Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

247 lines (208 sloc) 8.146 kB
"""QR decomposition functions."""
from warnings import warn
import numpy
from numpy import asarray_chkfinite, complexfloating
# Local imports
import special_matrices
from blas import get_blas_funcs
from lapack import get_lapack_funcs, find_best_lapack_type
from misc import _datanotshared
def qr(a, overwrite_a=False, lwork=None, mode='full'):
"""Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, N)
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
mode : {'full', 'r', 'economic'}
Determines what information is to be returned: either both Q and R
('full', default), only R ('r') or both Q and R but computed in
economy-size ('economic', see Notes).
Returns
-------
Q : double or complex ndarray
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned if
``mode='r'``.
R : double or complex ndarray
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
Raises LinAlgError if decomposition fails
Notes
-----
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, and zungqr.
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
of (M,M) and (M,N), with ``K=min(M,N)``.
Examples
--------
>>> from scipy import random, linalg, dot
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))
"""
if mode == 'qr':
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
# 'qr' are used below, but set to 'full' anyway to be sure
mode = 'full'
if not mode in ['full', 'qr', 'r', 'economic']:
raise ValueError(\
"Mode argument should be one of ['full', 'r', 'economic']")
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError("expected 2D array")
M, N = a1.shape
overwrite_a = overwrite_a or (_datanotshared(a1, a))
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal geqrf"
% -info)
if not mode == 'economic' or M < N:
R = special_matrices.triu(qr)
else:
R = special_matrices.triu(qr[0:N, 0:N])
if mode == 'r':
return R
if find_best_lapack_type((a1,))[0] == 's' or \
find_best_lapack_type((a1,))[0] == 'd':
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
else:
gor_un_gqr, = get_lapack_funcs(('ungqr',), (qr,))
if M < N:
# get optimal work array
Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=lwork, overwrite_a=1)
elif mode == 'economic':
# get optimal work array
Q, work, info = gor_un_gqr(qr, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qr, tau, lwork=lwork, overwrite_a=1)
else:
t = qr.dtype.char
qqr = numpy.empty((M, M), dtype=t)
qqr[:,0:N] = qr
# get optimal work array
Q, work, info = gor_un_gqr(qqr, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qqr, tau, lwork=lwork, overwrite_a=1)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal gorgqr"
% -info)
return Q, R
def qr_old(a, overwrite_a=False, lwork=None):
"""Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, N)
Matrix to be decomposed
overwrite_a : boolean
Whether data in a is overwritten (may improve performance)
lwork : integer
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
Returns
-------
Q : double or complex array, shape (M, M)
R : double or complex array, shape (M, N)
Size K = min(M, N)
Raises LinAlgError if decomposition fails
"""
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError('expected matrix')
M,N = a1.shape
overwrite_a = overwrite_a or (_datanotshared(a1, a))
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
lwork = work[0]
qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal geqrf'
% -info)
gemm, = get_blas_funcs(('gemm',), (qr,))
t = qr.dtype.char
R = special_matrices.triu(qr)
Q = numpy.identity(M, dtype=t)
ident = numpy.identity(M, dtype=t)
zeros = numpy.zeros
for i in range(min(M, N)):
v = zeros((M,), t)
v[i] = 1
v[i+1:M] = qr[i+1:M, i]
H = gemm(-tau[i], v, v, 1+0j, ident, trans_b=2)
Q = gemm(1, Q, H)
return Q, R
def rq(a, overwrite_a=False, lwork=None):
"""Compute RQ decomposition of a square real matrix.
Calculate the decomposition :lm:`A = R Q` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, M)
Square real matrix to be decomposed
overwrite_a : boolean
Whether data in a is overwritten (may improve performance)
lwork : integer
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
Returns
-------
R : double array, shape (M, N)
Q : double or complex array, shape (M, M)
Raises LinAlgError if decomposition fails
"""
# TODO: implement support for non-square and complex arrays
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError('expected matrix')
M,N = a1.shape
if M != N:
raise ValueError('expected square matrix')
if issubclass(a1.dtype.type, complexfloating):
raise ValueError('expected real (non-complex) matrix')
overwrite_a = overwrite_a or (_datanotshared(a1, a))
gerqf, = get_lapack_funcs(('gerqf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
rq, tau, work, info = gerqf(a1, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
rq, tau, work, info = gerqf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError('illegal value in %d-th argument of internal geqrf'
% -info)
gemm, = get_blas_funcs(('gemm',), (rq,))
t = rq.dtype.char
R = special_matrices.triu(rq)
Q = numpy.identity(M, dtype=t)
ident = numpy.identity(M, dtype=t)
zeros = numpy.zeros
k = min(M, N)
for i in range(k):
v = zeros((M,), t)
v[N-k+i] = 1
v[0:N-k+i] = rq[M-k+i, 0:N-k+i]
H = gemm(-tau[i], v, v, 1+0j, ident, trans_b=2)
Q = gemm(1, Q, H)
return R, Q
Jump to Line
Something went wrong with that request. Please try again.