Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
934 lines (771 sloc) 32.299 kb
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from scipy.misc import factorial
from scipy.lib.six import xrange
__all__ = ["KroghInterpolator", "krogh_interpolate", "BarycentricInterpolator",
"barycentric_interpolate", "PiecewisePolynomial",
"piecewise_polynomial_interpolate", "approximate_taylor_polynomial"]
def _isscalar(x):
"""Check whether x is if a scalar type, or 0-dim"""
return np.isscalar(x) or hasattr(x, 'shape') and x.shape == ()
class _Interpolator1D(object):
"""
Common features in univariate interpolation
Deal with input data type and interpolation axis rolling. The
actual interpolator can assume the y-data is of shape (n, r) where
`n` is the number of x-points, and `r` the number of variables,
and use self.dtype as the y-data type.
Attributes
----------
_y_axis
Axis along which the interpolation goes in the original array
_y_extra_shape
Additional trailing shape of the input arrays, excluding
the interpolation axis.
dtype
Dtype of the y-data arrays. Can be set via set_dtype, which
forces it to be float or complex.
Methods
-------
__call__
_prepare_x
_finish_y
_reshape_yi
_set_yi
_set_dtype
_evaluate
"""
__slots__ = ('_y_axis', '_y_extra_shape', 'dtype')
def __init__(self, xi=None, yi=None, axis=None):
self._y_axis = axis
self._y_extra_shape = None
self.dtype = None
if yi is not None:
self._set_yi(yi, xi=xi, axis=axis)
def __call__(self, x):
"""
Evaluate the interpolant
Parameters
----------
x : array-like
Points to evaluate the interpolant at.
Returns
-------
y : array-like
Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.
"""
x, x_shape = self._prepare_x(x)
y = self._evaluate(x)
return self._finish_y(y, x_shape)
def _evaluate(self, x):
"""
Actually evaluate the value of the interpolator.
"""
raise NotImplementedError()
def _prepare_x(self, x):
"""Reshape input x array to 1-D"""
x = np.asarray(x)
if not np.issubdtype(x.dtype, np.inexact):
# Cast integers etc to floats
x = x.astype(float)
x_shape = x.shape
return x.ravel(), x_shape
def _finish_y(self, y, x_shape):
"""Reshape interpolated y back to n-d array similar to initial y"""
y = y.reshape(x_shape + self._y_extra_shape)
if self._y_axis != 0 and x_shape != ():
nx = len(x_shape)
ny = len(self._y_extra_shape)
s = (list(range(nx, nx + self._y_axis))
+ list(range(nx)) + list(range(nx+self._y_axis, nx+ny)))
y = y.transpose(s)
return y
def _reshape_yi(self, yi, check=False):
yi = np.rollaxis(np.asarray(yi), self._y_axis)
if check and yi.shape[1:] != self._y_extra_shape:
ok_shape = "%r + (N,) + %r" % (self._y_extra_shape[-self._y_axis:],
self._y_extra_shape[:-self._y_axis])
raise ValueError("Data must be of shape %s" % ok_shape)
return yi.reshape((yi.shape[0], -1))
def _set_yi(self, yi, xi=None, axis=None):
if axis is None:
axis = self._y_axis
if axis is None:
raise ValueError("no interpolation axis specified")
yi = np.asarray(yi)
shape = yi.shape
if shape == ():
shape = (1,)
if xi is not None and shape[axis] != len(xi):
raise ValueError("x and y arrays must be equal in length along "
"interpolation axis.")
self._y_axis = (axis % yi.ndim)
self._y_extra_shape = yi.shape[:self._y_axis]+yi.shape[self._y_axis+1:]
self.dtype = None
self._set_dtype(yi.dtype)
def _set_dtype(self, dtype, union=False):
if np.issubdtype(dtype, np.complexfloating) \
or np.issubdtype(self.dtype, np.complexfloating):
self.dtype = np.complex_
else:
if not union or self.dtype != np.complex_:
self.dtype = np.float_
class _Interpolator1DWithDerivatives(_Interpolator1D):
def derivatives(self, x, der=None):
"""
Evaluate many derivatives of the polynomial at the point x
Produce an array of all derivative values at the point x.
Parameters
----------
x : array-like
Point or points at which to evaluate the derivatives
der : None or integer
How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points). This number includes the function value as 0th
derivative.
