Skip to content
This repository
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 279 lines (217 sloc) 9.09 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
from warnings import warn

from numpy import asarray
from scipy.sparse import isspmatrix_csc, isspmatrix_csr, isspmatrix, \
        SparseEfficiencyWarning, csc_matrix

import _superlu

noScikit = False
try:
    import scikits.umfpack as umfpack
except ImportError:
    import umfpack
    noScikit = True

isUmfpack = hasattr( umfpack, 'UMFPACK_OK' )

useUmfpack = True


__all__ = [ 'use_solver', 'spsolve', 'splu', 'spilu', 'factorized' ]

def use_solver( **kwargs ):
    """
Valid keyword arguments with defaults (other ignored)::

useUmfpack = True
assumeSortedIndices = False

The default sparse solver is umfpack when available. This can be changed by
passing useUmfpack = False, which then causes the always present SuperLU
based solver to be used.

Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If
sure that the matrix fulfills this, pass ``assumeSortedIndices=True``
to gain some speed.

"""
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']

    if isUmfpack:
        umfpack.configure( **kwargs )


def spsolve(A, b, permc_spec=None, use_umfpack=True):
    """Solve the sparse linear system Ax=b """
    if isspmatrix( b ):
        b = b.toarray()

    if b.ndim > 1:
        if max( b.shape ) == b.size:
            b = b.squeeze()
        else:
            raise ValueError("rhs must be a vector (has shape %s)" % (b.shape,))

    if not (isspmatrix_csc(A) or isspmatrix_csr(A)):
        A = csc_matrix(A)
        warn('spsolve requires CSC or CSR matrix format', SparseEfficiencyWarning)

    A.sort_indices()
    A = A.asfptype() #upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("matrix must be square (has shape %s)" % ((M, N),))
    if M != b.size:
        raise ValueError("matrix - rhs size mismatch (%s - %s)"
              % (A.shape, b.size))

    use_umfpack = use_umfpack and useUmfpack

    if isUmfpack and use_umfpack:
        if noScikit:
            warn( 'scipy.sparse.linalg.dsolve.umfpack will be removed,'
                    ' install scikits.umfpack instead', DeprecationWarning )
        if A.dtype.char not in 'dD':
            raise ValueError("convert matrix data to double, please, using"
                  " .astype(), or set linsolve.useUmfpack = False")

        b = asarray(b, dtype=A.dtype).reshape(-1)

        family = {'d' : 'di', 'D' : 'zi'}
        umf = umfpack.UmfpackContext( family[A.dtype.char] )
        return umf.linsolve( umfpack.UMFPACK_A, A, b,
                             autoTranspose = True )

    else:
        if isspmatrix_csc(A):
            flag = 1 # CSC format
        elif isspmatrix_csr(A):
            flag = 0 # CSR format
        else:
            A = csc_matrix(A)
            flag = 1

        b = asarray(b, dtype=A.dtype)
        options = dict(ColPerm=permc_spec)
        return _superlu.gssv(N, A.nnz, A.data, A.indices, A.indptr, b, flag,
                             options=options)[0]

def splu(A, permc_spec=None, diag_pivot_thresh=None,
         drop_tol=None, relax=None, panel_size=None, options=dict()):
    """
Compute the LU decomposition of a sparse, square matrix.

Parameters
----------
A : sparse matrix
Sparse matrix to factorize. Should be in CSR or CSC format.
permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation.
(default: 'COLAMD')

- ``NATURAL``: natural ordering.
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
- ``COLAMD``: approximate minimum degree column ordering

diag_pivot_thresh : float, optional
Threshold used for a diagonal entry to be an acceptable pivot.
See SuperLU user's guide for details [SLU]_
drop_tol : float, optional
(deprecated) No effect.
relax : int, optional
Expert option for customizing the degree of relaxing supernodes.
See SuperLU user's guide for details [SLU]_
panel_size : int, optional
Expert option for customizing the panel size.
See SuperLU user's guide for details [SLU]_
options : dict, optional
Dictionary containing additional expert options to SuperLU.
See SuperLU user guide [SLU]_ (section 2.4 on the 'Options' argument)
for more details. For example, you can specify
``options=dict(Equil=False, IterRefine='SINGLE'))``
to turn equilibration off and perform a single iterative refinement.

