Survival analysis

Badr MOUFAD

May 30, 2023

Contents

1 Cox datafit 2
1.1 Breslow 2
1.2 Efron. 3

1 Cox datafit

Let's $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a matrix of p predictors and n samples $x_{i} \in \mathbb{R}^{p}, y \in \mathbb{R}^{n}$ a vector recording the time of events occurrences, and $s \in\{0,1\}^{n}$ a binary vector where 1 means event occurred, and finally $\beta \in \mathbb{R}^{p}$ the vector of coefficient to be estimated.

1.1 Breslow

Proposition 1. [Lin, 2007, Section 2] The expression of the negative log-likelihood according to Breslow estimate reads

$$
\begin{equation*}
l(\beta)=\sum_{i=1}^{n}-s_{i}\left\langle x_{i}, \beta\right\rangle+s_{i} \log \left(\sum_{y_{j} \geq y_{i}} e^{\left\langle x_{j}, \beta\right\rangle}\right) \tag{1}
\end{equation*}
$$

To get a more compact expression, we introduce the matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ defined as

$$
\mathbf{B}_{i, j}=\mathbb{1}_{y_{j} \geq y_{i}}= \begin{cases}1, & \text { if } y_{j} \geq y_{i} \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

and we let b_{i} be its i-th row.
Proposition 2. The expression in Equation (1) is equivalent to

$$
\begin{equation*}
l(\beta)=-\langle s, \mathbf{X} \beta\rangle+\left\langle s, \log \left(\mathbf{B} e^{\mathbf{X} \beta}\right)\right\rangle \tag{3}
\end{equation*}
$$

Proof. We can observe that the sum can be split into two parts. The first one,

$$
\sum_{i=1}^{n}-s_{i}\left\langle x_{i}, \beta\right\rangle=-\langle s, \mathbf{X} \beta\rangle
$$

And the second part,

$$
\begin{aligned}
\sum_{i=1}^{n} s_{i} \log \left(\sum_{y_{j} \geq y_{i}} e^{\left\langle x_{j}, \beta\right\rangle}\right) & =\sum_{i=1}^{n} s_{i} \log \left(\sum_{j=1}^{n} \mathbb{1}_{y_{j} \geq y_{i}} e^{\left\langle x_{j}, \beta\right\rangle}\right) \\
& =\sum_{i=1}^{n} s_{i} \log \left(\sum_{j=1}^{n} b_{i j} e^{\left\langle x_{j}, \beta\right\rangle}\right) \\
& =\sum_{i=1}^{n} s_{i} \log \left\langle b_{i}, e^{\mathbf{X} \beta}\right\rangle \\
& =\left\langle s, \log \left(\mathbf{B} e^{\mathbf{X} \beta}\right)\right\rangle
\end{aligned}
$$

Combining the two expressions we get the desired expression.
The latter defines the Cox datafit. We note that it only depends on $\mathbf{X} \beta$. Indeed, by considering $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
F(u)=-\langle s, u\rangle+\left\langle s, \log \left(\mathbf{B} e^{u}\right)\right\rangle \tag{4}
\end{equation*}
$$

it follows that $l(\beta)=F(\mathbf{X} \beta)$. Therefore, from now on, we focus on F to derive the gradient and Hessian of the datafit.

Proposition 3. For some u in \mathbb{R}^{n}, the gradient of F reads

$$
\nabla F(u)=-s+\left[\operatorname{diag}\left(e^{u}\right) \mathbf{B}^{\top}\right] \frac{s}{\mathbf{B} e^{u}}
$$

where the fraction is performed element-wise.
Proof. Deferred in the appendix.
Proposition 4. For some u in \mathbb{R}^{n}, the Hessian of F is

$$
\begin{equation*}
\nabla^{2} F(u)=\operatorname{diag}\left(e^{u} \odot \mathbf{B}^{\top} \frac{s}{\mathbf{B} e^{u}}\right)-\operatorname{diag}\left(e^{u}\right) \mathbf{B}^{\top} \operatorname{diag}\left(\frac{s}{\left(\mathbf{B} e^{u}\right)^{2}}\right) \mathbf{B} \operatorname{diag}\left(e^{u}\right) \tag{5}
\end{equation*}
$$

where the square and fraction operations are performed element-wise.
Proof. Deferred in the appendix.
The Hessian, as it is, is costly to evaluate because of the right hand-side term. Indeed, the latter involves, in particular, a $\mathcal{O}\left(n^{3}\right)$ operation. We overcome this limitation thanks to the proposition below.

Proposition 5. For some u in \mathbb{R}^{n}, the Hessian in Equation (5) can be overestimated as follows

$$
\nabla^{2} F(u) \preccurlyeq \operatorname{diag}\left(e^{u} \odot \mathbf{B}^{\top} \frac{s}{\mathbf{B} e^{u}}\right) .
$$

Proof. We have to show that $\operatorname{diag}\left(e^{u} \odot \mathbf{B}^{\top} \frac{s}{\mathbf{B} e^{u}}\right)-\nabla^{2} F(u):=\boldsymbol{\Phi}$ is positive semi-definite.
Let u be in \mathbb{R}^{n}, we have

$$
\begin{aligned}
\langle\boldsymbol{\Phi} u, u\rangle & =\left\langle\operatorname{diag}\left(e^{u}\right) \mathbf{B}^{\top} \operatorname{diag}\left(\frac{s}{\left(\mathbf{B} e^{u}\right)^{2}}\right) \mathbf{B} \operatorname{diag}\left(e^{u}\right) u, u\right\rangle \\
& =\left\|\operatorname{diag}\left(\frac{\sqrt{s}}{\mathbf{B} e^{u}}\right) \mathbf{B} \operatorname{diag}\left(e^{u}\right) u\right\|^{2} \geq 0
\end{aligned}
$$

which enables us to conclude.

