diff --git a/scope3ai/tracers/huggingface/instrument.py b/scope3ai/tracers/huggingface/instrument.py index e137737..a0dc0a6 100644 --- a/scope3ai/tracers/huggingface/instrument.py +++ b/scope3ai/tracers/huggingface/instrument.py @@ -4,17 +4,25 @@ huggingface_chat_wrapper, huggingface_async_chat_wrapper, ) -from scope3ai.tracers.huggingface.text_to_image import huggingface_text_to_image_wrapper -from scope3ai.tracers.huggingface.text_to_speech import ( - huggingface_text_to_speech_wrapper, -) from scope3ai.tracers.huggingface.speech_to_text import ( huggingface_automatic_recognition_output_wrapper, ) +from scope3ai.tracers.huggingface.text_to_image import ( + huggingface_text_to_image_wrapper, + huggingface_text_to_image_wrapper_async, +) +from scope3ai.tracers.huggingface.text_to_speech import ( + huggingface_text_to_speech_wrapper, +) from scope3ai.tracers.huggingface.translation import ( huggingface_translation_wrapper_non_stream, ) -from .utils import hf_raise_for_status_enabled, hf_raise_for_status_wrapper +from .utils import ( + hf_raise_for_status_enabled, + hf_raise_for_status_wrapper, + hf_async_raise_for_status_enabled, + get_client_session_async_wrapper, +) class HuggingfaceInstrumentor: @@ -56,6 +64,17 @@ def __init__(self) -> None: "wrapper": hf_raise_for_status_wrapper, "enabled": hf_raise_for_status_enabled, }, + { + "module": "huggingface_hub.inference._generated._async_client", + "name": "AsyncInferenceClient._get_client_session", + "wrapper": get_client_session_async_wrapper, + "enable": hf_async_raise_for_status_enabled, + }, + { + "module": "huggingface_hub.inference._generated._async_client", + "name": "AsyncInferenceClient.text_to_image", + "wrapper": huggingface_text_to_image_wrapper_async, + }, ] def instrument(self) -> None: diff --git a/scope3ai/tracers/huggingface/text_to_image.py b/scope3ai/tracers/huggingface/text_to_image.py index 6fe7e75..df98ab1 100644 --- a/scope3ai/tracers/huggingface/text_to_image.py +++ b/scope3ai/tracers/huggingface/text_to_image.py @@ -2,13 +2,16 @@ from dataclasses import dataclass from typing import Any, Callable, Optional -from huggingface_hub import InferenceClient # type: ignore[import-untyped] +from huggingface_hub import InferenceClient, AsyncInferenceClient # type: ignore[import-untyped] from huggingface_hub import TextToImageOutput as _TextToImageOutput from scope3ai.api.types import Scope3AIContext, Model, ImpactRow from scope3ai.api.typesgen import Task from scope3ai.lib import Scope3AI -from scope3ai.tracers.huggingface.utils import hf_raise_for_status_capture +from scope3ai.tracers.huggingface.utils import ( + hf_raise_for_status_capture, + hf_async_raise_for_status_capture, +) PROVIDER = "huggingface_hub" @@ -48,7 +51,45 @@ def huggingface_text_to_image_wrapper_non_stream( return result +async def huggingface_text_to_image_wrapper_async_non_stream( + wrapped: Callable, instance: AsyncInferenceClient, args: Any, kwargs: Any +) -> TextToImageOutput: + with hf_async_raise_for_status_capture() as capture_response: + response = await wrapped(*args, **kwargs) + http_response = capture_response.get() + model = kwargs.get("model") or instance.get_recommended_model("text-to-speech") + encoder = tiktoken.get_encoding("cl100k_base") + if len(args) > 0: + prompt = args[0] + else: + prompt = kwargs["prompt"] + compute_time = http_response.headers.get("x-compute-time") + input_tokens = len(encoder.encode(prompt)) + width, height = response.size + scope3_row = ImpactRow( + model=Model(id=model), + input_tokens=input_tokens, + task=Task.text_to_image, + output_images=["{width}x{height}".format(width=width, height=height)], + request_duration_ms=float(compute_time) * 1000, + managed_service_id=PROVIDER, + ) + + scope3_ctx = Scope3AI.get_instance().submit_impact(scope3_row) + result = TextToImageOutput(response) + result.scope3ai = scope3_ctx + return result + + def huggingface_text_to_image_wrapper( wrapped: Callable, instance: InferenceClient, args: Any, kwargs: Any ) -> TextToImageOutput: return huggingface_text_to_image_wrapper_non_stream(wrapped, instance, args, kwargs) + + +async def huggingface_text_to_image_wrapper_async( + wrapped: Callable, instance: AsyncInferenceClient, args: Any, kwargs: Any +) -> TextToImageOutput: + return await huggingface_text_to_image_wrapper_async_non_stream( + wrapped, instance, args, kwargs + ) diff --git a/scope3ai/tracers/huggingface/utils.py b/scope3ai/tracers/huggingface/utils.py index 24bd636..35b8b5d 100644 --- a/scope3ai/tracers/huggingface/utils.py +++ b/scope3ai/tracers/huggingface/utils.py @@ -6,10 +6,21 @@ HFRS_VALUE = contextvars.ContextVar(f"{HFRS_BASEKEY}__value", default=None) +HFRS_ASYNC_BASEKEY = "scope3ai__huggingface__hf_async_raise_for_status" +HFRS_ASYNC_ENABLED = contextvars.ContextVar( + f"{HFRS_ASYNC_BASEKEY}__enabled", default=None +) +HFRS_ASYNC_VALUE = contextvars.ContextVar(f"{HFRS_ASYNC_BASEKEY}__value", default=None) + + def hf_raise_for_status_enabled(): return HFRS_ENABLED.get() is True +def hf_async_raise_for_status_enabled(): + return HFRS_ASYNC_ENABLED.get() is True + + def hf_raise_for_status_wrapper(wrapped, instance, args, kwargs): try: result = wrapped(*args, **kwargs) @@ -28,3 +39,31 @@ def hf_raise_for_status_capture(): yield HFRS_VALUE finally: HFRS_ENABLED.set(False) + + +@contextlib.contextmanager +def hf_async_raise_for_status_capture(): + try: + HFRS_ASYNC_VALUE.set(None) + HFRS_ASYNC_ENABLED.set(True) + yield HFRS_ASYNC_VALUE + finally: + HFRS_ASYNC_ENABLED.set(False) + + +def async_post_wrapper(session_post): + async def wrapped_post(*args, **kwargs): + result = await session_post(*args, **kwargs) + HFRS_ASYNC_VALUE.set(result) + return result + + return wrapped_post + + +def get_client_session_async_wrapper(wrapped, instance, args, kwargs): + try: + result = wrapped(*args, **kwargs) + result.post = async_post_wrapper(result.post) + return result + except Exception as e: + raise e diff --git a/tests/cassettes/test_huggingface_hub_image_generation_async.yaml b/tests/cassettes/test_huggingface_hub_image_generation_async.yaml new file mode 100644 index 0000000..853e81e --- /dev/null +++ b/tests/cassettes/test_huggingface_hub_image_generation_async.yaml @@ -0,0 +1,3232 @@ +interactions: +- request: + body: '' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - raw.githubusercontent.com + user-agent: + - python-httpx/0.27.2 + method: GET + uri: https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json + response: + body: + string: !!binary | + H4sIAAAAAAAAA+19W4/jOLLm+/wKoWaBAQYlWxffsoDB6e7Zc+nd7j2zizNnsU8JWqbT6pQltyRn + ZdXB/PclJdspyxLJkCiJslkP1dlZtCx+X0QwGAxG/NcfDPLnU4L2hwA/Jwfsffpi/Ff2y+wf9uj9 + OY1ecZiQ339KcGqkkUF/GR3TwzE9/Zvhb41DHL35Gxwb9CH+1sfkt+nE+PlfjDBKjcInTx+5Hf/p + s3H9xX748RX068nvjOx3Rv67z/R70x2u+27yr/S7N3iLjkHp+z99vv6uq/mcvyz/pZRvK0wtn5YX + JenzAcf5CPKN1sQifwqvdXql6oGFcYGf4iDYP5/fi759FGIj2hq7ND0kX6bTTeQlk9O4CfKz/5+e + x19jEW1w4QHeDqWfDbxf483GD18+G15EJSX1o5DgsUcv+PkFhzhG+W/QceNHz2mMwsSL/UPxlwQs + 7O2KX5UcD4coTpPn7TH06NBnDwUB+Rby/Wl8xFVDDygmY3AA+cybn5CBjAH5C2a0nEcZtcNyVliv + GBOICG3I27HfK8bJIQoTonbeDu8RY2TyLUnx/nmPk4QgnpxGZgP/8fmiwWsURm9o+itOkflLgPbI + dCe2ufrJ/DlMyHgvZai2vbiWqQr1qxpS1pp8jKisW5YtKu7kj8MR+QsCDWXsLPlU5D+JYbu0xMB1 + Vnx0q8bcwJsPEsd3IY6vrSC+M2uusPTOhcG1eea6d2wd01YYWWsGsAsr9bB1hbCdcaGtGFFGdgYD + dgUwCAsFgP3fX3HoTObmX8nY2HQdIWD51lbA1sIsrS1uDCxXIVyXyiLqiAM6GwzQl0Nqzpgq/rTg + 7GpW9pPD1fHrpzCBc4Vx4+l3dMAh8qs2BxkQbT15UTdZwPnNaIiYy5i7mrEFWMwBKz2HI8INPYSq + pz6vUUq2CUnRYeM+/vZD86spUvAx2YegTRGN7CF13zOAoDTY8olvrbibQ/lyamYbSfMQ4zcff1Vb + aktDT/v74gfEt3A2K7hR8WTehkQ9sasIJDSPIzSUJ9OxnJlpEwd/OXbRAmwDoLLF3TVo4WIIl2Va + 9tiFS9utwUVr74f+eIzX9R5PwHpBgpusQF3Vs7WMAWRMcVHiygZ8b2BZywabA8sFbw5KXzQOUVR7 + d5BZxcwOWkvTXmnh1cI7AuGNmA5hBjZbUp2qMTeSWh7EFFWAoC6gsjNCyelaHsSltSQ5vEV6MZ+7 + Cwl2rvwctp0TD6ReHZ2KxdQ6kJ5m9FZRcVp9nogjrllRghV+rNB1louVBDbKz5FmYMGrcxcWViob + YmqiiemPGLHogfrOiBKUPKY3QuE4bcQClOKEncDxJGMBLD1GWtKRlgmR7XZuxOem7d4H02J77CZn + x9rIAARqZVoL5UI3SiYkgL10nY/QhcTa1H3SEqsldgwSSwAPUn+PYefSQ6/isENpIdG6kqz8Ex75 + SEZy/qnCt1x/VjzBkjVSn3/Lk+JRi+5Vsg5cdqVKoM7uaWlIOSEULY1aGjtLCFLcKlqMobwsILFT + affmE6JLOuR4hOg5UIz1ut5GjNW1rFqitUQzJdpMj/Fa5MLCANIrnmTJu3anHtnSN86m5drc62pM + /kRvqwmyN+hltQ7gXbQ8RbgneAcVdNd5bUVE1al9GyaECzFwyzAoIegE3va2RGPMx7itQdEY8x0b + 7dDc73HsyXXNz2RpspYm+47Jtm1robcpfRPdgR9tO3PN4/h5zE2AZvIGwaFsoyZEFULcyVzE+1xy + SFi4q7lEDkB3+waOnnZFCNnY8rJIOKxUjBgzKR0izd3ePhbSSog/XSgYpFSZnM6tknBZZEILtzTy + 3TteBQUjjrRiXALy2sd4haFDvVywQtpDUAk4muWVaFRqWSJI85YmDXcbuLfpF4APzNuIDIgz76EV + KecNMs472O80IIm3mIyHqQEx5DhXGkMROWx7KFYx4iEg1AkKV8AJeHXRMfayh/w7efyPPxshxpuE + tnZBm41xiH2PfMzYRrGR7vzE2KYG/dLgs/HVDwJjjY3jYYNSvDG+7nBIP0N+XH8z8odNjP+et4qh + zyCPXKME558/P7kt3UrfRXT5RZ4ugxtccLVXTYpILa/rI49jyyHxqhZcuNS8NngtXJUpp7kElC7q + CQhNtVA+nKR0sB0YQ+07wFJ/lQEjWPnOnnMjXRWfWsCLumvplSm9G/Tmh55vWharEpCIyFYMaeWa + ArpowMWVe2LH/kiV1KX4PTU/esyZDCm8DPpUpmON1mvCloJ0gBob8cxShSXg0s35TDeUZE+49BA0 + XTNA8QtmUEN2GTabmdKI01zfsJdG8XPif6dPd60lT6aLBhFg2pvUNF00qWlqtXBHL4BzyEj2xPJ2 + ToZNi/yJ96mCGK4mbPBPlAZhA20Qx2oNwgakknk/CJlvUkHqZv6iwtjI6esKajomb+dqJilaByw7 + LVDbUCQBXbiGnnh73DbofCCQsPGxLNZVzgcHh1s978HwceYL890kf083ZL01sVk2YKcHlJsqf6qf + 38F/x0HRk5vNbJaDWRgvNr+rCcxth0yA/N3dBKzFinXBpN372zSs8G7S/3Q4A/upswnsNtPzHJZP + FxbK8XwZLMzdbmdBXr/ExBhncStPHcxiuXC6mwVZ4MMNivuSq5k772MuvUhXT3PpRcbclT1bdDeb + rzs/IU8xy0m1pzc/FWaIUZh4sX/gvHyCvSjclNb98vt+DMqLqhmQlzZO/kyasN+YzAl7u0+MbZS3 + QzHy0uxLYGcG154VfRNzt5H9Mm4TMtH3Y4ynw4CTfXft6wyBUO0bdSXzhjShr3113Y+jFq2qmOfQ + tyu3KEgaVsy/4ls3/XhI6nVnkUelXLcveTz28zQLBt1DV/YEpNxIKr2tLtug5IVaslXOAXQg6Va8 + 1AHliOw6X4VDuZqZeZryCsp5yns/3WlGwaI8dQyiNQrMSzhvBBa5Yb+NUfA6hEFmSICiBlpLgJB9 + rib23trNPxqrSrPITyEs0ghuaT3GrfFwPrbyVxW0uKgjLg9ThlI5xoUs/kMUHByUmlrkH6Fkp5rI + 3+9dcGl412J357W52QCyUNGAFADR2tVMu+66KvsJPqM9flJXg9xBfYz6sA0oEHEjXUD9MLUL/fDK + h3VtAlyp5ZKk3uAFXAVrt6gMYwjchyjNqjbyqpUfblpEYHzIyyhwJ7degMxiqUpjz65ues/LJQeZ + VqhINwVKymMdgpeKgX6YkHFealpPvJ5lMNva85L1TC/ZQipvVCjaGQsNwyOLxN4n00dBXolF5K72 + 7V7uJnhjcYsffMxtJQyDM+Rm5BomZ8YszfGoIBFJ26NwY8bmITgmvPXKYAIkP1ENcHdkyAULbRAD + OUUKmoBAqSkycrqx13ndm5Eh0EFRrI4KXnUIgfRSVB1VmWoHAf27CAPgtnfrm9yFSTUOkt5cNa+g + Vqg+QsvaB33NBVAloWXVgP5nxK2VMJIZCdVGaVkxpM+5tOZFkbmwbJsjOqPh5/GM/OlvaL9Ggttn + TlhmWVpPeo3LWEsRpJ4ZtX+r8bnaK7VaxKs2UmV4QAu9eNVVsUwAFjittgFFHNs7Q9JxBDjNQmew + JRwBcWeoPNK9O6tY3xBXqADOp1BOhiQ0i4+49L/Ypekh+TKdZl+0R/ErTg8B8vBk73txlETbdOJF + +ykOp4V/nKLDIZmS1yd7O2ty5gP5BUrMaLvF8T+laP2Xf3/DcZZ1UEdneHqAu1aMSFhZZ7HjAuXJ + /GCDEGlbDCLp3yUyfwnQHpnuxDFt+yfzP/Osk5/5S6tjzWQUIyg9hsOuuwSw6zZZXZscuNUlqHdK + /x6nxFcKkT+hP5lBTqNJaVyfk4cukXVh1T5Lg2surZ+UFYMlJGS0FLq6rKiSf7B8Jpgys27BrGM+ + WarruQOx4k7XVlxRPX+yWuj5r/RZJ5GQp+oCibIgObAhet7I3As4r0WoJra5UtcsQqLIiyZWkSfo + 4nJuHhNhUSeYVxq8vwUoTH4MN3+Lfa+qfF4FeQovas5C/IzRcudNbN5Q9NUsWA34m1lzZQmcu4Dz + zSa7yKHoI6A35u9vOz9L/smu6EoJ2HWwZwQdv807CUvV1xWr9iEqKT31qpxuCH9+QP6fgj/lMFNy + ITQ39dzUtiTtiJpfo39WlxfhG13U2ZC6Wg2sM7ktm73KoUZ2A2SlFGYIYoisS6Lmzq1Zz+RkZyim + LG4kX8mE1uW5P2LUVpuHJWePN/5xr/BqAwnIX+1w74UatRXnEenxoh2OsRnjGIWv5hth6hikPo3t + HhHrFL8L9aFDfj/i+FuDoEL9oOyJJ+YEj65bUJsDKQo2Dl8CP9lpnOXi/Ncc5yyDVQzmuV32kEoo + Xw84zanUnPT6OoOcRO4WEH0k8MqPf+WSPPGqgQbGvcp0CZogzVn/nN1hi/Jueodv0Jsfer6CQEm8 + Fd8GJvp3DlX1nVeldrwyrz+2l62uLgmLoTbMpdFmqF3B5gXouMEZXihMb1qcwXJU7eytOWjBklQX + gHjXfM49kg7TXRwdfE/sBP+U5XjJPk398FsrgKQn8UIqfJcGV+Fzmihoe4aSxM+EhzwJb/0szfkm + IbqM5H3nQ1fAKCMdrD3i/MvhGnjZwOdRHrUgdwBRnRXPqPZmNE7xMhVleNSAOi6za5yGUxBOwfob + lVHaJpHcm0HSiiA9dQApIE22Bfqcsh7jvq+mNOysG1la5KVif/DfM+xth97XYTYgGAp52Ikrt1rL + QOhXja2vHnumh27DzbN+LFkX3PSOkSvrJzBzgV+9Kwcn5HyUd79AJRtTwt1x2gG/mMl2EcVx5+Vz + qAS7R774vLCqt83pdqsu13B8IEmWSFYpWI2jiCHIoQzxnlXEtHdvo9HNJZmQ3qSgnD48Qf40xd4u + jILo5du0AxqU87kfjIsP+7KnxWQYTDjzBZeJyjE3t4nKg5R19XqjosQCf9XUZHRHxtk8ZWkU7BWX + k6VSGgFIQQGCVVPTcIPxIcH41czAVC0nk5ed85z3fNz5Vx0erz4m2BWy4jMe+VDm+VZ/DiLkvHTR + MwtSPHMDIN1Vz02jKHj2dpGf6VLzTpIXi6W4rw9hksPjZaLNzNUm8pJJwWZ56IDWPvkiHycZiIV6 + by2sWBUx6m0dHo6WcpLLA+pPLQScVB+J9IEpuWvNUY2QdzL8JY5ezTVOWTsR27WtJcf1qhxzsycs + D+JUNhCGnnsS8C6nXGPV0PrI/oc7GOWvcXf+oPbVqngnOvX7NChUNFubbzhOiAoGnKqoPCUTkQLY + Jki0dHP2Z8k77qQzF0uSrMAoOWBvgz2ZO8Ce8XnqAh8nA4fqdisLIv0K5hKyMq54ayMTmZYWOsbJ + IQoT/JwQe7ZHbJV1adUnKiNqySGovLPFM7vKoJ0XAF0LtJsdAnOpNV3VwtxVFXNIfRfuGa1amNMK + qdkeQEnkbUAduOvB40BeuLG1xh6MPWxfVCKHFhRVVy1A/p9yxPBwV1kpxo18U5XI90LqOaA9bhR7 + 1oRLnVcUcoLB2umXh7m8qIgWdQDsWVHVGKMkCvNHa9w7xL2YgWy6znKxYiCe/Tsb8qohZczLY3gJ + JqB47hg2uS94T4SdAO6rZs4hWd/ctG9loCaepHpYO6CUkhFFJ+nPFxfRpEcW5jHBanrwK4hBX43B + oBdJWI2CAxvCga04Bx6O8TpGyYmHzHVnwD3cNTYI5hzIz3OWATsHTGJWVEQTVPJ7KDS3sY/DTeBn + feoKXt+lptCbxayTM4z3J7PS1wcCnYJbbBJRaNCimNWVaAAGwLXYOUUtYCGBcl5ApENgywWyJu3K + C8gvkQWrkSW/SNYJINVgERcv7la4ISCTdsXUnPuDxDV3yH89mg75Astt2cNXCB9YIgzkio59NVjo + akT2x735FPcSBrf9MpeMlv58Xf+aLM3uSP38b0mK9+eEug+Krtq2NMrkq8zRa7rnOEvhvCCHtuW0 + O58R1VPxpRHgcjSSwSrR5Qlh+0WjmQyOVcSiwzHJ7ZzjsOqzDGDnAJVZlk3ky15VfIwjX9y0b2Vt + nPs0V1IAkygMcaqoCAKuiI9XMuyrUzB1JGN+JRsLx1Js+WsoG8LLnws3T+N1wUYhhAr6YFoIFRPC + zTaHpidBzdIY136STXfAfuaEthh5aUaw0Da16gO8JfQNx2S+z8jPszepyATVcXXBq4xeEB03k5co + eglw1n0j/waTXlM83WF8w/T/6J3HaYBRHE7zb/3jNjqGm1x7Tu9Rw8sPRPUY3JSamDTjht0JRXPD + 4IbZ4UNzMxw3rvM6LDU38WtQZZzr0Zp1cdaHV0rNfL/MH0Pfi2KWB9M76eKxTe6N85GyMbzfohnJ + t0Nc/36ILtKjNYkZogzKufWE+iCbo3ya8DsknOX0aMLvjXCTvb/hxxIF605BUsg0410zzlFzzfq9 + sE5+x3Xb+C70wp7x2sc+yk42Q5TnrivBeOuNk2Ydxvrwm7Qi9+1iV5r70XLfNmCtqR8t9QKuneb/ + Pvl/wd5rxFnyFxzmK87ny8wveuL97nhh6aTmZSBeNCfqccIvTq+p6Z2aQoCY369ZexhAEVA8gCR0 + 9qdZv1vWdSDpgZnXe8mHZF4fCz409fp88IHof8F7P/RN8vItKV8u2lHu79ELPkHM4o9iHGU/JdiL + ws35I+LCNC+2zBGQDipOhrD0MW8MVz3++nYTW5oCFL4cCU4QYQLcXWoud4fY924ag55ky55YZ/ky + tIBpAWsjYH/Mh7JM2UnczNPGRYucFrl+11IqgMcgjVnNBaXUEGPfhtTCp5Dw/ZgY0db4H8fws0Ev + cU+M/9jhGBt+YoSRgd6QH6B1gA0ickYUGvn7Gcg3TmbPKIsWtW4T4+9J6d/IJM8fmRj/GqXGh9AZ + friNDPqtX4z+VcFkh5G0Omh1eBB1yF0TR7smWh2GcE3m7bdijvW0tOftCpwWxc9ynesqWKWx6Ljx + K0SQfI4Z6KmRXN63leULGktiv1Q272e0jt7ws+2sXj/wyj6/mC9Z6lKeUuMHlSGtf5C1cFgPygYz + Pm0xP33Bj/WE7A2E7QHQHAgEFhnvxroOKjQ3QL5AG1t0KjWzx0lCnpBUmKIGBW4q+kZXtaKu6RNm + qGAHzbaRbm0KtSnUplCbQiVNYcnnY9vBlrHSvCa5vC2JNoTaEGpDqA3hAD7hqZ+Vac3tmTaK4nEe + a7myxTS7bBnrP/JwptGy5+wniJtH8RhaWT46t5E8+63t5JjspGPPtZ3UdlLbSW0ntZ1k2MmZxeos + oc2kNpPaTNY//07MZDvjNybbtw1Qsuvf4GXPoXqeZNznfQ7IMPf2SZlCl4bZlYOeAxy+pHQ25UaE + uS7n//y8I0hnrzQpX3z6UPmPbyoNoV0bEv87ft6vs9cVNOKsVIw6U8z6TK3Vh+R8WCxLX2W480ZY + LSyd3drItVk5LMYtNvFlg/UUwJoBam/M6t1SSdSypaVua6f5Ta4U9mfrmsLwrLkaxtzE7wfTWjms + XqTaqt+xVbdmi9UK6JJryz6QZc/YYlrrerraWHjLenLFvpb9mL4SNbWhvzX0bfOibGu2mi/L1cK1 + jR+Bjdee+0jsu/bcH9ig38RZePa83e0r7bOf/lnbc23PtT3X9nxoB72cpKYtu7bs2rIratl1JCZX + QLUM/SBFtmgIHcf+HocpCvo33HUmRUSYBY2NqJT3IlEVcrJFQdIk16iluOyPQeqT90XB9CQNV5JQ + JS6XMxctMFpgRASG2peLuasTlIoC6WVBWbgrXuHWqqdUOIR2OQRc6Q6yvUGASwRLUxJf1HJQO073 + UWihOtcp0cKkhUmyMHFCkVqgtEDVCtQeb4K9Sf72j/tWrhAtn8TrEsJ2hHhFgUVyXjt1aHqnJUBx + FjBpXi9eoMQbu158BcgwTjoOaPZvex1iey/biJa7B32iXyVzlzghLEIIiw3CNmTMzVaj8F/zuF+z + cF/bQF/bEB9wdyu6bQVE8JoH7e4wUid+JHMemdOcI9exz1K2tFV2eKrNsTbH2hxrc3xjjnPD8EC2 + Nz3QrdvsJhYdZ7+/MjE9munLqki+grw/Nl0zicIQs1odzqynsv0tGWlHJOBeegw7hsDKEbkeCtjK + oDDdxdHB954HCiFcJCdJ/CQlr0NeFG/9IDiNFaPqB1pJ2nIc1iVrzZkqnM35CiZSflPeiZYmi09W + rmILx9KsjYg1861tkVvNV898ZYpmk8VMEzcC4nbIfz3yvA6jPVUgt4Pd1LA0GNK4/D7oypcy12Ld + Zda8KcXbnKtoQ5hEVr3X0lD1uGpJharL1ENyEh2OiVpbX2ZvnuuhgAzj0dsxSpSiwQrNWJGxPU7R + NAjQHrnmzJqvTT9MyHAvNfcIsXStqgH2TQoKn7nymHrqxFgTJiybM4Ss9n1dDyhOye/NqmSGakaW + liZEKUJWmg+F+DDdiWM+ER05pQeKUmM7Ky43lWNg7TgV4gZ+sAZIhozCJKIM19N9OK4DP9nhOMnZ + y97cfEHxBociVNZJAlnpYhTkeXk/BCjFCSfYXj51b0J66TFsN90RY57+WQjTf5q3RFdDCGCyD7L5 + ZRY0xM0hNinEGt4OJZgZDNPwNoU3xPuIb4Clrbs3gzjxRsCeDxTW7w3n39B+jbLaCDTF4wfOBZP5 + ggtz5Zgb96Y8iBfWBaA8EwYZ+Y7NQ5gLW67/auIGgG3VK2oKYqWyjGVpbhoysFoqiJlqKnm1znK8 + mKFWWfGD86uhiqywHnlc9lUKuzEQRVbQWfyAmEgwa3HRADcDOMtvP4fWopC4O4trlMtzKlSAcsSj + T9mnGFdq8jT7j/eQGyWsM5HZt4amO7HM0+fwbbCCAYD4yqf8/LcoSZuB4IwSBDIyNfF+jTcb8m9k + wqx6cfzr96URJ7jesJdGcXZHh4y5vlwtUpmM1U/qZgsqYoeEqfpApp6uy5iubvNyGGPuNTRjijCW + Feyh69CR+KJF+ljZMZo+Rej7eK0X7L1GDMpca8krL3E9QlPWR8WDChKvVFIzem+MciKWmtWxsKqJ + vB8iXU3kGIksvKlgv+IeyCxzU+7zWlkxYY1Sb/cc49+POEmTq08LHXQqzW39Dr9m93FNpsJcjpMP + sK4dULCf0oimufYTZmlNfva3QL002M0jgS7MtaOruKGTVa0wWokATsqWJqE7EjKzxdOCHqoGDkZA + tD8EWGL4ty0NHF3QVPRIRYK2OP1mRtutZkQpRmLs+Wn2KU3OcORcl9XTfUslldUr3HX3kLfDZBuF + NkWMMmkqevGlHjX5pzzysYy6+k+K5wCz+xzlzxZuUsbTCW6ajnBHtQcp9pbL1jPlvfI72eXeSte3 + bi0I8s/mY4Pfqne/9aagbctLbQryf9emQJuCMZsCbQakmAGtmyPRTUMBnTNFLpxq1SsM0ap3B6o3 + pmXRXK21enaqno2UUkQXm+mg1j2Y7s061T3aAsK0npy27bu1Eub/rpVQK6GQElK9s21b653Wu3vU + O16DjUbqVMQFp2iDUnSlPtm/hFGawfDp/5C9nxH4ez9NDPJLYxN5R9q2GG+MbRQbJT2cGD8myZH8 + 6sVI0B4bKDEKyyUhafLp8j3/4Om1U77VB9Rrx3pa2nPesZzW69ohWq+1Xud6KEuvP5zmzGNeOZwq + RXrlLgzRGn4vGt5tJEiWbpXfXeuW1i31dUv+JpOg2EqTaIdyoB5xDgncebNmk6ePLwG9622L3+me + 9WWOXfy4JMHki1t82JzMjnUjObZTKTjuAiI3J9lAh1PGW57Zdvo1z1K3lahGOxtOUaNWIgWQqJYC + 1Yk8DWPo0igKnr1d5GdyVj7ulXYy3HA7wRfh1hmaWoy1GFcNbRdl7lLe26UhannX8j4mec/3kUoK + fRuZh4h8K4m/X4GXv23rWopbRkOkSrEOHGg5vZXTobIsFXEwtIcx/o0hFePL7JqXyaMFKrh1rkU7 + EumAmRzp7CCi1tedUvKfPTId01muTR9oYWUGamGSow71wzP3pIlTnTjysD0KN2bMoIlfgkWo2jmw + CAvkSgTvUoMX7XCMn8ukSalvfkGQbFdM2lNWI9kSycB/2bHMBh/FihHtMAQ0j5ACYY2EHYKWDabl + ixeg4AUvtNKPllIMFVXVkWEZUj0NvvFANHpVVUDjeV43gRxDTvmVIjIXaDQkF2GJiXcSvppvLrNf + VxcmnQ75/Yjjbw22n/WDsieeABPsx9IY0xy7Sjxx+EJb1lJcLY2rPFyvinhqcDsSWkfj2p3QanDl + gJtVqr3IbLYp4VmErFgce3EH1pMTOkCalCPFsMl/lOStmD/EIN7h9CEmC+TVjWbmJ8Fnz/8OmYcY + VVp3mz17UGXu4Scv6F52S3tpbKEPHGhPIwGhqp1y3kEue8dP9THeyzPY4wWufv2p6pv/ZPiJgYwN + PsTYQ9k1MB8Hm4nx9wQbf2K/BflsmKQYbWpvgcX4EPj0sVP6ftMgQFlY33ZZZUsGiM4BhMHiVVy9 + zFksNlcPkZkN1jgxcVpaionSAhAsd5a9gaSgMCmJlGLSJNbv5Nzdty+MFBQm9YByObaJn9Yl/XRb + PY3LQDKpGxEfvXZJcA+BFrvem7XidTq5HXGD0fWQEardSkygHhesvF078s8/UYv+Zk3aNdG5W4te + hdZZvihsrLtwGjYK23sG2+q9BJxi8gbI0OCdnQNRiw44jMlX4ni6wfiQYPx6+YHnavHXxcXCkp0P + NIOI2IoD1sfsK6MkvEtSTWGN8q/XuLbBde97cZRE23T61f+O4k2wJ/uD1bvjrL+Efsq87b6Yz91O + MhB4ylmNi9B08/zJYta7zUxK6KjairQcIGbR6WK01FlwM10FYK0Sw6bZrvUSebvuEHEU8QhhEgna + HlwPliyVefx5Kpzkd5N2xrkJJDxNu8NJ0tj2Ova912S6WcfvInzS+iuAM5MFhM7uJorCdBdHB9+b + egE6bjDZ0OyQ/3pkTNQp2xDOTCEWwmZ16706UJmNxEJUADyXDTFguZKgMwDUoFKXJblarsW6Rcv3 + 1W/Qa+8rNZdhBUSzMCC783ekl/nyK4cnt+wDusUMLsgZa7bltC3TIts1UVYtuiJkMjeTKAxxux2c + fCL6XdMHUh17/lT1OJQkxEckXJEP4K0fBGDTeGH1yxqXTtw1tX1RC7CKXBUEru4NIWY4T7PVZ2Mc + 3tNtODRAcTaPejccgu1KGNurrCDpW6qX0KdXIumlhGPeK5hsPKLgsPNDsxjR5Ow/noQnDorbdrjR + uo1xcG/2z+YrbveqYpgL1OLYFY5RzMeiQ1s/xl+jmGxl6U9BgN4QLCWK5xtDwojdSRI9lDOzQ7mq + o7kv2xizzIbwoic22cGmid9THG4w60aXvXBXgBRHB6I/joy9D2DqxeN8bgwYdh7/BBDrp8EmLW26 + c8h8lx1OmP5I1vuIdV5nV/mxTXzdmwcxUQLcTC/aT6FuyNyMju5XkwMibkaAA6lVhngHPw2KIFVX + JOLKk5nVxhAPyDe9Qg0L7AO8ewmL55ASskVBIshSFlEyrSfTZsWUNGFKEHaI8ZuPv3K2JpxiXEJE + gY5YIMZagr82HqLElEtzNjxnL4fUnLE82iGKfgBqftyBSyPE0Emj5mRbrclSnKxTfElg1bLLVQjZ + pksYabf+kYUAkz2bjSUJpgAvPaxIj/GaY7TEw3eQYmAdBpeqpmjai1dOmIVBdWOv0uowEF1UFEmR + BfGJ9ZnlQsMn5JfmGzjKUHFaZotL8wLA83zeYW7hDSIsX1A6ELYNiBq7zqJZ8mnTBKjo0LJqnfQE + FIAVVCCO1PSY1X2a17F0OiY6oCzll76kufYTdgHo+coChLnVOg87T5R8RGyyhHhASp4ik72JbTe5 + iD7S06km16TluUpd5s4Wpkrl93RqMevizEINMQ6jYxLjBKPY22X/Y+5wvMdJDgKw/sRIxBmFHvnP + V4ze2PdaADsoa76AHDWWRsu2w/G3ww5P99/SXURmZAY8GmGZidcZDDxlXclY1Otm+lsUbsh2xg+n + yI+jdRRHCZ0ttU4O5NIc24FxITMuj5Y842O48Z/m0xjv92YS4PjAZ3dBtuOjZPfw7WWPAuKO0RQq + IszZzzItkkqTZV6elbbq2JDi2leD+5zu3SS8/P4Vh9lfxBzN84uUpit2xcp1l9yuyRVDbo4wSmN4 + 8iGeVFgaLAO53xzzGBBhEKe+++IWAM+U65gi37Eh9Zx/Q/s1yrpf0YPlH9jNNZ15xS3b8ua+akwZ + nZtBEt06XvyvFqFbWblgk2XVKgoOABueMjWARkFABpcWTiLNw+LCy01/LA1yiJyw8lD7X4bEVyHZ + i5DDbRLTf8UpgBvLc2KheJyuNjDgKCcpV52WVwy5ye+E5TrLDCiFweE564MFAYaqkQbnxpYER7Lk + 0MDaGiVMA5tdbRKckbj8u1z5D/Bh94wIbwjC9tW0yNYmTOMokDY9wL58xr+zzJtiPWcCVxJAE5sB + 5vXUdlo85s6Tk80eKBa6EAirNOcvOR5ivJeldra4WJLFrGv6TnOTzJ4DCYo5M4sfyQazR1fkSe6C + sZMcsmN7dkn0qiGVp/+iwg25kse3TGu8iSPvFYZLFiNREJmVePDoeqwkZLK9zEfZPPtLu94sS4u/ + mYEdgEG8kGVLfAq/51xTuUZyj75H4ST1UxSaKVkhTPrlbGGj3bN5DTkcESyvHyOvCCF3wwwTthuI + 8DuxxEnCUUk5KJUfwznhgJRqbCtyHJToauXjmKeY+SX49kDdPEeecnIDvc2RyluCZHjxDLzDN/BO + RYvmN+ylUfyc+N/p+9igQm6CUQhRdIxbeGo6pdRi5DBlSRpKoMYqchpoyUEpy8rmpIo6vIY6pRES + IGLcqrmqlCZaaq4Blh01l2H2s7lpNk53YShJTXtCvPgkCvAEfU0mJx5p8/HTm0930R7/U4xfyHbg + L5cP/XF6nmTyT1nD8b9cSUDO/alpeUQN75VBUrINzuk0eFJdQfoLp0yX/Zkpx+X6Kq1zomH9vnk5 + TaBV4wOo6prRX7jbg56hAoQ+2nu/TJnKjjpMsnd1eL7IADhJrOrTZIsgUgyxFs9lezyFrpGBAAV4 + wLzKEH0BmuzJWFUFFFCZkBd67grP86JJFsqvmCyUzlRbS2FrWQAv9zI0eHDw8DGXPHd84IGK6Tzx + Tpubit6N3mp3sLHWauga6+wooAPdq+DdVJUsddrXbmTnNGxyPMB6nVYZYdsSb2/jcis1dYXxKdYU + Rm/IzLrbCB25sSONWdkKuYdulgtZWWxBiSVPCN9wnNT3rQLAWjW0svZcLf6nQ7q28Msv4gJrFiJq + LzpHn18acLPlhoxhFB5UVSDAlRBX0BbdDX/nAgyTUgX1vBmI4zxJoFR+SxCJhe8lLi5cHnnQz6/A + XziWBn8g8GlDFaGz2fbYD9XxoU/sqwbU9eaQZsiumxopqUqSWxuppU7X7Ynap7PJh19ij6Im0EM0 + QK7jfUsXLbsEW/P75UpmEabB1OSYTCQ5XHrJlwR+M5dLw98F/NrpGszpEqCqgTulvSmpqqIdqu4d + KgEitKvUgw7go3aVFANfu0rqwK9dJTVcpWqqtKs0tKpoV0nC+Xg1uNr9GSKg2vaytPxy+grkHp1S + tjRYgEQtDRYXLHQwQ6KfOy1eDRGzzX1EQDO9aL/30z0OUyVBTLAXhZscmtmctWzUj+wKwsX4IHTm + zlIQw9JQmRnQHoGKpkcOqrfCl/aHVtwrwNRS23oMr7SR6e7Vj+wGQbW0VgxBx2VWjmAM7cCVG6MI + sotq1Y/sAL4xyp/1tGTd/2AM7cA71vLXCj4tf7DCOTfYcG9mPZyHwtrma7Qg+3yNFnijryGTsdNX + AMXRb/UVw1D9vb4CgCmmuvC9vgIYjnyvrxiC49vrKwagCnutES8b49vrKwagCvIH2esrBp9ae31+ + 5SQhdERKoI/FR2Hu9jVesP2+xqvBjl+DJmfPrwKO49/1q4biCPb9KkCmmAI32PmrgOLY9/6qYTjC + 3b9qEKqw/xr1AjLCCIBqEKogg6AYgGoAqhQFoGVZyS9lZUXI9FrsBaDy/HzeVSHluq2awshBKs51 + HUcRsXEqQXllv1iXpGoHDrTWqgqitRCGsTR0oBVXVSCHl0bAqqsqiEpJo9KoKbem8GKnCoPnOABX + ZtlL/G/UlnAmvgWZdbMHaRBNVRVNiwxllUtnje0pqqoSdDe2DmAYV67Urs2N46sq4XmlrQtmrXnG + 0OHirKpiaT0RcRMOM1yPbY2mF+1wjGkDzj0KL+14ZwyEBOrfVhRzqCzUIN7cGVCExBFukQqRtj9X + qaui4Cm0F/lzlWaOADZrsbCEDzBvBsvWysB/2aXK4FTeb0Da03fSk0lEN9WC8Ep67CdmXyvW2F71 + VGUI7ZnN6r7CHCxbW2PzEBwTJXvUuJawrso9HL+BSEV0mIfeLI9EFjx5I3scvgR+sjPfXAZAc9vh + 4FMawZk6oMpYC//qo1d8/fT3xyD1aT2sI/HsHwcD2qR+EgRoj1zTNZdWsRGjirrCPBllDm7VLakG + M8e03bVJR7C3d6JLE2dzB/SQmEGwsmGRaVeKAFGRUhQg+wmyv5tLXbyLercSV7qs2Ckbp6ohFVEC + iIUa3NUutD/VuMFwy46SNG7g6H1Cvng3OuAgvSC7yV7zUCE+Oi7wIG1MF09dgHfupjs25CBO2aKr + sPy50/OokHuCKGwnh0MJGuXaCvFtu/JuYRumQXByFgCgujkxq3beNHJN3TeNXGMHTnnoXBuQLTDr + 14FTHzzIojCzpB5osz045aFzVoCdg9uNI1LtwikPnTuDSF03uXvVPpzy0M0g0M1XUqWuCJQNcXcr + g9pNAt+OdZUaxvF3Hcgey2m7MhR+z20cYlSMTaMoePZ2ke/RZ25RkNx0rtMEDEnANfoQSzEQ/E+Q + nfJT2+hM7/KvGRhUAWbWfAD8QUefc0CUrXWiSe/yrwkYTvwd01Yde1CSRNtoX8/Cr+HvF358HB/8 + kBNRu21go1/b46qPPuRgsNe+sVKsjyZgYPszAgIgrr89JtefWH/1zT8oM6H1gUr/7o9mYEgFeBoi + 9ACCHxB5Uz3udiP8Gv0e0Z/bjvlukr+nc8tMUnxIpkmK1j55128T+lOAzY2/3R5p32vzPTDfWHQs + l5wTk+sBZez8PXrBOXZ2i6ON7DHPLzjEMaI4faqZMXk/labstoiQsKdMJ/pukr8VI7mPGStGcpsU + U/aUbcuZkTnT/wjTzLqAIG/OLcpfiE9ZmOd+5tyZ+SrMbuOaAYpfMG+RHNescs6y4eYxSGPU2/Ts + zgQ1If+4R684zrIRsqu7H0PNzPMhjs9yzZjlAPeBRL0cDmqXyVc6OdH+EODmiJnbB8TsJnVDDC3b + 1QIGh0xLmDhcS0tLGBwyU8tY9i9p9ILTHY5N5JvHg5lG5qwkTj2eyZ1f5hn58LefTey1uYK9PCiZ + qsuXX9GXd2yWJtvX3Eu8vMg7qWs1M8emU5uVpyavjCfXQW4nVdnrr8o2lpekBHh93jlFO7nKXt+2 + Ye8PSf/nBo1avf+lXsTJONlzaw9iQliU2s2ipq5F9VTsub2nk3HBk2HW+elrMuRT+eqaLafTX+mP + v2QrqzuxzdVP5s/nQPJ/HON1BFtNIIrfVPS4Qd2KoQcUkzE4gHwmxskhChP8nHg7sibfjuTrABvr + pdUK7BXIyj462DNr3gZtyNkd9+huGKwFEfQTem2L/PSr/55d4Fq9LwvIvVkTGySmkGoCvOD2nQhp + AeLsJ5MN8P0icf6Z7gePKdn2/ZV87KSzs/UFE1XhqJ9klNsgjwwg+7kMIGUuTUnxQfIJQvb2V5Dg + d1YRRtdZLorrVQUkVUMqIVEBkexUuuqouULEbs+bT8BtMD4kGL+aFMHYfHMuJ/4ayVoFFwNyjRLM + 01C+go4Ewg/1lA8kfRUtllLR1LLZCE0/JO5EGOyd57npnKoHaoEEQZjXXmSA1nuUvQ/U6pH4otZh + 88BgKHYyOrRoqHWKNywaJrEx5I2jGG8eCRT2vifP1X2YlZwpIe6X8kHf4yLBthyPBEU57AV10MaG + RFv/7BRGPCU0XtL/nZm1ZAC5mM/dcvuKEpBVQ5RGkoHOw+gWe/XZCwWa7xgejpiUgWFteyTtFctj + VMRG7ADo0dFxHHF4JJnf8hj14KFRrPxT/WwBVMCCbYOj2EPm3g99jcgJkTffO4YsASnVlqpAo2JE + 4wJVA4FBA79+uI2JH+x/P8TY82m6azwNvgdvz2R78Lw92IvnHTfflS81koQm+7MUb8dFO39yULtg + IGZjPiD71/jbYYenv35Ld9Gv6N38RShnv1+o5Bb9awwVNO2g7A3abNgE4+OAZvByC9Y0x+0jp+iX + QgZ61o9Ia2UlZF70Evqp/4bzxI4sfT+ZbqLgsPND05kszIJvyYl/9C52zN6pzMGSMTw5UDVJMcrJ + 3gIie4vOZK9o8N45IQA+Sq5jSa4C0qd4cT2OvxF93OR/m0Ux+8l84578MXGzF+5qdo/iBc+P1Aat + rJjIj6N1FEeJyO23h1xALdskEvb//EwV/8rOXXhcU39BafGTSez0/2wFkpO9rFSY+nRguab+tyjc + HOO1HxbUL8hd2ZdDOjPtyYxpuR5XGSs2AJeOrao5YYrsNQlK36PwvNH8hTxatTURIlpOn6K1VFSy + 1NuNF2/4FC+utRK1ihHtcANdhuXehpWOW/ESmlrAzUFtDXn3cGUDV75SxsCu9yOxfD2ErJ2twSv8 + votLNyJusooeYJ+OMtcDjA44pGRdfnh2J3O9yFyQIt9BEHz3028fwbcs5Fa80WDUgFUV8GgQEymP + 4dWJmLPqdJVG2zPrs2GwIfvA4Co/6Qo0g49asRONeqiRfYU4as6qY9SCwoVwQdRc+7oqYhVsVWNu + cCsP4hSWgAgbRzclQbZSGzHLAUBGB/cjaEkUotjcHV+waTurVzMKyVqLmQA6Sz6AVWNuACwPYgMI + sW+8a/dSwcuzLhVHT0GFvUHvfDNLNdVVFrtkT1xjtbFT2uwV8FNXc5VC8HAI3s9xKRZY/aYMn3w5 + EE6rz93jVLhtatQhNUwwHej09iBRfAUcACkIUCWRKj05xr8fcZKehnfqn1xkr09IBWtjAjEtCd9w + mAaldC/VQAWrdIdYXS5SiG3IBpFBUB4ELxLfEq2P9DeRghlDWMHO0KoBqw6rotfGKeMwTDhJSaQ+ + loFaz9bitwG6HXLr11pChW2bQiTN+jfCco83/nGvptgBCutxS23KAmq8UmcPJnRbP8Zfo/g1oRXx + kOdFxzBNppffTukng+TkjLy5h6tes8pJJSRswo2bFKGpX2Vbnj1yaxkm0THOeoF92qXpIfky/SBn + Qig7xL53U20XTqqrSb0/UmlXyjc/a6SkLLnASJMC5OaI9s2+EOG0E6PqhD9BCOelhtwx4YLqTn9x + ngv72sQA8dHxcT0klcU7/YWOqsxUzN5v9GdrLMRo20oY7SF5/f0rDh1z6Qi5WEOl62lFBRJ6mJ9q + pbpixA4QRNOsQlj95ueJAaoppwtgkZeTePckNqpT3ndVMr2G1vAaRnvfMy8/ZL2Esj585pvNTBYG + +7a8oDro3gSAnEInp1xi2T2U+gJXQ9sK2v+7wzH+Ofnx5+nff/xn85csvew/WaDObQ6m1wN4kIq2 + 9hoRpOkOhwF5/elLirnrsoYTBCenqr9kNO9M3z+andqL4RqGXi349S9qL2gLR/KuQzahFHzXfYRP + wM6BwAK6o3HPzwRflrxiJgJL2KvaABmAOX31r7rBW3QMUtHXFHtBOa/WX4fO9sZFZBb0/bttzil3 + HuQBKPyWENcftyvQNtDBIOR+Bh3Nxu0MhfQN1M1ys4k8stKcvm7iRXuy5uA3H3+d4nBziHy6tc08 + 84/+49PTFxKf/RIuPhFm1hJ2egcO2w0KCWm+h+W7ljIY40rXDs59C1A6NLcKyx1QfstZPef/dnx5 + Ie/7L8jD/zabfseH3beY5siuccoqfPsg2l2P20sUvdD/0OaZWU4xpzhF3+eqgxrCbkQ9h9wsQs6w + ZSMqXAOlinPxpY1Yj6qUFAg3p2/cVK3BC7s32iFmYysgqzRwVNo0cDUrkSF7KfooJFLPgJCxaFYi + THlnogMOpTvOFxLMWhLgFIpXK+uZQxt0w7E0Wlk9rCPxioYbFr0gOm62AYrx9Advmz3k4yrladGm + PS0YBLr0rjy7D0rVkJs0j9IYDodPDiTTozy8isUPKAALkQh+hL8VA7+s5wkbv6ohZfzKY8aJX76F + r7qhKtQDjQ1j1ZBKSzJqGHdben65DshXF6t8FZBEX3/nOUVsIOU2e1UJyLfoG3rB0/w/piW1yDL3 + 