Returns
-------
d : ndarray
Array with derivatives; d[j] contains the j-th derivative.
Shape of d[j] is determined by replacing the interpolation
axis in the original array with the shape of x.
Examples
--------
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array([[1.0,1.0],
[2.0,2.0],
[3.0,3.0]])
"""
x, x_shape = self._prepare_x(x)
y = self._evaluate_derivatives(x, der)
y = y.reshape((y.shape[0],) + x_shape + self._y_extra_shape)
if self._y_axis != 0 and x_shape != ():
nx = len(x_shape)
ny = len(self._y_extra_shape)
s = ([0] + list(range(nx+1, nx + self._y_axis+1))
+ list(range(1,nx+1)) +
list(range(nx+1+self._y_axis, nx+ny+1)))
y = y.transpose(s)
return y
def derivative(self, x, der=1):
"""
Evaluate one derivative of the polynomial at the point x
Parameters
----------
x : array-like
Point or points at which to evaluate the derivatives
der : integer, optional
Which derivative to extract. This number includes the
function value as 0th derivative.
Returns
-------
d : ndarray
Derivative interpolated at the x-points. Shape of d is
determined by replacing the interpolation axis in the
original array with the shape of x.
Notes
-----
This is computed by evaluating all derivatives up to the desired
one (using self.derivatives()) and then discarding the rest.
"""
x, x_shape = self._prepare_x(x)
y = self._evaluate_derivatives(x, der+1)
return self._finish_y(y[der], x_shape)
class KroghInterpolator(_Interpolator1DWithDerivatives):
"""
Interpolating polynomial for a set of points.
The polynomial passes through all the pairs (xi,yi). One may
additionally specify a number of derivatives at each point xi;
this is done by repeating the value xi and specifying the
derivatives as successive yi values.
Allows evaluation of the polynomial and all its derivatives.
For reasons of numerical stability, this function does not compute
the coefficients of the polynomial, although they can be obtained
by evaluating all the derivatives.
Parameters
----------
xi : array-like, length N
Known x-coordinates. Must be sorted in increasing order.
yi : array-like
Known y-coordinates. When an xi occurs two or more times in
a row, the corresponding yi's represent derivative values.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Notes
-----
Be aware that the algorithms implemented here are not necessarily
the most numerically stable known. Moreover, even in a world of
exact computation, unless the x coordinates are chosen very
carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process
due to the Runge phenomenon. In general, even with well-chosen
x values, degrees higher than about thirty cause problems with
numerical instability in this code.
Based on [1]_.
References
----------
.. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation
and Numerical Differentiation", 1970.
Examples
--------
To produce a polynomial that is zero at 0 and 1 and has
derivative 2 at 0, call
>>> KroghInterpolator([0,0,1],[0,2,0])
This constructs the quadratic 2*X**2-2*X. The derivative condition
is indicated by the repeated zero in the xi array; the corresponding
yi values are 0, the function value, and 2, the derivative value.
For another example, given xi, yi, and a derivative ypi for each
point, appropriate arrays can be constructed as:
>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
>>> KroghInterpolator(xi_k, yi_k)
To produce a vector-valued polynomial, supply a higher-dimensional
array for yi:
>>> KroghInterpolator([0,1],[[2,3],[4,5]])
This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.
"""
def __init__(self, xi, yi, axis=0):
_Interpolator1DWithDerivatives.__init__(self, xi, yi, axis)
self.xi = np.asarray(xi)
self.yi = self._reshape_yi(yi)
self.n, self.r = self.yi.shape
c = np.zeros((self.n+1, self.r), dtype=self.dtype)
c[0] = self.yi[0]
Vk = np.zeros((self.n, self.r), dtype=self.dtype)
for k in xrange(1,self.n):
s = 0
while s <= k and xi[k-s] == xi[k]:
s += 1
s -= 1
Vk[0] = self.yi[k]/float(factorial(s))
for i in xrange(k-s):
if xi[i] == xi[k]:
raise ValueError("Elements if `xi` can't be equal.")
