Skip to content
This repository
file 389 lines (316 sloc) 13.386 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
""" A sparse matrix in COOrdinate or 'triplet' format"""
from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['coo_matrix', 'isspmatrix_coo']

from warnings import warn

import numpy as np

from scipy.lib.six.moves import zip as izip

from .sparsetools import coo_tocsr, coo_todense, coo_matvec
from .base import isspmatrix
from .data import _data_matrix, _minmax_mixin
from .sputils import upcast, upcast_char, to_native, isshape, getdtype, isintlike


class coo_matrix(_data_matrix, _minmax_mixin):
    """
A sparse matrix in COOrdinate format.

Also known as the 'ijv' or 'triplet' format.

This can be instantiated in several ways:
coo_matrix(D)
with a dense matrix D

coo_matrix(S)
with another sparse matrix S (equivalent to S.tocoo())

coo_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.

coo_matrix((data, (i, j)), [shape=(M, N)])
to construct from three arrays:
1. data[:] the entries of the matrix, in any order
2. i[:] the row indices of the matrix entries
3. j[:] the column indices of the matrix entries

Where ``A[i[k], j[k]] = data[k]``. When shape is not
specified, it is inferred from the index arrays

Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
data
COO format data array of the matrix
row
COO format row index array of the matrix
col
COO format column index array of the matrix

Notes
-----

Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.

Advantages of the COO format
- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format
- does not directly support:
+ arithmetic operations
+ slicing

Intended Usage
- COO is a fast format for constructing sparse matrices
- Once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- By default when converting to CSR or CSC format, duplicate (i,j)
entries will be summed together. This facilitates efficient
construction of finite element matrices and the like. (see example)

Examples
--------
>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3,4), dtype=np.int8).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0,3,1,0])
>>> col = np.array([0,3,1,2])
>>> data = np.array([4,5,7,9])
>>> coo_matrix((data,(row,col)), shape=(4,4)).todense()
matrix([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])

>>> # example with duplicates
>>> row = np.array([0,0,1,3,1,0,0])
>>> col = np.array([0,2,1,3,1,0,0])
>>> data = np.array([1,1,1,1,1,1,1])
>>> coo_matrix((data, (row,col)), shape=(4,4)).todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

"""
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isinstance(arg1, tuple):
            if isshape(arg1):
                M, N = arg1
                self.shape = (M,N)
                self.row = np.array([], dtype=np.intc)
                self.col = np.array([], dtype=np.intc)
                self.data = np.array([], getdtype(dtype, default=float))
            else:
                try:
                    obj, ij = arg1
                except:
                    raise TypeError('invalid input format')

                try:
                    if len(ij) != 2:
                        raise TypeError
                except TypeError:
                    raise TypeError('invalid input format')

                self.row = np.array(ij[0], copy=copy, dtype=np.intc)
                self.col = np.array(ij[1], copy=copy, dtype=np.intc)
                self.data = np.array(obj, copy=copy)

                if shape is None:
                    if len(self.row) == 0 or len(self.col) == 0:
                        raise ValueError('cannot infer dimensions from zero sized index arrays')
                    M = self.row.max() + 1
                    N = self.col.max() + 1
                    self.shape = (M, N)
                else:
                    # Use 2 steps to ensure shape has length 2.
                    M, N = shape
                    self.shape = (M, N)

        elif arg1 is None:
            # Initialize an empty matrix.
            if not isinstance(shape, tuple) or not isintlike(shape[0]):
                raise TypeError('dimensions not understood')
            warn('coo_matrix(None, shape=(M,N)) is deprecated, '
                    'use coo_matrix( (M,N) ) instead', DeprecationWarning)
            self.shape = shape
            self.data = np.array([], getdtype(dtype, default=float))
            self.row = np.array([], dtype=np.intc)
            self.col = np.array([], dtype=np.intc)
        else:
            if isspmatrix(arg1):
                if isspmatrix_coo(arg1) and copy:
                    self.row = arg1.row.copy()
                    self.col = arg1.col.copy()
                    self.data = arg1.data.copy()
                    self.shape = arg1.shape
                else:
                    coo = arg1.tocoo()
                    self.row = coo.row
                    self.col = coo.col
                    self.data = coo.data
                    self.shape = coo.shape
            else:
                #dense argument
                try:
                    M = np.atleast_2d(np.asarray(arg1))
                except:
                    raise TypeError('invalid input format')

                if np.rank(M) != 2:
                    raise TypeError('expected rank <= 2 array or matrix')
                else:
                    self.shape = M.shape

                self.row, self.col = M.nonzero()
                self.data = M[self.row, self.col]

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self._check()

    def getnnz(self):
        nnz = len(self.data)
        if nnz != len(self.row) or nnz != len(self.col):
            raise ValueError('row, column, and data array must all be the same length')

        if np.rank(self.data) != 1 or np.rank(self.row) != 1 or np.rank(self.col) != 1:
            raise ValueError('row, column, and data arrays must have rank 1')

        return int(nnz)
    nnz = property(fget=getnnz)

    def _check(self):
        """ Checks data structure for consistency """
        nnz = self.nnz