4o64X8EJUeSvzz7h/UNh4qVpZ83sH3XuWToK62aAvbC41yJLQ3izh5x1dz39r487eWotH3f27CYi + vHnPYNNWZta5rRNKfL1fELZ+iEKvZxEYUvI3KEXr2Pdek+nHj2ZhC+WaWc1osXu+zopvFqrG3N6U + zwYJO03zG7Q362Pd6KU9c8TzlOw5/buCos265iMOef5qwSHqA2yh6tQ34Y6vX79OPp5x2ipHG8LP + OQ9tuo2O4SbbI+c7YzPB8VsppY0STR9DSf0URimm6H/6mUI4zedp0EkaZJJGNknDTwyCbf7bPxv/ + jcyYFvShqYEbIwqNj3cysn234U5sg+y8yQfCNxzTG5ET438diTDGxgmPjbGNYiPGWxxjonufjT/9 + uYK+PxlH+hV+aCAvPaLA8FDgHYNsfpNP/4ALdblurWoybZfljivYZbnj1VZ6on+qBLv2G8gXzLmt + lrRk9yLZRXGeuFqctTiPWpwLhnqzjt97v/MKKGA3e3q6vYbHEmTqcgAE2Zk9VbnEjG9wic/B7Sug + BXlQj0MbaG2g70Suq0qMyoqPto+gW/NSSIEryNQ+A3q42BUXRxhPd0r7TS3ESgjxcNVM1ZFkixjk + 6tiGsNHX0qyGNB9S0xXzMOTlmYgLclnOZPsWWpDvSZDFDPIQctylQRaXXi21qknt+nJgnnEk6Yr8 + SQzesJdG8XPif6c02ZYzA0gs3da5IIkVPx7pSWIFL+NrsQWL7aVIBltswZZWiuA619ECAcG9DhZo + wR214P7hH3/4/++aheRbXgQA + headers: + Accept-Ranges: + - bytes + Access-Control-Allow-Origin: + - '*' + Cache-Control: + - max-age=300 + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Length: + - '14268' + Content-Security-Policy: + - default-src 'none'; style-src 'unsafe-inline'; sandbox + Content-Type: + - text/plain; charset=utf-8 + Cross-Origin-Resource-Policy: + - cross-origin + Date: + - Fri, 03 Jan 2025 04:13:01 GMT + ETag: + - W/"8a539499ba1ea7ba011dc791293749378a704ea94a2ddf6a99434c0a6abc2ac6" + Expires: + - Fri, 03 Jan 2025 04:18:01 GMT + Source-Age: + - '171' + Strict-Transport-Security: + - max-age=31536000 + Vary: + - Authorization,Accept-Encoding,Origin + Via: + - 1.1 varnish + X-Cache: + - HIT + X-Cache-Hits: + - '2' + X-Content-Type-Options: + - nosniff + X-Fastly-Request-ID: + - 4a79b26f06cffe3523525e6c8d2e6785491a5fcd + X-Frame-Options: + - deny + X-GitHub-Request-Id: + - 43CA:2BAB1A:21507F:258090:67727C38 + X-Served-By: + - cache-bog2260024-BOG + X-Timer: + - S1735877582.937491,VS0,VE0 + X-XSS-Protection: + - 1; mode=block + status: + code: 200 + message: OK +- request: + body: null + headers: + Accept: + - '*/*' + Accept-Encoding: + - gzip, deflate + Connection: + - keep-alive + X-Amzn-Trace-Id: + - 6c7b5d10-38a2-4471-b304-01774de542df + user-agent: + - unknown/None; hf_hub/0.26.5; python/3.12.8 + method: GET + uri: https://huggingface.co/api/tasks + response: + body: + string: "{\"any-to-any\":{\"datasets\":[],\"demo\":{\"inputs\":[],\"outputs\":[]},\"isPlaceholder\":true,\"metrics\":[],\"models\":[],\"spaces\":[],\"summary\":\"\",\"widgetModels\":[],\"id\":\"any-to-any\",\"label\":\"Any-to-Any\",\"libraries\":[\"transformers\"]},\"audio-classification\":{\"datasets\":[{\"description\":\"A + benchmark of 10 different audio tasks.\",\"id\":\"s3prl/superb\"},{\"description\":\"A + dataset of YouTube clips and their sound categories.\",\"id\":\"agkphysics/AudioSet\"}],\"demo\":{\"inputs\":[{\"filename\":\"audio.wav\",\"type\":\"audio\"}],\"outputs\":[{\"data\":[{\"label\":\"Up\",\"score\":0.2},{\"label\":\"Down\",\"score\":0.8}],\"type\":\"chart\"}]},\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"\",\"id\":\"recall\"},{\"description\":\"\",\"id\":\"precision\"},{\"description\":\"\",\"id\":\"f1\"}],\"models\":[{\"description\":\"An + easy-to-use model for command recognition.\",\"id\":\"speechbrain/google_speech_command_xvector\"},{\"description\":\"An + emotion recognition model.\",\"id\":\"ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition\"},{\"description\":\"A + language identification model.\",\"id\":\"facebook/mms-lid-126\"}],\"spaces\":[{\"description\":\"An + application that can classify music into different genre.\",\"id\":\"kurianbenoy/audioclassification\"}],\"summary\":\"Audio + classification is the task of assigning a label or class to a given audio. + It can be used for recognizing which command a user is giving or the emotion + of a statement, as well as identifying a speaker.\",\"widgetModels\":[\"MIT/ast-finetuned-audioset-10-10-0.4593\"],\"youtubeId\":\"KWwzcmG98Ds\",\"id\":\"audio-classification\",\"label\":\"Audio + Classification\",\"libraries\":[\"speechbrain\",\"transformers\",\"transformers.js\"]},\"audio-to-audio\":{\"datasets\":[{\"description\":\"512-element + X-vector embeddings of speakers from CMU ARCTIC dataset.\",\"id\":\"Matthijs/cmu-arctic-xvectors\"}],\"demo\":{\"inputs\":[{\"filename\":\"input.wav\",\"type\":\"audio\"}],\"outputs\":[{\"filename\":\"label-0.wav\",\"type\":\"audio\"},{\"filename\":\"label-1.wav\",\"type\":\"audio\"}]},\"metrics\":[{\"description\":\"The + Signal-to-Noise ratio is the relationship between the target signal level + and the background noise level. It is calculated as the logarithm of the target + signal divided by the background noise, in decibels.\",\"id\":\"snri\"},{\"description\":\"The + Signal-to-Distortion ratio is the relationship between the target signal and + the sum of noise, interference, and artifact errors\",\"id\":\"sdri\"}],\"models\":[{\"description\":\"A + solid model of audio source separation.\",\"id\":\"speechbrain/sepformer-wham\"},{\"description\":\"A + speech enhancement model.\",\"id\":\"ResembleAI/resemble-enhance\"},{\"description\":\"A + model that can change the voice in a speech recording.\",\"id\":\"microsoft/speecht5_vc\"}],\"spaces\":[{\"description\":\"An + application for speech separation.\",\"id\":\"younver/speechbrain-speech-separation\"},{\"description\":\"An + application for audio style transfer.\",\"id\":\"nakas/audio-diffusion_style_transfer\"}],\"summary\":\"Audio-to-Audio + is a family of tasks in which the input is an audio and the output is one + or multiple generated audios. Some example tasks are speech enhancement and + source separation.\",\"widgetModels\":[\"speechbrain/sepformer-wham\"],\"youtubeId\":\"iohj7nCCYoM\",\"id\":\"audio-to-audio\",\"label\":\"Audio-to-Audio\",\"libraries\":[\"asteroid\",\"fairseq\",\"speechbrain\"]},\"audio-text-to-text\":{\"datasets\":[],\"demo\":{\"inputs\":[],\"outputs\":[]},\"isPlaceholder\":true,\"metrics\":[],\"models\":[],\"spaces\":[],\"summary\":\"\",\"widgetModels\":[],\"id\":\"audio-text-to-text\",\"label\":\"Audio-Text-to-Text\",\"libraries\":[]},\"automatic-speech-recognition\":{\"datasets\":[{\"description\":\"31,175 + hours of multilingual audio-text dataset in 108 languages.\",\"id\":\"mozilla-foundation/common_voice_17_0\"},{\"description\":\"Multilingual + and diverse audio dataset with 101k hours of audio.\",\"id\":\"amphion/Emilia-Dataset\"},{\"description\":\"A + dataset with 44.6k hours of English speaker data and 6k hours of other language + speakers.