if s == 0:
Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
else:
Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
c[k] = Vk[k-s]
self.c = c
def _evaluate(self, x):
pi = 1
p = np.zeros((len(x), self.r), dtype=self.dtype)
p += self.c[0,np.newaxis,:]
for k in range(1, self.n):
w = x - self.xi[k-1]
pi = w*pi
p += pi[:,np.newaxis] * self.c[k]
return p
def _evaluate_derivatives(self, x, der=None):
n = self.n
r = self.r
if der is None:
der = self.n
pi = np.zeros((n, len(x)))
w = np.zeros((n, len(x)))
pi[0] = 1
p = np.zeros((len(x), self.r))
p += self.c[0,np.newaxis,:]
for k in xrange(1,n):
w[k-1] = x - self.xi[k-1]
pi[k] = w[k-1]*pi[k-1]
p += pi[k,:,np.newaxis]*self.c[k]
cn = np.zeros((max(der,n+1), len(x), r), dtype=self.dtype)
cn[:n+1,:,:] += self.c[:n+1,np.newaxis,:]
cn[0] = p
for k in xrange(1,n):
for i in xrange(1,n-k+1):
pi[i] = w[k+i-1]*pi[i-1]+pi[i]
cn[k] = cn[k]+pi[i,:,np.newaxis]*cn[k+i]
cn[k] *= factorial(k)
cn[n,:,:] = 0
return cn[:der]
def krogh_interpolate(xi,yi,x,der=0,axis=0):
"""
Convenience function for polynomial interpolation.
See `KroghInterpolator` for more details.
Parameters
----------
xi : array_like
Known x-coordinates.
yi : array_like
Known y-coordinates, of shape ``(xi.size, R)``. Interpreted as
vectors of length R, or scalars if R=1.
x : array_like
Point or points at which to evaluate the derivatives.
der : int or list
How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Returns
-------
d : ndarray
If the interpolator's values are R-dimensional then the
returned array will be the number of derivatives by N by R.
If `x` is a scalar, the middle dimension will be dropped; if
the `yi` are scalars then the last dimension will be dropped.
See Also
--------
KroghInterpolator
Notes
-----
Construction of the interpolating polynomial is a relatively expensive
process. If you want to evaluate it repeatedly consider using the class
KroghInterpolator (which is what this function uses).
"""
P = KroghInterpolator(xi, yi, axis=axis)
if der == 0:
return P(x)
elif _isscalar(der):
return P.derivative(x,der=der)
else:
return P.derivatives(x,der=np.amax(der)+1)[der]
def approximate_taylor_polynomial(f,x,degree,scale,order=None):
"""
Estimate the Taylor polynomial of f at x by polynomial fitting.
Parameters
----------
f : callable
The function whose Taylor polynomial is sought. Should accept
a vector of `x` values.
x : scalar
The point at which the polynomial is to be evaluated.
degree : int
The degree of the Taylor polynomial
scale : scalar
The width of the interval to use to evaluate the Taylor polynomial.
Function values spread over a range this wide are used to fit the
polynomial. Must be chosen carefully.
order : int or None, optional
The order of the polynomial to be used in the fitting; `f` will be
evaluated ``order+1`` times. If None, use `degree`.
Returns
-------
p : poly1d instance
The Taylor polynomial (translated to the origin, so that
for example p(0)=f(x)).
Notes
-----
The appropriate choice of "scale" is a trade-off; too large and the
function differs from its Taylor polynomial too much to get a good
answer, too small and round-off errors overwhelm the higher-order terms.
The algorithm used becomes numerically unstable around order 30 even
under ideal circumstances.
Choosing order somewhat larger than degree may improve the higher-order
terms.
"""
if order is None:
order = degree
n = order+1
# Choose n points that cluster near the endpoints of the interval in
# a way that avoids the Runge phenomenon. Ensure, by including the
# endpoint or not as appropriate, that one point always falls at x
# exactly.
xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n % 1)) + x
P = KroghInterpolator(xs, f(xs))
d = P.derivatives(x,der=degree+1)
return np.poly1d((d/factorial(np.arange(degree+1)))[::-1])
class BarycentricInterpolator(_Interpolator1D):
"""The interpolating polynomial for a set of points
Constructs a polynomial that passes through a given set of points.
Allows evaluation of the polynomial, efficient changing of the y
values to be interpolated, and updating by adding more x values.
For reasons of numerical stability, this function does not compute
the coefficients of the polynomial.
The values yi need to be provided before the function is
evaluated, but none of the preprocessing depends on them, so rapid
updates are possible.
