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1 Cox datafit

Let’s X € R"*P be a matrix of p predictors and n samples x; € RP, y € R™ a vector recording
the time of events occurrences, and s € {0, 1}" a binary vector where 1 means event occurred,
and finally g € R? the vector of coefficient to be estimated.

1.1 Breslow

Proposition 1. [Lin, 2007, Section 2] The expression of the negative log-likelihood according
to Breslow estimate reads

n

I(B) = Z —5i(xi, B) + i log(Zijyi etmfly (1)

i=1
To get a more compact expression, we introduce the matrix B € R"*" defined as
B,L o :H_ ' = 9 J = 9
K vi2i {0, otherwise
and we let b; be its i-th row.
Proposition 2. The expression in Equation (1) is equivalent to
1(B) = —(s,XB) + (s,log(Be™?)) . (3)

Proof. We can observe that the sum can be split into two parts. The first one,

n

Z —si(wi, B) = —(s, Xp) .

i=1

And the second part,

Z silog(3. v >y © Z silog(3_ Ly;>ye <xj76>)
= Z silog (3, bije™ )
= Zs log (b;, e®)

= (s,log(BeX5)> .
Combining the two expressions we get the desired expression. O]

The latter defines the Cox datafit. We note that it only depends on Xf3. Indeed, by
considering F': R™ — R such that

F(u) = —(s,u) + (s,log(Be")) , (4)

it follows that I(8) = F(Xf). Therefore, from now on, we focus on F' to derive the gradient
and Hessian of the datafit.



Proposition 3. For some u in R", the gradient of F reads

s
VF(u) = —s+ [diag(e")B"
(1) = =5 + diag(")BT] =
where the fraction is performed element-wise.
Proof. Deferred in the appendix. O
Proposition 4. For some u in R™, the Hessian of F is
V2F(u) = diag(e® ® BT —— o) — diag(c")BT diag (Bzu)z)B diag(e") (5)

where the square and fraction operations are performed element-wise.
Proof. Deferred in the appendix. m

The Hessian, as it is, is costly to evaluate because of the right hand-side term. Indeed,
the latter involves, in particular, a O(n?®) operation. We overcome this limitation thanks to
the proposition below.

Proposition 5. For some u in R™, the Hessian in Equation (5) can be overestimated as

follows
s

Be“> ’

Proof. We have to show that diag(e" © BT 5%;) — V2F (u) := ® is positive semi-definite.
Let u be in R™, we have

V2F(u) < diag(e* © BT

(Pu,u) = <diag( BT dlag((B 2 5)B diag(e")u, >

which enables us to conclude. O

2

V5B ding(eyu| > 0

= ||diag( Bo

Y

1.2 Efron

Efron estimate refines Breslow by handling tied observations, observations with identical
occurrences’ time. Let’s define Hy, = {i | s; = 1 ; y; = yx}, the set of uncensored observations
with the same occurrence time y;, and denote y;,,...,y;,, the unique times, assumed to be
in total equal to m.

Proposition 6. [Efron, 1977, Section 6, equation (6.7)] The minus log-likelihood according
to Efron estimate is

z; i)—1 rJ
=3 (3 o (S 7 B %)) 6
=1 €H;

where |H;,| stands for the cardinal of H;,, and #(i) the index of observation i in H;,.
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Ideally, we would like to rewrite this expression like Equation (3) to leverage the estab-
lished results about the gradient and Hessian. What distinguishes both expressions is the
presence of a double sum and second term within the log.

Proposition 7. The expression in Equation (6) is equivalent to
l(ﬁ) = _<Sa Xﬁ> + <8710g(B6Xﬁ - ABX/B» ) (7)
where A is linear operator defined by Algorithm 1.

Proof. First, we can observe that U, H;, = {i¢ | s; = 1}, which enables us to write the
double sum as a single one. Therefore,

DO @By = (@i, B) =) —silw:, B)
I=1 icH;, irsi=1 i=1
= —(s,Xp) .
On the other hand, we have

n

#(i) — 1 N #(i) — 1 N
_L Z €< ]nB> — Z _|(];— ]]'jeHil €< J7B>
7j=1

|H7«l | jeHil i |

n

= aige?
j=1

= <ai> €X5> )

where a; is a vector in R" chosen accordingly to preform the linear operation.
Defining the matrix A with rows (a;);cjn], and combining that with the first result enable
us to conclude. O

Since the expression of the gradient and Hessian involve the adjoint of A, we present also
Algorithm 2 to evaluate A v, for some v in R™.

We notice that the complexity of both algorithms is O(n) despite intervening a ma-
trix multiplication. This is due to the special structure of A which in the case of sorted
observations has a block diagonal structure with each block having equal columns.

0 0 0
[1/3 1/3 1/3] (0)
2/3 2/3 2/3

0 0
[1/2 1/2]
[0]
0 0 0
(0) [1/3 1/3 1/3]

2/3 2/3 2/3

Figure 1: Strucutre of A in the case of sorted observations with group sizes of identical
occurrences times being 3,2, 1, 3 respectively.



N =

Algorithm 1 Evaluate Av

input: v € R”

init :0€eR”

for/=1,--- ,mdo
Up,, < sum(vp, )

OHil — @Hil X [O,

return o

Algorithm 2 Evaluate A v

input: v € R"”
init :0€ R"

1 forli=1---,mdo

0 1 ‘Hil‘fl
2 wHil < <UHil’[ "Hil""" |Hzl| ]>
3 om, < wpg, x[1,...,1]

4 return o
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