Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

573 lines (499 sloc) 21.299 kb
"""Dictionary Of Keys based matrix"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['dok_matrix', 'isspmatrix_dok']
import numpy as np
from scipy.lib.six.moves import zip as izip, xrange
from scipy.lib.six import iteritems
from .base import spmatrix, isspmatrix
from .sputils import isdense, getdtype, isshape, isintlike, isscalarlike, upcast
try:
from operator import isSequenceType as _is_sequence
except ImportError:
def _is_sequence(x):
return (hasattr(x, '__len__') or hasattr(x, '__next__')
or hasattr(x, 'next'))
class dok_matrix(spmatrix, dict):
"""
Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse
matrices incrementally.
This can be instantiated in several ways:
dok_matrix(D)
with a dense matrix, D
dok_matrix(S)
with a sparse matrix, S
dok_matrix((M,N), [dtype])
create the matrix with initial shape (M,N)
dtype is optional, defaulting to dtype='d'
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements.
Duplicates are not allowed.
Can be efficiently converted to a coo_matrix once constructed.
Examples
--------
>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element
"""
def __init__(self, arg1, shape=None, dtype=None, copy=False):
dict.__init__(self)
spmatrix.__init__(self)
self.dtype = getdtype(dtype, default=float)
if isinstance(arg1, tuple) and isshape(arg1): # (M,N)
M, N = arg1
self.shape = (M, N)
elif isspmatrix(arg1): # Sparse ctor
if isspmatrix_dok(arg1) and copy:
arg1 = arg1.copy()
else:
arg1 = arg1.todok()
if dtype is not None:
arg1 = arg1.astype(dtype)
self.update(arg1)
self.shape = arg1.shape
self.dtype = arg1.dtype
else: # Dense ctor
try:
arg1 = np.asarray(arg1)
except:
raise TypeError('invalid input format')
if len(arg1.shape)!=2:
raise TypeError('expected rank <=2 dense array or matrix')
from .coo import coo_matrix
self.update( coo_matrix(arg1, dtype=dtype).todok() )
self.shape = arg1.shape
self.dtype = arg1.dtype
def getnnz(self):
return dict.__len__(self)
nnz = property(fget=getnnz)
def __len__(self):
return dict.__len__(self)
def get(self, key, default=0.):
"""This overrides the dict.get method, providing type checking
but otherwise equivalent functionality.
"""
try:
i, j = key
assert isintlike(i) and isintlike(j)
except (AssertionError, TypeError, ValueError):
raise IndexError('index must be a pair of integers')
if (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]):
raise IndexError('index out of bounds')
return dict.get(self, key, default)
def __getitem__(self, key):
"""If key=(i,j) is a pair of integers, return the corresponding
element. If either i or j is a slice or sequence, return a new sparse
matrix with just these elements.
"""
try:
i, j = key
except (ValueError, TypeError):
raise TypeError('index must be a pair of integers or slices')
# Bounds checking
if isintlike(i):
if i < 0:
i += self.shape[0]
if i < 0 or i >= self.shape[0]:
raise IndexError('index out of bounds')
if isintlike(j):
if j < 0:
j += self.shape[1]
if j < 0 or j >= self.shape[1]:
raise IndexError('index out of bounds')
# First deal with the case where both i and j are integers
if isintlike(i) and isintlike(j):
return dict.get(self, (i,j), 0.)