        # index arrays should have integer data types
        if self.row.dtype.kind != 'i':
            warn("row index array has non-integer dtype (%s) "
                    % self.row.dtype.name)
        if self.col.dtype.kind != 'i':
            warn("col index array has non-integer dtype (%s) "
                    % self.col.dtype.name)

        # only support 32-bit ints for now
        self.row = np.asarray(self.row, dtype=np.intc)
        self.col = np.asarray(self.col, dtype=np.intc)
        self.data = to_native(self.data)

        if nnz > 0:
            if self.row.max() >= self.shape[0]:
                raise ValueError('row index exceedes matrix dimensions')
            if self.col.max() >= self.shape[1]:
                raise ValueError('column index exceedes matrix dimensions')
            if self.row.min() < 0:
                raise ValueError('negative row index found')
            if self.col.min() < 0:
                raise ValueError('negative column index found')

    def transpose(self, copy=False):
        M,N = self.shape
        return coo_matrix((self.data, (self.col, self.row)), shape=(N,M), copy=copy)

    def toarray(self, order=None, out=None):
        """See the docstring for `spmatrix.toarray`."""
        B = self._process_toarray_args(order, out)
        fortran = int(B.flags.f_contiguous)
        if not fortran and not B.flags.c_contiguous:
            raise ValueError("Output array must be C or F contiguous")
        M,N = self.shape
        coo_todense(M, N, self.nnz, self.row, self.col, self.data,
                    B.ravel('A'), fortran)
        return B

    def tocsc(self):
        """Return a copy of this matrix in Compressed Sparse Column format

Duplicate entries will be summed together.

Examples
--------
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0,0,1,3,1,0,0])
>>> col = array([0,2,1,3,1,0,0])
>>> data = array([1,1,1,1,1,1,1])
>>> A = coo_matrix( (data,(row,col)), shape=(4,4)).tocsc()
>>> A.todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

"""
        from .csc import csc_matrix
        if self.nnz == 0:
            return csc_matrix(self.shape, dtype=self.dtype)
        else:
            M,N = self.shape
            indptr = np.empty(N + 1, dtype=np.intc)
            indices = np.empty(self.nnz, dtype=np.intc)
            data = np.empty(self.nnz, dtype=upcast(self.dtype))

            coo_tocsr(N, M, self.nnz,
                      self.col, self.row, self.data,
                      indptr, indices, data)

            A = csc_matrix((data, indices, indptr), shape=self.shape)
            A.sum_duplicates()

            return A

    def tocsr(self):
        """Return a copy of this matrix in Compressed Sparse Row format

Duplicate entries will be summed together.

Examples
--------
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0,0,1,3,1,0,0])
>>> col = array([0,2,1,3,1,0,0])
>>> data = array([1,1,1,1,1,1,1])
>>> A = coo_matrix( (data,(row,col)), shape=(4,4)).tocsr()
>>> A.todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])

"""
        from .csr import csr_matrix
        if self.nnz == 0:
            return csr_matrix(self.shape, dtype=self.dtype)
        else:
            M,N = self.shape
            indptr = np.empty(M + 1, dtype=np.intc)
            indices = np.empty(self.nnz, dtype=np.intc)
            data = np.empty(self.nnz, dtype=upcast(self.dtype))

            coo_tocsr(M, N, self.nnz,
                      self.row, self.col, self.data,
                      indptr, indices, data)

            A = csr_matrix((data, indices, indptr), shape=self.shape)
            A.sum_duplicates()

            return A

    def tocoo(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    def todia(self):
        from .dia import dia_matrix

        ks = self.col - self.row # the diagonal for each nonzero
        diags = np.unique(ks)

        if len(diags) > 100:
            #probably undesired, should we do something?
            #should todia() have a maxdiags parameter?
            pass

        #initialize and fill in data array
        if self.data.size == 0:
            data = np.zeros((0, 0), dtype=self.dtype)
        else:
            data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype)
            data[np.searchsorted(diags,ks), self.col] = self.data

        return dia_matrix((data,diags), shape=self.shape)

    def todok(self):
        from .dok import dok_matrix

        dok = dok_matrix((self.shape), dtype=self.dtype)

        dok.update(izip(izip(self.row,self.col),self.data))

        return dok

    # needed by _data_matrix
    def _with_data(self,data,copy=True):
        """Returns a matrix with the same sparsity structure as self,
but with different data. By default the index arrays
(i.e. .row and .col) are copied.
"""
        if copy:
            return coo_matrix((data, (self.row.copy(), self.col.copy())),
                                   shape=self.shape, dtype=data.dtype)
        else:
            return coo_matrix((data, (self.row, self.col)),
                                   shape=self.shape, dtype=data.dtype)

    ###########################
    # Multiplication handlers #
    ###########################

    def _mul_vector(self, other):
        #output array
        result = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
                                                            other.dtype.char))
        coo_matvec(self.nnz, self.row, self.col, self.data, other, result)
        return result

    def _mul_multivector(self, other):
        return np.hstack([self._mul_vector(col).reshape(-1,1) for col in other.T])


def isspmatrix_coo(x):
    return isinstance(x, coo_matrix)
Something went wrong with that request. Please try again.