Parameters
----------
xi : array-like
1-d array of x coordinates of the points the polynomial
should pass through
yi : array-like
The y coordinates of the points the polynomial should pass through.
If None, the y values will be supplied later via the `set_y` method.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Notes
-----
This class uses a "barycentric interpolation" method that treats
the problem as a special case of rational function interpolation.
This algorithm is quite stable, numerically, but even in a world of
exact computation, unless the x coordinates are chosen very
carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process
due to the Runge phenomenon.
Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".
"""
def __init__(self, xi, yi=None, axis=0):
_Interpolator1D.__init__(self, xi, yi, axis)
self.xi = np.asarray(xi)
self.set_yi(yi)
self.n = len(self.xi)
self.wi = np.zeros(self.n)
self.wi[0] = 1
for j in xrange(1,self.n):
self.wi[:j] *= (self.xi[j]-self.xi[:j])
self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j])
self.wi **= -1
def set_yi(self, yi, axis=None):
"""
Update the y values to be interpolated
The barycentric interpolation algorithm requires the calculation
of weights, but these depend only on the xi. The yi can be changed
at any time.
Parameters
----------
yi : array_like
The y coordinates of the points the polynomial should pass through.
If None, the y values will be supplied later.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
"""
if yi is None:
self.yi = None
return
self._set_yi(yi, xi=self.xi, axis=axis)
self.yi = self._reshape_yi(yi)
self.n, self.r = self.yi.shape
def add_xi(self, xi, yi=None):
"""
Add more x values to the set to be interpolated
The barycentric interpolation algorithm allows easy updating by
adding more points for the polynomial to pass through.
Parameters
----------
xi : array_like
The x coordinates of the points that the polynomial should pass
through.
yi : array_like, optional
The y coordinates of the points the polynomial should pass through.
Should have shape ``(xi.size, R)``; if R > 1 then the polynomial is
vector-valued.
If `yi` is not given, the y values will be supplied later. `yi` should
be given if and only if the interpolator has y values specified.
"""
if yi is not None:
if self.yi is None:
raise ValueError("No previous yi value to update!")
yi = self._reshape_yi(yi, check=True)
self.yi = np.vstack((self.yi,yi))
else:
if self.yi is not None:
raise ValueError("No update to yi provided!")
old_n = self.n
self.xi = np.concatenate((self.xi,xi))
self.n = len(self.xi)
self.wi **= -1
old_wi = self.wi
self.wi = np.zeros(self.n)
self.wi[:old_n] = old_wi
for j in xrange(old_n,self.n):
self.wi[:j] *= (self.xi[j]-self.xi[:j])
self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j])
self.wi **= -1
def __call__(self, x):
"""Evaluate the interpolating polynomial at the points x
Parameters
----------
x : array-like
Points to evaluate the interpolant at.
Returns
-------
y : array-like
Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.
Notes
-----
Currently the code computes an outer product between x and the
weights, that is, it constructs an intermediate array of size
N by len(x), where N is the degree of the polynomial.
"""
return _Interpolator1D.__call__(self, x)
def _evaluate(self, x):
if x.size == 0:
p = np.zeros((0, self.r), dtype=self.dtype)
else:
c = x[...,np.newaxis]-self.xi
z = c == 0
c[z] = 1
c = self.wi/c
p = np.dot(c,self.yi)/np.sum(c,axis=-1)[...,np.newaxis]
# Now fix where x==some xi
r = np.nonzero(z)
if len(r) == 1: # evaluation at a scalar
if len(r[0]) > 0: # equals one of the points
p = self.yi[r[0][0]]
else:
p[r[:-1]] = self.yi[r[-1]]
return p
def barycentric_interpolate(xi, yi, x, axis=0):
"""
Convenience function for polynomial interpolation.
Constructs a polynomial that passes through a given set of points,
then evaluates the polynomial. For reasons of numerical stability,
this function does not compute the coefficients of the polynomial.
This function uses a "barycentric interpolation" method that treats
the problem as a special case of rational function interpolation.
This algorithm is quite stable, numerically, but even in a world of
exact computation, unless the `x` coordinates are chosen very
carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice -
polynomial interpolation itself is a very ill-conditioned process
due to the Runge phenomenon.