else:
# Either i or j is a slice, sequence, or invalid. If i is a slice
# or sequence, unfold it first and call __getitem__ recursively.
if isinstance(i, slice):
# Is there an easier way to do this?
seq = xrange(i.start or 0, i.stop or self.shape[0], i.step or 1)
elif _is_sequence(i):
seq = i
else:
# Make sure i is an integer. (But allow it to be a subclass of int).
if not isintlike(i):
raise TypeError('index must be a pair of integers or slices')
seq = None
if seq is not None:
# i is a seq
if isintlike(j):
# Create a new matrix of the correct dimensions
first = seq[0]
last = seq[-1]
if first < 0 or first >= self.shape[0] or last < 0 \
or last >= self.shape[0]:
raise IndexError('index out of bounds')
newshape = (last-first+1, 1)
new = dok_matrix(newshape)
# ** This uses linear time in the size m of dimension 0:
# new[0:seq[-1]-seq[0]+1, 0] = \
# [self.get((element, j), 0) for element in seq]
# ** Instead just add the non-zero elements. This uses
# ** linear time in the number of non-zeros:
for (ii, jj) in self.keys():
if jj == j and ii >= first and ii <= last:
dict.__setitem__(new, (ii-first, 0), \
dict.__getitem__(self, (ii,jj)))
else:
###################################
# We should reshape the new matrix here!
###################################
raise NotImplementedError("fancy indexing supported over"
" one axis only")
return new
# Below here, j is a sequence, but i is an integer
if isinstance(j, slice):
# Is there an easier way to do this?
seq = xrange(j.start or 0, j.stop or self.shape[1], j.step or 1)
elif _is_sequence(j):
seq = j
else:
# j is not an integer
raise TypeError("index must be a pair of integers or slices")
# Create a new matrix of the correct dimensions
first = seq[0]
last = seq[-1]
if first < 0 or first >= self.shape[1] or last < 0 \
or last >= self.shape[1]:
raise IndexError("index out of bounds")
newshape = (1, last-first+1)
new = dok_matrix(newshape)
# ** This uses linear time in the size n of dimension 1:
# new[0, 0:seq[-1]-seq[0]+1] = \
# [self.get((i, element), 0) for element in seq]
# ** Instead loop over the non-zero elements. This is slower
# ** if there are many non-zeros
for (ii, jj) in self.keys():
if ii == i and jj >= first and jj <= last:
dict.__setitem__(new, (0, jj-first), \
dict.__getitem__(self, (ii,jj)))
return new
def __setitem__(self, key, value):
try:
i, j = key
except (ValueError, TypeError):
raise TypeError("index must be a pair of integers or slices")
# First deal with the case where both i and j are integers
if isintlike(i) and isintlike(j):
if i < 0:
i += self.shape[0]
if j < 0:
j += self.shape[1]
if i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]:
raise IndexError("index out of bounds")
if np.isscalar(value):
if value == 0:
if (i,j) in self:
del self[(i,j)]
else:
dict.__setitem__(self, (i,j), self.dtype.type(value))
else:
raise ValueError('setting an array element with a sequence')
else:
# Either i or j is a slice, sequence, or invalid. If i is a slice
# or sequence, unfold it first and call __setitem__ recursively.
if isinstance(i, slice):
# Is there an easier way to do this?
seq = xrange(i.start or 0, i.stop or self.shape[0], i.step or 1)
elif _is_sequence(i):
seq = i
else:
# Make sure i is an integer. (But allow it to be a subclass of int).
if not isintlike(i):
raise TypeError("index must be a pair of integers or slices")
seq = None
if seq is not None:
# First see if 'value' is another dok_matrix of the appropriate
# dimensions
if isinstance(value, dok_matrix):
if value.shape[1] == 1:
for element in seq:
self[element, j] = value[element, 0]
else:
raise NotImplementedError("setting a 2-d slice of"
" a dok_matrix is not yet supported")
elif np.isscalar(value):
for element in seq:
self[element, j] = value
else:
# See if value is a sequence
try:
if len(seq) != len(value):
raise ValueError("index and value ranges must"
" have the same length")
except TypeError:
# Not a sequence
raise TypeError("unsupported type for"
" dok_matrix.__setitem__")
# Value is a sequence
for element, val in izip(seq, value):