\",\"id\":\"parler-tts/mls_eng\"},{\"description\":\"A multilingual + audio dataset with 370K hours of audio.\",\"id\":\"espnet/yodas\"}],\"demo\":{\"inputs\":[{\"filename\":\"input.flac\",\"type\":\"audio\"}],\"outputs\":[{\"label\":\"Transcript\",\"content\":\"Going + along slushy country roads and speaking to damp audiences in...\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"\",\"id\":\"wer\"},{\"description\":\"\",\"id\":\"cer\"}],\"models\":[{\"description\":\"A + powerful ASR model by OpenAI.\",\"id\":\"openai/whisper-large-v3\"},{\"description\":\"A + good generic speech model by MetaAI for fine-tuning.\",\"id\":\"facebook/w2v-bert-2.0\"},{\"description\":\"An + end-to-end model that performs ASR and Speech Translation by MetaAI.\",\"id\":\"facebook/seamless-m4t-v2-large\"},{\"description\":\"A + powerful multilingual ASR and Speech Translation model by Nvidia.\",\"id\":\"nvidia/canary-1b\"},{\"description\":\"Powerful + speaker diarization model.\",\"id\":\"pyannote/speaker-diarization-3.1\"}],\"spaces\":[{\"description\":\"A + powerful general-purpose speech recognition application.\",\"id\":\"hf-audio/whisper-large-v3\"},{\"description\":\"Latest + ASR model from Useful Sensors.\",\"id\":\"mrfakename/Moonshinex\"},{\"description\":\"A + high quality speech and text translation model by Meta.\",\"id\":\"facebook/seamless_m4t\"},{\"description\":\"A + powerful multilingual ASR and Speech Translation model by Nvidia\",\"id\":\"nvidia/canary-1b\"}],\"summary\":\"Automatic + Speech Recognition (ASR), also known as Speech to Text (STT), is the task + of transcribing a given audio to text. It has many applications, such as voice + user interfaces.\",\"widgetModels\":[\"openai/whisper-large-v3\"],\"youtubeId\":\"TksaY_FDgnk\",\"id\":\"automatic-speech-recognition\",\"label\":\"Automatic + Speech Recognition\",\"libraries\":[\"espnet\",\"nemo\",\"speechbrain\",\"transformers\",\"transformers.js\"]},\"depth-estimation\":{\"datasets\":[{\"description\":\"NYU + Depth V2 Dataset: Video dataset containing both RGB and depth sensor data.\",\"id\":\"sayakpaul/nyu_depth_v2\"},{\"description\":\"Monocular + depth estimation benchmark based without noise and errors.\",\"id\":\"depth-anything/DA-2K\"}],\"demo\":{\"inputs\":[{\"filename\":\"depth-estimation-input.jpg\",\"type\":\"img\"}],\"outputs\":[{\"filename\":\"depth-estimation-output.png\",\"type\":\"img\"}]},\"metrics\":[],\"models\":[{\"description\":\"Cutting-edge + depth estimation model.\",\"id\":\"depth-anything/Depth-Anything-V2-Large\"},{\"description\":\"A + strong monocular depth estimation model.\",\"id\":\"jingheya/lotus-depth-g-v1-0\"},{\"description\":\"A + depth estimation model that predicts depth in videos.\",\"id\":\"tencent/DepthCrafter\"},{\"description\":\"A + robust depth estimation model.\",\"id\":\"apple/DepthPro\"}],\"spaces\":[{\"description\":\"An + application that predicts the depth of an image and then reconstruct the 3D + model as voxels.\",\"id\":\"radames/dpt-depth-estimation-3d-voxels\"},{\"description\":\"An + application for bleeding-edge depth estimation.\",\"id\":\"akhaliq/depth-pro\"},{\"description\":\"An + application on cutting-edge depth estimation in videos.\",\"id\":\"tencent/DepthCrafter\"},{\"description\":\"A + human-centric depth estimation application.\",\"id\":\"facebook/sapiens-depth\"}],\"summary\":\"Depth + estimation is the task of predicting depth of the objects present in an image.\",\"widgetModels\":[\"\"],\"youtubeId\":\"\",\"id\":\"depth-estimation\",\"label\":\"Depth + Estimation\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"document-question-answering\":{\"datasets\":[{\"description\":\"Largest + document understanding dataset.\",\"id\":\"HuggingFaceM4/Docmatix\"},{\"description\":\"Dataset + from the 2020 DocVQA challenge. The documents are taken from the UCSF Industry + Documents Library.\",\"id\":\"eliolio/docvqa\"}],\"demo\":{\"inputs\":[{\"label\":\"Question\",\"content\":\"What + is the idea behind the consumer relations efficiency team?\",\"type\":\"text\"},{\"filename\":\"document-question-answering-input.png\",\"type\":\"img\"}],\"outputs\":[{\"label\":\"Answer\",\"content\":\"Balance + cost efficiency with quality customer service\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"The + evaluation metric for the DocVQA challenge is the Average Normalized Levenshtein + Similarity (ANLS). This metric is flexible to character regognition errors + and compares the predicted answer with the ground truth answer.\",\"id\":\"anls\"},{\"description\":\"Exact + Match is a metric based on the strict character match of the predicted answer + and the right answer. For answers predicted correctly, the Exact Match will + be 1. Even if only one character is different, Exact Match will be 0\",\"id\":\"exact-match\"}],\"models\":[{\"description\":\"A + robust document question answering model.\",\"id\":\"impira/layoutlm-document-qa\"},{\"description\":\"A + document question answering model specialized in invoices.\",\"id\":\"impira/layoutlm-invoices\"},{\"description\":\"A + special model for OCR-free document question answering.\",\"id\":\"microsoft/udop-large\"},{\"description\":\"A + powerful model for document question answering.\",\"id\":\"google/pix2struct-docvqa-large\"}],\"spaces\":[{\"description\":\"A + robust document question answering application.\",\"id\":\"impira/docquery\"},{\"description\":\"An + application that can answer questions from invoices.\",\"id\":\"impira/invoices\"},{\"description\":\"An + application to compare different document question answering models.\",\"id\":\"merve/compare_docvqa_models\"}],\"summary\":\"Document + Question Answering (also known as Document Visual Question Answering) is the + task of answering questions on document images. Document question answering + models take a (document, question) pair as input and return an answer in natural + language. Models usually rely on multi-modal features, combining text, position + of words (bounding-boxes) and image.\",\"widgetModels\":[\"impira/layoutlm-invoices\"],\"youtubeId\":\"\",\"id\":\"document-question-answering\",\"label\":\"Document + Question Answering\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"feature-extraction\":{\"datasets\":[{\"description\":\"Wikipedia + dataset containing cleaned articles of all languages. Can be used to train + `feature-extraction` models.