Parameters
----------
xi : array_like
1-d array of x coordinates of the points the polynomial should
pass through
yi : array_like
The y coordinates of the points the polynomial should pass through.
x : scalar or array_like
Points to evaluate the interpolator at.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Returns
-------
y : scalar or array_like
Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.
See Also
--------
BarycentricInterpolator
Notes
-----
Construction of the interpolation weights is a relatively slow process.
If you want to call this many times with the same xi (but possibly
varying yi or x) you should use the class `BarycentricInterpolator`.
This is what this function uses internally.
"""
return BarycentricInterpolator(xi, yi, axis=axis)(x)
class PiecewisePolynomial(_Interpolator1DWithDerivatives):
"""Piecewise polynomial curve specified by points and derivatives
This class represents a curve that is a piecewise polynomial. It
passes through a list of points and has specified derivatives at
each point. The degree of the polynomial may vary from segment to
segment, as may the number of derivatives available. The degree
should not exceed about thirty.
Appending points to the end of the curve is efficient.
Parameters
----------
xi : array-like
a sorted 1-d array of x-coordinates
yi : array-like or list of array-likes
yi[i][j] is the j-th derivative known at xi[i] (for axis=0)
orders : list of integers, or integer
a list of polynomial orders, or a single universal order
direction : {None, 1, -1}
indicates whether the xi are increasing or decreasing
+1 indicates increasing
-1 indicates decreasing
None indicates that it should be deduced from the first two xi
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
Notes
-----
If orders is None, or orders[i] is None, then the degree of the
polynomial segment is exactly the degree required to match all i
available derivatives at both endpoints. If orders[i] is not None,
then some derivatives will be ignored. The code will try to use an
equal number of derivatives from each end; if the total number of
derivatives needed is odd, it will prefer the rightmost endpoint. If
not enough derivatives are available, an exception is raised.
"""
def __init__(self, xi, yi, orders=None, direction=None, axis=0):
_Interpolator1DWithDerivatives.__init__(self, axis=axis)
warnings.warn('PiecewisePolynomial is deprecated in scipy 0.14. '
'Use BPoly.from_derivatives instead.',
category=DeprecationWarning)
if axis != 0:
try:
yi = np.asarray(yi)
except ValueError:
raise ValueError("If yi is a list, then axis must be 0")
preslice = ((slice(None,None,None),) * (axis % yi.ndim))
slice0 = preslice + (0,)
slice1 = preslice + (slice(1, None, None),)
else:
slice0 = 0
slice1 = slice(1, None, None)
yi0 = np.asarray(yi[slice0])
self._set_yi(yi0)
self.xi = [xi[0]]
self.yi = [self._reshape_yi(yi0)]
self.n = 1
self.r = np.prod(self._y_extra_shape, dtype=np.int64)
self.direction = direction
self.orders = []
self.polynomials = []
self.extend(xi[1:],yi[slice1],orders)
def _make_polynomial(self,x1,y1,x2,y2,order,direction):
"""Construct the interpolating polynomial object
Deduces the number of derivatives to match at each end
from order and the number of derivatives available. If
possible it uses the same number of derivatives from
each end; if the number is odd it tries to take the
extra one from y2. In any case if not enough derivatives
are available at one end or another it draws enough to
make up the total from the other end.
"""
n = order+1
n1 = min(n//2,len(y1))
n2 = min(n-n1,len(y2))
n1 = min(n-n2,len(y1))
if n1+n2 != n:
raise ValueError("Point %g has %d derivatives, point %g has %d derivatives, but order %d requested" % (x1, len(y1), x2, len(y2), order))
if not (n1 <= len(y1) and n2 <= len(y2)):
raise ValueError("`order` input incompatible with length y1 or y2.")