self[element, j] = val # don't use dict.__setitem__
# here, since we still want to be able to delete
# 0-valued keys, do type checking on 'val' (e.g. if
# it's a rank-1 dense array), etc.
else:
# Process j
if isinstance(j, slice):
seq = xrange(j.start or 0, j.stop or self.shape[1], j.step or 1)
elif _is_sequence(j):
seq = j
else:
# j is not an integer
raise TypeError("index must be a pair of integers or slices")
# First see if 'value' is another dok_matrix of the appropriate
# dimensions
if isinstance(value, dok_matrix):
if value.shape[0] == 1:
for element in seq:
self[i, element] = value[0, element]
else:
raise NotImplementedError("setting a 2-d slice of"
" a dok_matrix is not yet supported")
elif np.isscalar(value):
for element in seq:
self[i, element] = value
else:
# See if value is a sequence
try:
if len(seq) != len(value):
raise ValueError("index and value ranges must have"
" the same length")
except TypeError:
# Not a sequence
raise TypeError("unsupported type for dok_matrix.__setitem__")
else:
for element, val in izip(seq, value):
self[i, element] = val
def __add__(self, other):
# First check if argument is a scalar
if isscalarlike(other):
new = dok_matrix(self.shape, dtype=self.dtype)
# Add this scalar to every element.
M, N = self.shape
for i in xrange(M):
for j in xrange(N):
aij = self.get((i, j), 0) + other
if aij != 0:
new[i, j] = aij
#new.dtype.char = self.dtype.char
elif isinstance(other, dok_matrix):
if other.shape != self.shape:
raise ValueError("matrix dimensions are not equal")
# We could alternatively set the dimensions to the the largest of
# the two matrices to be summed. Would this be a good idea?
new = dok_matrix(self.shape, dtype=self.dtype)
new.update(self)
for key in other.keys():
new[key] += other[key]
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = self.todense() + other
else:
raise TypeError("data type not understood")
return new
def __radd__(self, other):
# First check if argument is a scalar
if isscalarlike(other):
new = dok_matrix(self.shape, dtype=self.dtype)
# Add this scalar to every element.
M, N = self.shape
for i in xrange(M):
for j in xrange(N):
aij = self.get((i, j), 0) + other
if aij != 0:
new[i, j] = aij
elif isinstance(other, dok_matrix):
if other.shape != self.shape:
raise ValueError("matrix dimensions are not equal")
new = dok_matrix(self.shape, dtype=self.dtype)
new.update(self)
for key in other:
new[key] += other[key]
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = other + self.todense()
else:
raise TypeError("data type not understood")
return new
def __neg__(self):
new = dok_matrix(self.shape, dtype=self.dtype)
for key in self.keys():
new[key] = -self[key]
return new
def _mul_scalar(self, other):
# Multiply this scalar by every element.
new = dok_matrix(self.shape, dtype=self.dtype)
for (key, val) in iteritems(self):
new[key] = val * other
return new
def _mul_vector(self, other):
#matrix * vector
result = np.zeros( self.shape[0], dtype=upcast(self.dtype,other.dtype) )
for (i,j),v in iteritems(self):
result[i] += v * other[j]
return result
def _mul_multivector(self, other):
#matrix * multivector
M,N = self.shape
n_vecs = other.shape[1] #number of column vectors
result = np.zeros( (M,n_vecs), dtype=upcast(self.dtype,other.dtype) )
for (i,j),v in iteritems(self):
result[i,:] += v * other[j,:]
return result
def __imul__(self, other):
if isscalarlike(other):
# Multiply this scalar by every element.
for (key, val) in iteritems(self):
self[key] = val * other
#new.dtype.char = self.dtype.char
return self
else:
return NotImplementedError
def __truediv__(self, other):
if isscalarlike(other):
new = dok_matrix(self.shape, dtype=self.dtype)