\",\"id\":\"wikipedia\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"India, + officially the Republic of India, is a country in South Asia.\",\"type\":\"text\"}],\"outputs\":[{\"table\":[[\"Dimension + 1\",\"Dimension 2\",\"Dimension 3\"],[\"2.583383083343506\",\"2.757075071334839\",\"0.9023529887199402\"],[\"8.29393482208252\",\"1.1071064472198486\",\"2.03399395942688\"],[\"-0.7754912972450256\",\"-1.647324562072754\",\"-0.6113331913948059\"],[\"0.07087723910808563\",\"1.5942802429199219\",\"1.4610432386398315\"]],\"type\":\"tabular\"}]},\"metrics\":[],\"models\":[{\"description\":\"A + powerful feature extraction model for natural language processing tasks.\",\"id\":\"thenlper/gte-large\"},{\"description\":\"A + strong feature extraction model for retrieval.\",\"id\":\"Alibaba-NLP/gte-Qwen1.5-7B-instruct\"}],\"spaces\":[{\"description\":\"A + leaderboard to rank text feature extraction models based on a benchmark.\",\"id\":\"mteb/leaderboard\"},{\"description\":\"A + leaderboard to rank best feature extraction models based on human feedback.\",\"id\":\"mteb/arena\"}],\"summary\":\"Feature + extraction is the task of extracting features learnt in a model.\",\"widgetModels\":[\"facebook/bart-base\"],\"id\":\"feature-extraction\",\"label\":\"Feature + Extraction\",\"libraries\":[\"sentence-transformers\",\"transformers\",\"transformers.js\"]},\"fill-mask\":{\"datasets\":[{\"description\":\"A + common dataset that is used to train models for many languages.\",\"id\":\"wikipedia\"},{\"description\":\"A + large English dataset with text crawled from the web.\",\"id\":\"c4\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"The + barked at me\",\"type\":\"text\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"wolf\",\"score\":0.487},{\"label\":\"dog\",\"score\":0.061},{\"label\":\"cat\",\"score\":0.058},{\"label\":\"fox\",\"score\":0.047},{\"label\":\"squirrel\",\"score\":0.025}]}]},\"metrics\":[{\"description\":\"Cross + Entropy is a metric that calculates the difference between two probability + distributions. Each probability distribution is the distribution of predicted + words\",\"id\":\"cross_entropy\"},{\"description\":\"Perplexity is the exponential + of the cross-entropy loss. It evaluates the probabilities assigned to the + next word by the model. Lower perplexity indicates better performance\",\"id\":\"perplexity\"}],\"models\":[{\"description\":\"The + famous BERT model.\",\"id\":\"google-bert/bert-base-uncased\"},{\"description\":\"A + multilingual model trained on 100 languages.\",\"id\":\"FacebookAI/xlm-roberta-base\"}],\"spaces\":[],\"summary\":\"Masked + language modeling is the task of masking some of the words in a sentence and + predicting which words should replace those masks. These models are useful + when we want to get a statistical understanding of the language in which the + model is trained in.\",\"widgetModels\":[\"distilroberta-base\"],\"youtubeId\":\"mqElG5QJWUg\",\"id\":\"fill-mask\",\"label\":\"Fill-Mask\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"image-classification\":{\"datasets\":[{\"description\":\"Benchmark + dataset used for image classification with images that belong to 100 classes.\",\"id\":\"cifar100\"},{\"description\":\"Dataset + consisting of images of garments.\",\"id\":\"fashion_mnist\"}],\"demo\":{\"inputs\":[{\"filename\":\"image-classification-input.jpeg\",\"type\":\"img\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"Egyptian + cat\",\"score\":0.514},{\"label\":\"Tabby cat\",\"score\":0.193},{\"label\":\"Tiger + cat\",\"score\":0.068}]}]},\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"\",\"id\":\"recall\"},{\"description\":\"\",\"id\":\"precision\"},{\"description\":\"\",\"id\":\"f1\"}],\"models\":[{\"description\":\"A + strong image classification model.\",\"id\":\"google/vit-base-patch16-224\"},{\"description\":\"A + robust image classification model.\",\"id\":\"facebook/deit-base-distilled-patch16-224\"},{\"description\":\"A + strong image classification model.\",\"id\":\"facebook/convnext-large-224\"}],\"spaces\":[{\"description\":\"An + application that classifies what a given image is about.\",\"id\":\"nielsr/perceiver-image-classification\"}],\"summary\":\"Image + classification is the task of assigning a label or class to an entire image. + Images are expected to have only one class for each image. Image classification + models take an image as input and return a prediction about which class the + image belongs to.\",\"widgetModels\":[\"google/vit-base-patch16-224\"],\"youtubeId\":\"tjAIM7BOYhw\",\"id\":\"image-classification\",\"label\":\"Image + Classification\",\"libraries\":[\"keras\",\"timm\",\"transformers\",\"transformers.js\"]},\"image-feature-extraction\":{\"datasets\":[{\"description\":\"ImageNet-1K + is a image classification dataset in which images are used to train image-feature-extraction + models.\",\"id\":\"imagenet-1k\"}],\"demo\":{\"inputs\":[{\"filename\":\"mask-generation-input.png\",\"type\":\"img\"}],\"outputs\":[{\"table\":[[\"Dimension + 1\",\"Dimension 2\",\"Dimension 3\"],[\"0.21236686408519745\",\"1.0919708013534546\",\"0.8512550592422485\"],[\"0.809657871723175\",\"-0.18544459342956543\",\"-0.7851548194885254\"],[\"1.3103108406066895\",\"-0.2479034662246704\",\"-0.9107287526130676\"],[\"1.8536205291748047\",\"-0.36419737339019775\",\"0.09717650711536407\"]],\"type\":\"tabular\"}]},\"metrics\":[],\"models\":[{\"description\":\"A + powerful image feature extraction model.\",\"id\":\"timm/vit_large_patch14_dinov2.lvd142m\"},{\"description\":\"A + strong image feature extraction model.\",\"id\":\"nvidia/MambaVision-T-1K\"},{\"description\":\"A + robust image feature extraction model.\",\"id\":\"facebook/dino-vitb16\"},{\"description\":\"Strong + image feature extraction model made for information retrieval from documents.\",\"id\":\"vidore/colpali\"},{\"description\":\"Strong + image feature extraction model that can be used on images and documents.\",\"id\":\"OpenGVLab/InternViT-6B-448px-V1-2\"}],\"spaces\":[],\"summary\":\"Image + feature extraction is the task of extracting features learnt in a computer + vision model.\",\"widgetModels\":[],\"id\":\"image-feature-extraction\",\"label\":\"Image + Feature Extraction\",\"libraries\":[\"timm\",\"transformers\"]},\"image-segmentation\":{\"datasets\":[{\"description\":\"Scene + segmentation dataset.