xi = np.zeros(n)
yi = np.zeros((n, self.r), dtype=self.dtype)
xi[:n1] = x1
yi[:n1] = y1[:n1].reshape((n1, self.r))
xi[n1:] = x2
yi[n1:] = y2[:n2].reshape((n2, self.r))
return KroghInterpolator(xi,yi,axis=0)
def append(self, xi, yi, order=None):
"""
Append a single point with derivatives to the PiecewisePolynomial
Parameters
----------
xi : float
Input
yi : array_like
`yi` is the list of derivatives known at `xi`
order : integer or None
a polynomial order, or instructions to use the highest
possible order
"""
yi = self._reshape_yi(yi, check=True)
self._set_dtype(yi.dtype, union=True)
if self.direction is None:
self.direction = np.sign(xi-self.xi[-1])
elif (xi-self.xi[-1])*self.direction < 0:
raise ValueError("x coordinates must be in the %d direction: %s" % (self.direction, self.xi))
self.xi.append(xi)
self.yi.append(yi)
if order is None:
n1 = len(self.yi[-2])
n2 = len(self.yi[-1])
n = n1+n2
order = n-1
self.orders.append(order)
self.polynomials.append(self._make_polynomial(
self.xi[-2], self.yi[-2],
self.xi[-1], self.yi[-1],
order, self.direction))
self.n += 1
def extend(self, xi, yi, orders=None):
"""
Extend the PiecewisePolynomial by a list of points
Parameters
----------
xi : array_like
A sorted list of x-coordinates.
yi : list of lists of length N1
``yi[i]`` (if ``axis == 0``) is the list of derivatives known
at ``xi[i]``.
orders : int or list of ints
A list of polynomial orders, or a single universal order.
direction : {None, 1, -1}
Indicates whether the `xi` are increasing or decreasing.
+1 indicates increasing
-1 indicates decreasing
None indicates that it should be deduced from the first two `xi`.
"""
if self._y_axis == 0:
# allow yi to be a ragged list
for i in xrange(len(xi)):
if orders is None or _isscalar(orders):
self.append(xi[i],yi[i],orders)
else:
self.append(xi[i],yi[i],orders[i])
else:
preslice = (slice(None,None,None),) * self._y_axis
for i in xrange(len(xi)):
if orders is None or _isscalar(orders):
self.append(xi[i],yi[preslice + (i,)],orders)
else:
self.append(xi[i],yi[preslice + (i,)],orders[i])
def _evaluate(self, x):
if _isscalar(x):
pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2)
y = self.polynomials[pos](x)
else:
m = len(x)
pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2)
y = np.zeros((m, self.r), dtype=self.dtype)
if y.size > 0:
for i in xrange(self.n-1):
c = pos == i
y[c] = self.polynomials[i](x[c])
return y
def _evaluate_derivatives(self, x, der=None):
if der is None and self.polynomials:
der = self.polynomials[0].n
if _isscalar(x):
pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2)
y = self.polynomials[pos].derivatives(x,der=der)
else:
m = len(x)
pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2)
y = np.zeros((der,m,self.r), dtype=self.dtype)
if y.size > 0:
for i in xrange(self.n-1):
c = pos == i
y[:,c] = self.polynomials[i].derivatives(x[c],der=der)
return y
def piecewise_polynomial_interpolate(xi,yi,x,orders=None,der=0,axis=0):
"""
Convenience function for piecewise polynomial interpolation.
Parameters
----------
xi : array_like
A sorted list of x-coordinates.
yi : list of lists
``yi[i]`` is the list of derivatives known at ``xi[i]``.
x : scalar or array_like
Coordinates at which to evalualte the polynomial.
orders : int or list of ints, optional
A list of polynomial orders, or a single universal order.
der : int or list
How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.
axis : int, optional
Axis in the `yi` array corresponding to the x-coordinate values.
Returns
-------
y : ndarray
Interpolated values or derivatives. If multiple derivatives
were requested, these are given along the first axis.
See Also
--------
PiecewisePolynomial
Notes
-----
If `orders` is None, or ``orders[i]`` is None, then the degree of the
polynomial segment is exactly the degree required to match all i
available derivatives at both endpoints. If ``orders[i]`` is not None,
then some derivatives will be ignored. The code will try to use an
equal number of derivatives from each end; if the total number of
derivatives needed is odd, it will prefer the rightmost endpoint. If
not enough derivatives are available, an exception is raised.
Construction of these piecewise polynomials can be an expensive process;
if you repeatedly evaluate the same polynomial, consider using the class
PiecewisePolynomial (which is what this function does).
"""
P = PiecewisePolynomial(xi, yi, orders, axis=axis)
if der == 0:
return P(x)
elif _isscalar(der):
return P.derivative(x,der=der)
else:
return P.derivatives(x,der=np.amax(der)+1)[der]
Jump to Line
Something went wrong with that request. Please try again.