-
-
Notifications
You must be signed in to change notification settings - Fork 5.3k
/
Copy pathrectangular_lsap.cpp
256 lines (214 loc) · 7.65 KB
/
rectangular_lsap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This code implements the shortest augmenting path algorithm for the
rectangular assignment problem. This implementation is based on the
pseudocode described in pages 1685-1686 of:
DF Crouse. On implementing 2D rectangular assignment algorithms.
IEEE Transactions on Aerospace and Electronic Systems
52(4):1679-1696, August 2016
doi: 10.1109/TAES.2016.140952
Author: PM Larsen
*/
#include <cmath>
#include <vector>
#include <numeric>
#include <algorithm>
#include "rectangular_lsap.h"
template <typename T> std::vector<intptr_t> argsort_iter(const std::vector<T> &v)
{
std::vector<intptr_t> index(v.size());
std::iota(index.begin(), index.end(), 0);
std::sort(index.begin(), index.end(), [&v](intptr_t i, intptr_t j)
{return v[i] < v[j];});
return index;
}
static intptr_t
augmenting_path(intptr_t nc, double *cost, std::vector<double>& u,
std::vector<double>& v, std::vector<intptr_t>& path,
std::vector<intptr_t>& row4col,
std::vector<double>& shortestPathCosts, intptr_t i,
std::vector<bool>& SR, std::vector<bool>& SC,
std::vector<intptr_t>& remaining, double* p_minVal)
{
double minVal = 0;
// Crouse's pseudocode uses set complements to keep track of remaining
// nodes. Here we use a vector, as it is more efficient in C++.
intptr_t num_remaining = nc;
for (intptr_t it = 0; it < nc; it++) {
// Filling this up in reverse order ensures that the solution of a
// constant cost matrix is the identity matrix (c.f. #11602).
remaining[it] = nc - it - 1;
}
std::fill(SR.begin(), SR.end(), false);
std::fill(SC.begin(), SC.end(), false);
std::fill(shortestPathCosts.begin(), shortestPathCosts.end(), INFINITY);
// find shortest augmenting path
intptr_t sink = -1;
while (sink == -1) {
intptr_t index = -1;
double lowest = INFINITY;
SR[i] = true;
for (intptr_t it = 0; it < num_remaining; it++) {
intptr_t j = remaining[it];
double r = minVal + cost[i * nc + j] - u[i] - v[j];
if (r < shortestPathCosts[j]) {
path[j] = i;
shortestPathCosts[j] = r;
}
// When multiple nodes have the minimum cost, we select one which
// gives us a new sink node. This is particularly important for
// integer cost matrices with small co-efficients.
if (shortestPathCosts[j] < lowest ||
(shortestPathCosts[j] == lowest && row4col[j] == -1)) {
lowest = shortestPathCosts[j];
index = it;
}
}
minVal = lowest;
if (minVal == INFINITY) { // infeasible cost matrix
return -1;
}
intptr_t j = remaining[index];
if (row4col[j] == -1) {
sink = j;
} else {
i = row4col[j];
}
SC[j] = true;
remaining[index] = remaining[--num_remaining];
}
*p_minVal = minVal;
return sink;
}
static int
solve(intptr_t nr, intptr_t nc, double* cost, bool maximize,
int64_t* a, int64_t* b)
{
// handle trivial inputs
if (nr == 0 || nc == 0) {
return 0;
}
// tall rectangular cost matrix must be transposed
bool transpose = nc < nr;
// make a copy of the cost matrix if we need to modify it
std::vector<double> temp;
if (transpose || maximize) {
temp.resize(nr * nc);
if (transpose) {
for (intptr_t i = 0; i < nr; i++) {
for (intptr_t j = 0; j < nc; j++) {
temp[j * nr + i] = cost[i * nc + j];
}
}
std::swap(nr, nc);
}
else {
std::copy(cost, cost + nr * nc, temp.begin());
}
// negate cost matrix for maximization
if (maximize) {
for (intptr_t i = 0; i < nr * nc; i++) {
temp[i] = -temp[i];
}
}
cost = temp.data();
}
// test for NaN and -inf entries
for (intptr_t i = 0; i < nr * nc; i++) {
if (cost[i] != cost[i] || cost[i] == -INFINITY) {
return RECTANGULAR_LSAP_INVALID;
}
}
// initialize variables
std::vector<double> u(nr, 0);
std::vector<double> v(nc, 0);
std::vector<double> shortestPathCosts(nc);
std::vector<intptr_t> path(nc, -1);
std::vector<intptr_t> col4row(nr, -1);
std::vector<intptr_t> row4col(nc, -1);
std::vector<bool> SR(nr);
std::vector<bool> SC(nc);
std::vector<intptr_t> remaining(nc);
// iteratively build the solution
for (intptr_t curRow = 0; curRow < nr; curRow++) {
double minVal;
intptr_t sink = augmenting_path(nc, cost, u, v, path, row4col,
shortestPathCosts, curRow, SR, SC,
remaining, &minVal);
if (sink < 0) {
return RECTANGULAR_LSAP_INFEASIBLE;
}
// update dual variables
u[curRow] += minVal;
for (intptr_t i = 0; i < nr; i++) {
if (SR[i] && i != curRow) {
u[i] += minVal - shortestPathCosts[col4row[i]];
}
}
for (intptr_t j = 0; j < nc; j++) {
if (SC[j]) {
v[j] -= minVal - shortestPathCosts[j];
}
}
// augment previous solution
intptr_t j = sink;
while (1) {
intptr_t i = path[j];
row4col[j] = i;
std::swap(col4row[i], j);
if (i == curRow) {
break;
}
}
}
if (transpose) {
intptr_t i = 0;
for (auto v: argsort_iter(col4row)) {
a[i] = col4row[v];
b[i] = v;
i++;
}
}
else {
for (intptr_t i = 0; i < nr; i++) {
a[i] = i;
b[i] = col4row[i];
}
}
return 0;
}
#ifdef __cplusplus
extern "C" {
#endif
int
solve_rectangular_linear_sum_assignment(intptr_t nr, intptr_t nc,
double* input_cost, bool maximize,
int64_t* a, int64_t* b)
{
return solve(nr, nc, input_cost, maximize, a, b);
}
#ifdef __cplusplus
}
#endif