (u) = −⟨s, u⟩+ ⟨s, log(Beu)⟩ , (4)

it follows that l(β) = F (Xβ). Therefore, from now on, we focus on F to derive the gradient
and Hessian of the datafit.
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Proposition 3. For some u in Rn, the gradient of F reads

∇F (u) = −s+ [diag(eu)B⊤]
s

Beu
,

where the fraction is performed element-wise.

Proof. Deferred in the appendix.

Proposition 4. For some u in Rn, the Hessian of F is

∇2F (u) = diag(eu ⊙B⊤ s

Beu
)− diag(eu)B⊤ diag(

s

(Beu)2
)B diag(eu) , (5)

where the square and fraction operations are performed element-wise.

Proof. Deferred in the appendix.

The Hessian, as it is, is costly to evaluate because of the right hand-side term. Indeed,
the latter involves, in particular, a O(n3) operation. We overcome this limitation thanks to
the proposition below.

Proposition 5. For some u in Rn, the Hessian in Equation (5) can be overestimated as
follows

∇2F (u) ≼ diag(eu ⊙B⊤ s

Beu
) .

Proof. We have to show that diag(eu ⊙B⊤ s
Beu

)−∇2F (u) := Φ is positive semi-definite.
Let u be in Rn, we have

⟨Φu, u⟩ =
〈
diag(eu)B⊤ diag(

s

(Beu)2
)B diag(eu)u, u

〉
=

∥∥∥diag( √s
Beu

)B diag(eu)u
∥∥∥2

≥ 0 ,

which enables us to conclude.

1.2 Efron

Efron estimate refines Breslow by handling tied observations, observations with identical
occurrences’ time. Let’s define Hk = {i | si = 1 ; yi = yk}, the set of uncensored observations
with the same occurrence time yk, and denote yi1 , . . . , yim the unique times, assumed to be
in total equal to m.

Proposition 6. [Efron, 1977, Section 6, equation (6.7)] The minus log-likelihood according
to Efron estimate is

l(β) =
m∑
l=1

( ∑
i∈Hil

−⟨xi, β⟩+ log
(∑

yj≥yil
e⟨xj ,β⟩ − #(i)−1

|Hil
|
∑

j∈Hil
e⟨xj ,β⟩

))
, (6)

where |Hil | stands for the cardinal of Hil, and #(i) the index of observation i in Hil.

3



Ideally, we would like to rewrite this expression like Equation (3) to leverage the estab-
lished results about the gradient and Hessian. What distinguishes both expressions is the
presence of a double sum and second term within the log.

Proposition 7. The expression in Equation (6) is equivalent to

l(β) = −⟨s,Xβ⟩+ ⟨s, log(BeXβ −AeXβ)⟩ , (7)

where A is linear operator defined by Algorithm 1.

Proof. First, we can observe that ∪ml=1Hil = {i | si = 1}, which enables us to write the
double sum as a single one. Therefore,

m∑
l=1

∑
i∈Hil

−⟨xi, β⟩ =
∑
i:si=1

−⟨xi, β⟩ =
n∑

i=1

−si⟨xi, β⟩

= −⟨s,Xβ⟩ .

On the other hand, we have

−#(i)− 1

|Hil |
∑
j∈Hil

e⟨xj ,β⟩ =
n∑

j=1

−#(i)− 1

|Hil |
1j∈Hil

e⟨xj ,β⟩

=
n∑

j=1

ai,je
⟨xj ,β⟩

= ⟨ai, eXβ⟩ ,

where ai is a vector in Rn chosen accordingly to preform the linear operation.
Defining the matrix A with rows (ai)i∈[n], and combining that with the first result enable

us to conclude.

Since the expression of the gradient and Hessian involve the adjoint of A, we present also
Algorithm 2 to evaluate A⊤v, for some v in Rn.

We notice that the complexity of both algorithms is O(n) despite intervening a ma-
trix multiplication. This is due to the special structure of A which in the case of sorted
observations has a block diagonal structure with each block having equal columns.

Figure 1: Strucutre of A in the case of sorted observations with group sizes of identical
occurrences times being 3, 2, 1, 3 respectively.
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Algorithm 1 Evaluate Av

input: v ∈ Rn

init : o ∈ Rn

1 for l = 1, · · · ,m do
2 v̄Hil

← sum(vHil
)

3 oHil
← v̄Hil

× [0, 1
|Hil

| , . . . ,
|Hil

|−1

|Hil
| ]

4 return o

Algorithm 2 Evaluate A⊤v

input: v ∈ Rn

init : o ∈ Rn

1 for l = 1, · · · ,m do

2 wHil
← ⟨vHil

, [0, 1
|Hil

| , . . . ,
|Hil

|−1

|Hil
| ]⟩

3 oHil
← wHil

× [1, . . . , 1]

4 return o
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