Skip to content
This repository
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 168 lines (142 sloc) 5.254 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
"""Schur decomposition functions."""

import numpy
from numpy import asarray_chkfinite, single

# Local imports.
import misc
from misc import LinAlgError, _datanotshared
from lapack import get_lapack_funcs
from decomp import eigvals


__all__ = ['schur', 'rsf2csf']

_double_precision = ['i','l','d']

def schur(a, output='real', lwork=None, overwrite_a=False):
    """Compute Schur decomposition of a matrix.

The Schur decomposition is

A = Z T Z^H

where Z is unitary and T is either upper-triangular, or for real
Schur decomposition (output='real'), quasi-upper triangular. In
the quasi-triangular form, 2x2 blocks describing complex-valued
eigenvalue pairs may extrude from the diagonal.

Parameters
----------
a : array, shape (M, M)
Matrix to decompose
output : {'real', 'complex'}
Construct the real or complex Schur decomposition (for real matrices).
lwork : integer
Work array size. If None or -1, it is automatically computed.
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)

Returns
-------
T : array, shape (M, M)
Schur form of A. It is real-valued for the real Schur decomposition.
Z : array, shape (M, M)
An unitary Schur transformation matrix for A.
It is real-valued for the real Schur decomposition.

See also
--------
rsf2csf : Convert real Schur form to complex Schur form

"""
    if not output in ['real','complex','r','c']:
        raise ValueError("argument must be 'real', or 'complex'")
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
        raise ValueError('expected square matrix')
    typ = a1.dtype.char
    if output in ['complex','c'] and typ not in ['F','D']:
        if typ in _double_precision:
            a1 = a1.astype('D')
            typ = 'D'
        else:
            a1 = a1.astype('F')
            typ = 'F'
    overwrite_a = overwrite_a or (_datanotshared(a1, a))
    gees, = get_lapack_funcs(('gees',), (a1,))
    if lwork is None or lwork == -1:
        # get optimal work array
        result = gees(lambda x: None, a, lwork=-1)
        lwork = result[-2][0].real.astype(numpy.int)
    result = gees(lambda x: None, a, lwork=lwork, overwrite_a=overwrite_a)
    info = result[-1]
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal gees'
                                                                    % -info)
    elif info > 0:
        raise LinAlgError("Schur form not found. Possibly ill-conditioned.")
    return result[0], result[-3]


eps = numpy.finfo(float).eps
feps = numpy.finfo(single).eps

_array_kind = {'b':0, 'h':0, 'B': 0, 'i':0, 'l': 0, 'f': 0, 'd': 0, 'F': 1, 'D': 1}
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
_array_type = [['f', 'd'], ['F', 'D']]

def _commonType(*arrays):
    kind = 0
    precision = 0
    for a in arrays:
        t = a.dtype.char
        kind = max(kind, _array_kind[t])
        precision = max(precision, _array_precision[t])
    return _array_type[kind][precision]

def _castCopy(type, *arrays):
    cast_arrays = ()
    for a in arrays:
        if a.dtype.char == type:
            cast_arrays = cast_arrays + (a.copy(),)
        else:
            cast_arrays = cast_arrays + (a.astype(type),)
    if len(cast_arrays) == 1:
        return cast_arrays[0]
    else:
        return cast_arrays


def rsf2csf(T, Z):
    """Convert real Schur form to complex Schur form.

Convert a quasi-diagonal real-valued Schur form to the upper triangular
complex-valued Schur form.

Parameters
----------
T : array, shape (M, M)
Real Schur form of the original matrix
Z : array, shape (M, M)
Schur transformation matrix

Returns
-------
T : array, shape (M, M)
Complex Schur form of the original matrix
Z : array, shape (M, M)
Schur transformation matrix corresponding to the complex form

See also
--------
schur : Schur decompose a matrix

"""
    Z, T = map(asarray_chkfinite, (Z, T))
    if len(Z.shape) != 2 or Z.shape[0] != Z.shape[1]:
        raise ValueError("matrix must be square.")
    if len(T.shape) != 2 or T.shape[0] != T.shape[1]:
        raise ValueError("matrix must be square.")
    if T.shape[0] != Z.shape[0]:
        raise ValueError("matrices must be same dimension.")
    N = T.shape[0]
    arr = numpy.array
    t = _commonType(Z, T, arr([3.0],'F'))
    Z, T = _castCopy(t, Z, T)
    conj = numpy.conj
    dot = numpy.dot
    r_ = numpy.r_
    transp = numpy.transpose
    for m in range(N-1, 0, -1):
        if abs(T[m,m-1]) > eps*(abs(T[m-1,m-1]) + abs(T[m,m])):
            k = slice(m-1, m+1)
            mu = eigvals(T[k,k]) - T[m,m]
            r = misc.norm([mu[0], T[m,m-1]])
            c = mu[0] / r
            s = T[m,m-1] / r
            G = r_[arr([[conj(c), s]], dtype=t), arr([[-s, c]], dtype=t)]
            Gc = conj(transp(G))
            j = slice(m-1, N)
            T[k,j] = dot(G, T[k,j])
            i = slice(0, m+1)
            T[i,k] = dot(T[i,k], Gc)
            i = slice(0, N)
            Z[i,k] = dot(Z[i,k], Gc)
        T[m,m-1] = 0.0;
    return T, Z
Something went wrong with that request. Please try again.