Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

288 lines (225 sloc) 8.774 kb
"""NetCDF file reader.
This is adapted from Roberto De Almeida's Pupynere PUre PYthon NEtcdf REader.
classes changed to underscore_separated instead of CamelCase
TODO:
Add write capability.
"""
#__author__ = "Roberto De Almeida <rob@pydap.org>"
__all__ = ['netcdf_file', 'netcdf_variable']
import struct
import itertools
import mmap
from numpy import ndarray, zeros, array
ABSENT = '\x00' * 8
ZERO = '\x00' * 4
NC_BYTE = '\x00\x00\x00\x01'
NC_CHAR = '\x00\x00\x00\x02'
NC_SHORT = '\x00\x00\x00\x03'
NC_INT = '\x00\x00\x00\x04'
NC_FLOAT = '\x00\x00\x00\x05'
NC_DOUBLE = '\x00\x00\x00\x06'
NC_DIMENSION = '\x00\x00\x00\n'
NC_VARIABLE = '\x00\x00\x00\x0b'
NC_ATTRIBUTE = '\x00\x00\x00\x0c'
class netcdf_file(object):
"""A NetCDF file parser."""
def __init__(self, file, mode):
mode += 'b'
self._buffer = open(file, mode)
if mode in ['rb', 'r+b']:
self._parse()
elif mode == 'ab':
raise NotImplementedError
def flush(self):
pass
def sync(self):
pass
def close(self):
pass
def create_dimension(self, name, length):
pass
def create_variable(self, name, type, dimensions):
pass
def read(self, size=-1):
"""Alias for reading the file buffer."""
return self._buffer.read(size)
def _parse(self):
"""Initial parsing of the header."""
# Check magic bytes.
assert self.read(3) == 'CDF'
# Read version byte.
byte = self.read(1)
self.version_byte = struct.unpack('>b', byte)[0]
# Read header info.
self._numrecs()
self._dim_array()
self._gatt_array()
self._var_array()
def _numrecs(self):
"""Read number of records."""
self._nrecs = self._unpack_int()
def _dim_array(self):
"""Read a dict with dimensions names and sizes."""
assert self.read(4) in [ZERO, NC_DIMENSION]
count = self._unpack_int()
self.dimensions = {}
self._dims = []
for dim in range(count):
name = self._read_string()
length = self._unpack_int()
if length == 0: length = None # record dimension
self.dimensions[name] = length
self._dims.append(name) # preserve dim order
def _gatt_array(self):
"""Read global attributes."""
self.attributes = self._att_array()
# Update __dict__ for compatibility with S.IO.N
self.__dict__.update(self.attributes)
def _att_array(self):
"""Read a dict with attributes."""
assert self.read(4) in [ZERO, NC_ATTRIBUTE]
count = self._unpack_int()
# Read attributes.
attributes = {}
for attribute in range(count):
name = self._read_string()
nc_type = self._unpack_int()
n = self._unpack_int()
# Read value for attributes.
attributes[name] = self._read_values(n, nc_type)
return attributes
def _var_array(self):
"""Read all variables."""
assert self.read(4) in [ZERO, NC_VARIABLE]
# Read size of each record, in bytes.
self._read_recsize()
# Read variables.
self.variables = {}
count = self._unpack_int()
for variable in range(count):
name = self._read_string()
self.variables[name] = self._read_var()
def _read_recsize(self):
"""Read all variables and compute record bytes."""