# Multiply this scalar by every element.
for (key, val) in iteritems(self):
new[key] = val / other
#new.dtype.char = self.dtype.char
return new
else:
return self.tocsr() / other
def __itruediv__(self, other):
if isscalarlike(other):
# Multiply this scalar by every element.
for (key, val) in iteritems(self):
self[key] = val / other
return self
else:
return NotImplementedError
# What should len(sparse) return? For consistency with dense matrices,
# perhaps it should be the number of rows? For now it returns the number
# of non-zeros.
def transpose(self):
""" Return the transpose
"""
M, N = self.shape
new = dok_matrix((N, M), dtype=self.dtype)
for key, value in iteritems(self):
new[key[1], key[0]] = value
return new
def conjtransp(self):
""" Return the conjugate transpose
"""
M, N = self.shape
new = dok_matrix((N, M), dtype=self.dtype)
for key, value in iteritems(self):
new[key[1], key[0]] = np.conj(value)
return new
def copy(self):
new = dok_matrix(self.shape, dtype=self.dtype)
new.update(self)
return new
def take(self, cols_or_rows, columns=1):
# Extract columns or rows as indictated from matrix
# assume cols_or_rows is sorted
new = dok_matrix(dtype=self.dtype) # what should the dimensions be ?!
indx = int((columns == 1))
N = len(cols_or_rows)
if indx: # columns
for key in self.keys():
num = np.searchsorted(cols_or_rows, key[1])
if num < N:
newkey = (key[0], num)
new[newkey] = self[key]
else:
for key in self.keys():
num = np.searchsorted(cols_or_rows, key[0])
if num < N:
newkey = (num, key[1])
new[newkey] = self[key]
return new
def split(self, cols_or_rows, columns=1):
# Similar to take but returns two arrays, the extracted columns plus
# the resulting array. Assumes cols_or_rows is sorted
base = dok_matrix()
ext = dok_matrix()
indx = int((columns == 1))
if indx:
for key in self.keys():
num = np.searchsorted(cols_or_rows, key[1])
if cols_or_rows[num] == key[1]:
newkey = (key[0], num)
ext[newkey] = self[key]
else:
newkey = (key[0], key[1]-num)
base[newkey] = self[key]
else:
for key in self.keys():
num = np.searchsorted(cols_or_rows, key[0])
if cols_or_rows[num] == key[0]:
newkey = (num, key[1])
ext[newkey] = self[key]
else:
newkey = (key[0]-num, key[1])
base[newkey] = self[key]
return base, ext
def tocoo(self):
""" Return a copy of this matrix in COOrdinate format"""
from .coo import coo_matrix
if self.nnz == 0:
return coo_matrix(self.shape, dtype=self.dtype)
else:
data = np.asarray(list(self.values()), dtype=self.dtype)
indices = np.asarray(list(self.keys()), dtype=np.intc).T
return coo_matrix((data,indices), shape=self.shape, dtype=self.dtype)
def todok(self,copy=False):
if copy:
return self.copy()
else:
return self
def tocsr(self):
""" Return a copy of this matrix in Compressed Sparse Row format"""
return self.tocoo().tocsr()
def tocsc(self):
""" Return a copy of this matrix in Compressed Sparse Column format"""
return self.tocoo().tocsc()
def toarray(self, order=None, out=None):
"""See the docstring for `spmatrix.toarray`."""
return self.tocoo().toarray(order=order, out=out)
def resize(self, shape):
""" Resize the matrix in-place to dimensions given by 'shape'.
Any non-zero elements that lie outside the new shape are removed.
"""
if not isshape(shape):
raise TypeError("dimensions must be a 2-tuple of positive"
" integers")
newM, newN = shape
M, N = self.shape
if newM < M or newN < N:
# Remove all elements outside new dimensions
for (i, j) in list(self.keys()):
if i >= newM or j >= newN:
del self[i, j]
self._shape = shape
def isspmatrix_dok(x):
return isinstance(x, dok_matrix)
Jump to Line
Something went wrong with that request. Please try again.