Returns
-------
invA : scipy.sparse.linalg.dsolve._superlu.SciPyLUType
Object, which has a ``solve`` method.

See also
--------
spilu : incomplete LU decomposition

Notes
-----
This function uses the SuperLU library.

References
----------
.. [SLU] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/

"""

    if not isspmatrix_csc(A):
        A = csc_matrix(A)
        warn('splu requires CSC matrix format', SparseEfficiencyWarning)

    A.sort_indices()
    A = A.asfptype() #upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("can only factor square matrices") #is this true?

    _options = dict(DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
                    PanelSize=panel_size, Relax=relax)
    if options is not None:
        _options.update(options)
    return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr,
                          ilu=False, options=_options)

def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None,
          diag_pivot_thresh=None, relax=None, panel_size=None, options=None):
    """
Compute an incomplete LU decomposition for a sparse, square matrix A.

The resulting object is an approximation to the inverse of A.

Parameters
----------
A
Sparse matrix to factorize

drop_tol : float, optional
Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition.
(default: 1e-4)
fill_factor : float, optional
Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)
drop_rule : str, optional
Comma-separated string of drop rules to use.
Available rules: ``basic``, ``prows``, ``column``, ``area``,
``secondary``, ``dynamic``, ``interp``. (Default: ``basic,area``)

See SuperLU documentation for details.
milu : str, optional
Which version of modified ILU to use. (Choices: ``silu``,
``smilu_1``, ``smilu_2`` (default), ``smilu_3``.)

Remaining other options
Same as for `splu`

Returns
-------
invA_approx : scipy.sparse.linalg.dsolve._superlu.SciPyLUType
Object, which has a ``solve`` method.

See also
--------
splu : complete LU decomposition

Notes
-----
To improve the better approximation to the inverse, you may need to
increase ``fill_factor`` AND decrease ``drop_tol``.

This function uses the SuperLU library.

"""
    if not isspmatrix_csc(A):
        A = csc_matrix(A)
        warn('splu requires CSC matrix format', SparseEfficiencyWarning)

    A.sort_indices()
    A = A.asfptype() #upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("can only factor square matrices") #is this true?

    _options = dict(ILU_DropRule=drop_rule, ILU_DropTol=drop_tol,
                    ILU_FillFactor=fill_factor,
                    DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
                    PanelSize=panel_size, Relax=relax)
    if options is not None:
        _options.update(options)
    return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr,
                          ilu=True, options=_options)

def factorized( A ):
    """
Return a fuction for solving a sparse linear system, with A pre-factorized.

Example:
solve = factorized( A ) # Makes LU decomposition.
x1 = solve( rhs1 ) # Uses the LU factors.
x2 = solve( rhs2 ) # Uses again the LU factors.
"""
    if isUmfpack and useUmfpack:
        if noScikit:
            warn( 'scipy.sparse.linalg.dsolve.umfpack will be removed,'
                    ' install scikits.umfpack instead', DeprecationWarning )

        if not isspmatrix_csc(A):
            A = csc_matrix(A)
            warn('splu requires CSC matrix format', SparseEfficiencyWarning)

        A.sort_indices()
        A = A.asfptype() #upcast to a floating point format

        if A.dtype.char not in 'dD':
            raise ValueError("convert matrix data to double, please, using"
                  " .astype(), or set linsolve.useUmfpack = False")

        family = {'d' : 'di', 'D' : 'zi'}
        umf = umfpack.UmfpackContext( family[A.dtype.char] )

        # Make LU decomposition.
        umf.numeric( A )

        def solve( b ):
            return umf.solve( umfpack.UMFPACK_A, A, b, autoTranspose = True )

        return solve
    else:
        return splu( A ).solve
Something went wrong with that request. Please try again.