pos = self._buffer.tell()
recsize = 0
count = self._unpack_int()
for variable in range(count):
name = self._read_string()
n = self._unpack_int()
isrec = False
for i in range(n):
dimid = self._unpack_int()
name = self._dims[dimid]
dim = self.dimensions[name]
if dim is None and i == 0:
isrec = True
attributes = self._att_array()
nc_type = self._unpack_int()
vsize = self._unpack_int()
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
if isrec: recsize += vsize
self._recsize = recsize
self._buffer.seek(pos)
def _read_var(self):
dimensions = []
shape = []
n = self._unpack_int()
isrec = False
for i in range(n):
dimid = self._unpack_int()
name = self._dims[dimid]
dimensions.append(name)
dim = self.dimensions[name]
if dim is None and i == 0:
dim = self._nrecs
isrec = True
shape.append(dim)
dimensions = tuple(dimensions)
shape = tuple(shape)
attributes = self._att_array()
nc_type = self._unpack_int()
vsize = self._unpack_int()
# Read offset.
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
return netcdf_variable(self._buffer.fileno(), nc_type, vsize, begin, shape, dimensions, attributes, isrec, self._recsize)
def _read_values(self, n, nc_type):
bytes = [1, 1, 2, 4, 4, 8]
typecodes = ['b', 'c', 'h', 'i', 'f', 'd']
count = n * bytes[nc_type-1]
values = self.read(count)
padding = self.read((4 - (count % 4)) % 4)
typecode = typecodes[nc_type-1]
if nc_type != 2: # not char
values = struct.unpack('>%s' % (typecode * n), values)
values = array(values, dtype=typecode)
else:
# Remove EOL terminator.
if values.endswith('\x00'): values = values[:-1]
return values
def _unpack_int(self):
return struct.unpack('>i', self.read(4))[0]
_unpack_int32 = _unpack_int
def _unpack_int64(self):
return struct.unpack('>q', self.read(8))[0]
def _read_string(self):
count = struct.unpack('>i', self.read(4))[0]
s = self.read(count)
# Remove EOL terminator.
if s.endswith('\x00'): s = s[:-1]
padding = self.read((4 - (count % 4)) % 4)
return s
def close(self):
self._buffer.close()
class netcdf_variable(object):
def __init__(self, fileno, nc_type, vsize, begin, shape, dimensions, attributes, isrec=False, recsize=0):
self._nc_type = nc_type
self._vsize = vsize
self._begin = begin
self.shape = shape
self.dimensions = dimensions
self.attributes = attributes # for ``dap.plugins.netcdf``
self.__dict__.update(attributes)
self._is_record = isrec
# Number of bytes and type.
self._bytes = [1, 1, 2, 4, 4, 8][self._nc_type-1]
type_ = ['i', 'S', 'i', 'i', 'f', 'f'][self._nc_type-1]
dtype = '>%s%d' % (type_, self._bytes)
bytes = self._begin + self._vsize
if isrec:
# Record variables are not stored contiguosly on disk, so we
# need to create a separate array for each record.
#
# TEO: This will copy data from the newly-created array
# into the __array_data__ region, thus removing any benefit of using
# a memory-mapped file. You might as well just read the data
# in directly.
self.__array_data__ = zeros(shape, dtype)
bytes += (shape[0] - 1) * recsize
for n in range(shape[0]):
offset = self._begin + (n * recsize)
mm = mmap.mmap(fileno, bytes, access=mmap.ACCESS_READ)
self.__array_data__[n] = ndarray.__new__(ndarray, shape[1:], dtype=dtype, buffer=mm, offset=offset, order=0)
else:
# Create buffer and data.
mm = mmap.mmap(fileno, bytes, access=mmap.ACCESS_READ)
self.__array_data__ = ndarray.__new__(ndarray, shape, dtype=dtype, buffer=mm, offset=self._begin, order=0)
# N-D array interface
self.__array_interface__ = {'shape' : shape,
'typestr': dtype,
'data' : self.__array_data__,
'version': 3,
}
def __getitem__(self, index):
return self.__array_data__.__getitem__(index)
def getValue(self):
"""For scalars."""
return self.__array_data__.item()
def assignValue(self, value):
"""For scalars."""
self.__array_data__.itemset(value)
def typecode(self):
return ['b', 'c', 'h', 'i', 'f', 'd'][self._nc_type-1]
def _test():
import doctest
doctest.testmod()
Jump to Line
Something went wrong with that request. Please try again.