Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

245 lines (211 sloc) 8.369 kb
"""Schur decomposition functions."""
from __future__ import division, print_function, absolute_import
import numpy
from numpy import asarray_chkfinite, single, asarray
from scipy.lib.six import callable
# Local imports.
from . import misc
from .misc import LinAlgError, _datacopied
from .lapack import get_lapack_funcs
from .decomp import eigvals
__all__ = ['schur', 'rsf2csf']
_double_precision = ['i','l','d']
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None,
check_finite=True):
"""
Compute Schur decomposition of a matrix.
The Schur decomposition is::
A = Z T Z^H
where Z is unitary and T is either upper-triangular, or for real
Schur decomposition (output='real'), quasi-upper triangular. In
the quasi-triangular form, 2x2 blocks describing complex-valued
eigenvalue pairs may extrude from the diagonal.
Parameters
----------
a : (M, M) array_like
Matrix to decompose
output : {'real', 'complex'}, optional
Construct the real or complex Schur decomposition (for real matrices).
lwork : int, optional
Work array size. If None or -1, it is automatically computed.
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance).
sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
Specifies whether the upper eigenvalues should be sorted. A callable
may be passed that, given a eigenvalue, returns a boolean denoting
whether the eigenvalue should be sorted to the top-left (True).
Alternatively, string parameters may be used::
'lhp' Left-hand plane (x.real < 0.0)
'rhp' Right-hand plane (x.real > 0.0)
'iuc' Inside the unit circle (x*x.conjugate() <= 1.0)
'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
Defaults to None (no sorting).
check_finite : boolean, optional
Whether to check the input matrixes contain only finite numbers.
Disabling may give a performance gain, but may result to problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
T : (M, M) ndarray
Schur form of A. It is real-valued for the real Schur decomposition.
Z : (M, M) ndarray
An unitary Schur transformation matrix for A.
It is real-valued for the real Schur decomposition.
sdim : int
If and only if sorting was requested, a third return value will
contain the number of eigenvalues satisfying the sort condition.
Raises
------
LinAlgError
Error raised under three conditions:
1. The algorithm failed due to a failure of the QR algorithm to
compute all eigenvalues
2. If eigenvalue sorting was requested, the eigenvalues could not be
reordered due to a failure to separate eigenvalues, usually because
of poor conditioning
3. If eigenvalue sorting was requested, roundoff errors caused the
leading eigenvalues to no longer satisfy the sorting condition
See also
--------
rsf2csf : Convert real Schur form to complex Schur form
"""
if not output in ['real','complex','r','c']:
raise ValueError("argument must be 'real', or 'complex'")
if check_finite:
a1 = asarray_chkfinite(a)
else:
a1 = asarray(a)
if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
raise ValueError('expected square matrix')
typ = a1.dtype.char
if output in ['complex','c'] and typ not in ['F','D']:
if typ in _double_precision:
a1 = a1.astype('D')
typ = 'D'
else:
a1 = a1.astype('F')
typ = 'F'
overwrite_a = overwrite_a or (_datacopied(a1, a))
gees, = get_lapack_funcs(('gees',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
result = gees(lambda x: None, a1, lwork=-1)
lwork = result[-2][0].real.astype(numpy.int)
if sort is None:
sort_t = 0
sfunction = lambda x: None
else:
sort_t = 1
if callable(sort):
sfunction = sort
elif sort == 'lhp':
sfunction = lambda x: (numpy.real(x) < 0.0)
elif sort == 'rhp':
sfunction = lambda x: (numpy.real(x) >= 0.0)
elif sort == 'iuc':
sfunction = lambda x: (abs(x) <= 1.0)
elif sort == 'ouc':
sfunction = lambda x: (abs(x) > 1.0)
else:
raise ValueError("sort parameter must be None, a callable, or " +
"one of ('lhp','rhp','iuc','ouc')")
result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a,
sort_t=sort_t)
info = result[-1]
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gees'
% -info)
elif info == a1.shape[0] + 1:
raise LinAlgError('Eigenvalues could not be separated for reordering.')
elif info == a1.shape[0] + 2:
raise LinAlgError('Leading eigenvalues do not satisfy sort condition.')
elif info > 0:
raise LinAlgError("Schur form not found. Possibly ill-conditioned.")
if sort_t == 0:
return result[0], result[-3]
else:
return result[0], result[-3], result[1]
eps = numpy.finfo(float).eps
feps = numpy.finfo(single).eps
_array_kind = {'b':0, 'h':0, 'B': 0, 'i':0, 'l': 0, 'f': 0, 'd': 0, 'F': 1, 'D': 1}
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
_array_type = [['f', 'd'], ['F', 'D']]
def _commonType(*arrays):
kind = 0
precision = 0
for a in arrays:
t = a.dtype.char
kind = max(kind, _array_kind[t])
precision = max(precision, _array_precision[t])
return _array_type[kind][precision]
def _castCopy(type, *arrays):
cast_arrays = ()
for a in arrays:
if a.dtype.char == type:
cast_arrays = cast_arrays + (a.copy(),)
else:
cast_arrays = cast_arrays + (a.astype(type),)
if len(cast_arrays) == 1:
return cast_arrays[0]
else:
return cast_arrays
def rsf2csf(T, Z, check_finite=True):
"""
Convert real Schur form to complex Schur form.
Convert a quasi-diagonal real-valued Schur form to the upper triangular
complex-valued Schur form.
Parameters
----------
T : (M, M) array_like
Real Schur form of the original matrix
Z : (M, M) array_like
Schur transformation matrix
check_finite : boolean, optional
Whether to check the input matrixes contain only finite numbers.
Disabling may give a performance gain, but may result to problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
T : (M, M) ndarray
Complex Schur form of the original matrix
Z : (M, M) ndarray
Schur transformation matrix corresponding to the complex form
See also
--------
schur : Schur decompose a matrix
"""
if check_finite:
Z, T = map(asarray_chkfinite, (Z, T))
else:
Z,T = map(asarray, (Z,T))
if len(Z.shape) != 2 or Z.shape[0] != Z.shape[1]:
raise ValueError("matrix must be square.")
if len(T.shape) != 2 or T.shape[0] != T.shape[1]:
raise ValueError("matrix must be square.")
if T.shape[0] != Z.shape[0]:
raise ValueError("matrices must be same dimension.")
N = T.shape[0]
arr = numpy.array
t = _commonType(Z, T, arr([3.0],'F'))
Z, T = _castCopy(t, Z, T)
conj = numpy.conj
dot = numpy.dot
r_ = numpy.r_
transp = numpy.transpose
for m in range(N-1, 0, -1):
if abs(T[m,m-1]) > eps*(abs(T[m-1,m-1]) + abs(T[m,m])):
k = slice(m-1, m+1)
mu = eigvals(T[k,k]) - T[m,m]
r = misc.norm([mu[0], T[m,m-1]])
c = mu[0] / r
s = T[m,m-1] / r
G = r_[arr([[conj(c), s]], dtype=t), arr([[-s, c]], dtype=t)]
Gc = conj(transp(G))
j = slice(m-1, N)
T[k,j] = dot(G, T[k,j])
i = slice(0, m+1)
T[i,k] = dot(T[i,k], Gc)
i = slice(0, N)
Z[i,k] = dot(Z[i,k], Gc)
T[m,m-1] = 0.0;
return T, Z
Jump to Line
Something went wrong with that request. Please try again.