1.2 Efron

Efron estimate refines Breslow by handling tied observations, observations with identical occurrences' time. Let's define $H_{k}=\left\{i \mid s_{i}=1 ; y_{i}=y_{k}\right\}$, the set of uncensored observations with the same occurrence time y_{k}, and denote $y_{i_{1}}, \ldots, y_{i_{m}}$ the unique times, assumed to be in total equal to m.

Proposition 6. [Efron, 1977, Section 6, equation (6.7)] The minus log-likelihood according to Efron estimate is

$$
\begin{equation*}
l(\beta)=\sum_{l=1}^{m}\left(\sum_{i \in H_{i_{l}}}-\left\langle x_{i}, \beta\right\rangle+\log \left(\sum_{y_{j} \geq y_{i_{l}}} e^{\left\langle x_{j}, \beta\right\rangle}-\frac{\#(i)-1}{\left|H_{i_{l}}\right|} \sum_{j \in H_{i_{l}}} e^{\left\langle x_{j}, \beta\right\rangle}\right)\right) \tag{6}
\end{equation*}
$$

where $\left|H_{i_{l}}\right|$ stands for the cardinal of $H_{i_{l}}$, and $\#(i)$ the index of observation i in $H_{i_{l}}$.

Ideally, we would like to rewrite this expression like Equation (3) to leverage the established results about the gradient and Hessian. What distinguishes both expressions is the presence of a double sum and second term within the log.
Proposition 7. The expression in Equation (6) is equivalent to

$$
\begin{equation*}
l(\beta)=-\langle s, \mathbf{X} \beta\rangle+\left\langle s, \log \left(\mathbf{B} e^{\mathbf{X} \beta}-\mathbf{A} e^{\mathbf{X} \beta}\right)\right\rangle, \tag{7}
\end{equation*}
$$

where A is linear operator defined by Algorithm 1.
Proof. First, we can observe that $\cup_{l=1}^{m} H_{i_{l}}=\left\{i \mid s_{i}=1\right\}$, which enables us to write the double sum as a single one. Therefore,

$$
\begin{aligned}
\sum_{l=1}^{m} \sum_{i \in H_{i_{l}}}-\left\langle x_{i}, \beta\right\rangle=\sum_{i: s_{i}=1}-\left\langle x_{i}, \beta\right\rangle & =\sum_{i=1}^{n}-s_{i}\left\langle x_{i}, \beta\right\rangle \\
& =-\langle s, \mathbf{X} \beta\rangle
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
-\frac{\#(i)-1}{\left|H_{i_{l}}\right|} \sum_{j \in H_{i_{l}}} e^{\left\langle x_{j}, \beta\right\rangle} & =\sum_{j=1}^{n}-\frac{\#(i)-1}{\left|H_{i_{l}}\right|} \mathbb{1}_{j \in H_{i_{l}}} e^{\left\langle x_{j}, \beta\right\rangle} \\
& =\sum_{j=1}^{n} a_{i, j} e^{\left\langle x_{j}, \beta\right\rangle} \\
& =\left\langle a_{i}, e^{\mathbf{X} \beta}\right\rangle,
\end{aligned}
$$

where a_{i} is a vector in \mathbb{R}^{n} chosen accordingly to preform the linear operation.
Defining the matrix \mathbf{A} with rows $\left(a_{i}\right)_{i \in[n]}$, and combining that with the first result enable us to conclude.

Since the expression of the gradient and Hessian involve the adjoint of \mathbf{A}, we present also Algorithm 2 to evaluate $\mathbf{A}^{\top} v$, for some v in \mathbb{R}^{n}.

We notice that the complexity of both algorithms is $\mathcal{O}(n)$ despite intervening a matrix multiplication. This is due to the special structure of \mathbf{A} which in the case of sorted observations has a block diagonal structure with each block having equal columns.

Figure 1: Strucutre of \mathbf{A} in the case of sorted observations with group sizes of identical occurrences times being $3,2,1,3$ respectively.

```
Algorithm 1 Evaluate Av
input: \(v \in \mathbb{R}^{n}\)
init \(: o \in \mathbb{R}^{n}\)
for \(l=1, \cdots, m\) do
    \(\bar{v}_{H_{i_{l}}} \leftarrow \operatorname{sum}\left(v_{H_{i_{l}}}\right)\)
    \(o_{H_{i_{l}}} \leftarrow \bar{v}_{H_{i_{l}}} \times\left[0, \frac{1}{\mid H_{i_{l} \mid}}, \ldots, \frac{\left|H_{i_{l}}\right|-1}{\left|H_{i_{l}}\right|}\right]\)
return \(o\)
```

```
Algorithm 2 Evaluate \(\mathbf{A}^{\top} v\)
input: \(v \in \mathbb{R}^{n}\)
init \(: o \in \mathbb{R}^{n}\)
for \(l=1, \cdots, m\) do
    \(w_{H_{i_{l}}} \leftarrow\left\langle v_{H_{i_{l}}},\left[0, \frac{1}{\mid H_{i_{l}}}, \ldots, \frac{\left|H_{i_{l}}\right|-1}{\left|H_{i_{l}}\right|}\right]\right\rangle\)
\(o_{H_{i_{l}}} \leftarrow w_{H_{i_{l}}} \times[1, \ldots, 1]\)
return \(o\)
```


References

DY Lin. On the breslow estimator. Lifetime data analysis, 13:471-480, 2007.
Bradley Efron. The efficiency of cox's likelihood function for censored data. Journal of the American statistical Association, 72(359):557-565, 1977.

