Skip to content
Fetching contributors…
Cannot retrieve contributors at this time
271 lines (230 sloc) 8.64 KB
# Functions which need the PIL
import numpy
import tempfile
from numpy import amin, amax, ravel, asarray, cast, arange, \
ones, newaxis, transpose, mgrid, iscomplexobj, sum, zeros, uint8, \
issubdtype, array
import Image
import ImageFilter
__all__ = ['fromimage','toimage','imsave','imread','bytescale',
# Returns a byte-scaled image
def bytescale(data, cmin=None, cmax=None, high=255, low=0):
if data.dtype == uint8:
return data
high = high - low
if cmin is None: cmin = data.min()
if cmax is None: cmax = data.max()
scale = high *1.0 / (cmax-cmin or 1)
bytedata = ((data*1.0-cmin)*scale + 0.4999).astype(uint8)
return bytedata + cast[uint8](low)
def imread(name,flatten=0):
"""Read an image file from a filename.
Optional arguments:
- flatten (0): if true, the image is flattened by calling convert('F') on
the resulting image object. This flattens the color layers into a single
grayscale layer.
im =
return fromimage(im,flatten=flatten)
def imsave(name, arr):
"""Save an array to an image file.
im = toimage(arr)
def fromimage(im, flatten=0):
"""Return a copy of a PIL image as a numpy array.
im : PIL image
Input image.
flatten : bool
If true, convert the output to grey-scale.
img_array : ndarray
The different colour bands/channels are stored in the
third dimension, such that a grey-image is MxN, an
RGB-image MxNx3 and an RGBA-image MxNx4.
if not Image.isImageType(im):
raise TypeError("Input is not a PIL image.")
if flatten:
im = im.convert('F')
return array(im)
_errstr = "Mode is unknown or incompatible with input array shape."
def toimage(arr,high=255,low=0,cmin=None,cmax=None,pal=None,
"""Takes a numpy array and returns a PIL image. The mode of the
PIL image depends on the array shape, the pal keyword, and the mode
For 2-D arrays, if pal is a valid (N,3) byte-array giving the RGB values
(from 0 to 255) then mode='P', otherwise mode='L', unless mode is given
as 'F' or 'I' in which case a float and/or integer array is made
For 3-D arrays, the channel_axis argument tells which dimension of the
array holds the channel data.
For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
by default or 'YCbCr' if selected.
if the
The numpy array must be either 2 dimensional or 3 dimensional.
data = asarray(arr)
if iscomplexobj(data):
raise ValueError, "Cannot convert a complex-valued array."
shape = list(data.shape)
valid = len(shape)==2 or ((len(shape)==3) and \
((3 in shape) or (4 in shape)))
assert valid, "Not a suitable array shape for any mode."
if len(shape) == 2:
shape = (shape[1],shape[0]) # columns show up first
if mode == 'F':
data32 = data.astype(numpy.float32)
image = Image.fromstring(mode,shape,data32.tostring())
return image
if mode in [None, 'L', 'P']:
bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax)
image = Image.fromstring('L',shape,bytedata.tostring())
if pal is not None:
# Becomes a mode='P' automagically.
elif mode == 'P': # default gray-scale
pal = arange(0,256,1,dtype=uint8)[:,newaxis] * \
return image
if mode == '1': # high input gives threshold for 1
bytedata = (data > high)
image = Image.fromstring('1',shape,bytedata.tostring())
return image
if cmin is None:
cmin = amin(ravel(data))
if cmax is None:
cmax = amax(ravel(data))
data = (data*1.0 - cmin)*(high-low)/(cmax-cmin) + low
if mode == 'I':
data32 = data.astype(numpy.uint32)
image = Image.fromstring(mode,shape,data32.tostring())
raise ValueError, _errstr
return image
# if here then 3-d array with a 3 or a 4 in the shape length.
# Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
if channel_axis is None:
if (3 in shape):
ca = numpy.flatnonzero(asarray(shape) == 3)[0]
ca = numpy.flatnonzero(asarray(shape) == 4)
if len(ca):
ca = ca[0]
raise ValueError, "Could not find channel dimension."
ca = channel_axis
numch = shape[ca]
if numch not in [3,4]:
raise ValueError, "Channel axis dimension is not valid."
bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax)
if ca == 2:
strdata = bytedata.tostring()
shape = (shape[1],shape[0])
elif ca == 1:
strdata = transpose(bytedata,(0,2,1)).tostring()
shape = (shape[2],shape[0])
elif ca == 0:
strdata = transpose(bytedata,(1,2,0)).tostring()
shape = (shape[2],shape[1])
if mode is None:
if numch == 3: mode = 'RGB'
else: mode = 'RGBA'
if mode not in ['RGB','RGBA','YCbCr','CMYK']:
raise ValueError, _errstr
if mode in ['RGB', 'YCbCr']:
assert numch == 3, "Invalid array shape for mode."
if mode in ['RGBA', 'CMYK']:
assert numch == 4, "Invalid array shape for mode."
# Here we know data and mode is coorect
image = Image.fromstring(mode, shape, strdata)
return image
def imrotate(arr,angle,interp='bilinear'):
"""Rotate an image counter-clockwise by angle degrees.
Interpolation methods can be:
'nearest' : for nearest neighbor
'bilinear' : for bilinear
'cubic' or 'bicubic' : for bicubic
arr = asarray(arr)
func = {'nearest':0,'bilinear':2,'bicubic':3,'cubic':3}
im = toimage(arr)
im = im.rotate(angle,resample=func[interp])
return fromimage(im)
def imresize(arr,newsize,interp='bilinear',mode=None):
newsize = tuple(newsize)
arr = asarray(arr)
func = {'nearest':0,'bilinear':2,'bicubic':3,'cubic':3}
im = toimage(arr,mode=mode)
im = im.resize(newsize,resample=func[interp])
return fromimage(im)
def imshow(arr):
"""Simple showing of an image through an external viewer.
im = toimage(arr)
fnum,fname = tempfile.mkstemp('.png')
raise RuntimeError("Error saving temporary image data.")
import os
cmd = os.environ.get('SCIPY_PIL_IMAGE_VIEWER','see')
status = os.system("%s %s" % (cmd,fname))
if status != 0:
raise RuntimeError('Could not execute image viewer.')
def imresize(arr,size):
"""Resize an image.
If size is an integer it is a percentage of current size.
If size is a float it is a fraction of current size.
If size is a tuple it is the size of the output image.
im = toimage(arr)
ts = type(size)
if issubdtype(ts,int):
size = size / 100.0
elif issubdtype(type(size),float):
size = (array(im.size)*size).astype(int)
size = (size[1],size[0])
imnew = im.resize(size)
return fromimage(imnew)
def imfilter(arr,ftype):
"""Simple filtering of an image.
type can be:
'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more',
'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'
_tdict = {'blur':ImageFilter.BLUR,
im = toimage(arr)
if ftype not in _tdict.keys():
raise ValueError, "Unknown filter type."
return fromimage(im.filter(_tdict[ftype]))
def radon(arr,theta=None):
if theta is None:
theta = mgrid[0:180]
s = zeros((arr.shape[1],len(theta)), float)
k = 0
for th in theta:
im = imrotate(arr,-th)
s[:,k] = sum(im,axis=0)
k += 1
return s
Jump to Line
Something went wrong with that request. Please try again.