\",\"id\":\"scene_parse_150\"}],\"demo\":{\"inputs\":[{\"filename\":\"image-segmentation-input.jpeg\",\"type\":\"img\"}],\"outputs\":[{\"filename\":\"image-segmentation-output.png\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"Average + Precision (AP) is the Area Under the PR Curve (AUC-PR). It is calculated for + each semantic class separately\",\"id\":\"Average Precision\"},{\"description\":\"Mean + Average Precision (mAP) is the overall average of the AP values\",\"id\":\"Mean + Average Precision\"},{\"description\":\"Intersection over Union (IoU) is the + overlap of segmentation masks. Mean IoU is the average of the IoU of all semantic + classes\",\"id\":\"Mean Intersection over Union\"},{\"description\":\"AP\u03B1 + is the Average Precision at the IoU threshold of a \u03B1 value, for example, + AP50 and AP75\",\"id\":\"AP\u03B1\"}],\"models\":[{\"description\":\"Solid + semantic segmentation model trained on ADE20k.\",\"id\":\"openmmlab/upernet-convnext-small\"},{\"description\":\"Background + removal model.\",\"id\":\"briaai/RMBG-1.4\"},{\"description\":\"A multipurpose + image segmentation model for high resolution images.\",\"id\":\"ZhengPeng7/BiRefNet\"},{\"description\":\"Powerful + human-centric image segmentation model.\",\"id\":\"facebook/sapiens-seg-1b\"},{\"description\":\"Panoptic + segmentation model trained on the COCO (common objects) dataset.\",\"id\":\"facebook/mask2former-swin-large-coco-panoptic\"}],\"spaces\":[{\"description\":\"A + semantic segmentation application that can predict unseen instances out of + the box.\",\"id\":\"facebook/ov-seg\"},{\"description\":\"One of the strongest + segmentation applications.\",\"id\":\"jbrinkma/segment-anything\"},{\"description\":\"A + human-centric segmentation model.\",\"id\":\"facebook/sapiens-pose\"},{\"description\":\"An + instance segmentation application to predict neuronal cell types from microscopy + images.\",\"id\":\"rashmi/sartorius-cell-instance-segmentation\"},{\"description\":\"An + application that segments videos.\",\"id\":\"ArtGAN/Segment-Anything-Video\"},{\"description\":\"An + panoptic segmentation application built for outdoor environments.\",\"id\":\"segments/panoptic-segment-anything\"}],\"summary\":\"Image + Segmentation divides an image into segments where each pixel in the image + is mapped to an object. This task has multiple variants such as instance segmentation, + panoptic segmentation and semantic segmentation.\",\"widgetModels\":[\"nvidia/segformer-b0-finetuned-ade-512-512\"],\"youtubeId\":\"dKE8SIt9C-w\",\"id\":\"image-segmentation\",\"label\":\"Image + Segmentation\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"image-to-image\":{\"datasets\":[{\"description\":\"Synthetic + dataset, for image relighting\",\"id\":\"VIDIT\"},{\"description\":\"Multiple + images of celebrities, used for facial expression translation\",\"id\":\"huggan/CelebA-faces\"}],\"demo\":{\"inputs\":[{\"filename\":\"image-to-image-input.jpeg\",\"type\":\"img\"}],\"outputs\":[{\"filename\":\"image-to-image-output.png\",\"type\":\"img\"}]},\"isPlaceholder\":false,\"metrics\":[{\"description\":\"Peak + Signal to Noise Ratio (PSNR) is an approximation of the human perception, + considering the ratio of the absolute intensity with respect to the variations. + Measured in dB, a high value indicates a high fidelity.\",\"id\":\"PSNR\"},{\"description\":\"Structural + Similarity Index (SSIM) is a perceptual metric which compares the luminance, + contrast and structure of two images. The values of SSIM range between -1 + and 1, and higher values indicate closer resemblance to the original image.\",\"id\":\"SSIM\"},{\"description\":\"Inception + Score (IS) is an analysis of the labels predicted by an image classification + model when presented with a sample of the generated images.\",\"id\":\"IS\"}],\"models\":[{\"description\":\"An + image-to-image model to improve image resolution.\",\"id\":\"fal/AuraSR-v2\"},{\"description\":\"A + model that increases the resolution of an image.\",\"id\":\"keras-io/super-resolution\"},{\"description\":\"A + model that creates a set of variations of the input image in the style of + DALL-E using Stable Diffusion.\",\"id\":\"lambdalabs/sd-image-variations-diffusers\"},{\"description\":\"A + model that generates images based on segments in the input image and the text + prompt.\",\"id\":\"mfidabel/controlnet-segment-anything\"},{\"description\":\"A + model that takes an image and an instruction to edit the image.\",\"id\":\"timbrooks/instruct-pix2pix\"}],\"spaces\":[{\"description\":\"Image + enhancer application for low light.\",\"id\":\"keras-io/low-light-image-enhancement\"},{\"description\":\"Style + transfer application.\",\"id\":\"keras-io/neural-style-transfer\"},{\"description\":\"An + application that generates images based on segment control.\",\"id\":\"mfidabel/controlnet-segment-anything\"},{\"description\":\"Image + generation application that takes image control and text prompt.\",\"id\":\"hysts/ControlNet\"},{\"description\":\"Colorize + any image using this app.\",\"id\":\"ioclab/brightness-controlnet\"},{\"description\":\"Edit + images with instructions.\",\"id\":\"timbrooks/instruct-pix2pix\"}],\"summary\":\"Image-to-image + is the task of transforming an input image through a variety of possible manipulations + and enhancements, such as super-resolution, image inpainting, colorization, + and more.\",\"widgetModels\":[\"stabilityai/stable-diffusion-2-inpainting\"],\"youtubeId\":\"\",\"id\":\"image-to-image\",\"label\":\"Image-to-Image\",\"libraries\":[\"diffusers\",\"transformers\",\"transformers.js\"]},\"image-text-to-text\":{\"datasets\":[{\"description\":\"Instructions + composed of image and text.\",\"id\":\"liuhaotian/LLaVA-Instruct-150K\"},{\"description\":\"Conversation + turns where questions involve image and text.\",\"id\":\"liuhaotian/LLaVA-Pretrain\"},{\"description\":\"A + collection of datasets made for model fine-tuning.\",\"id\":\"HuggingFaceM4/the_cauldron\"},{\"description\":\"Screenshots + of websites with their HTML/CSS codes.\",\"id\":\"HuggingFaceM4/WebSight\"}],\"demo\":{\"inputs\":[{\"filename\":\"image-text-to-text-input.png\",\"type\":\"img\"},{\"label\":\"Text + Prompt\",\"content\":\"Describe the position of the bee in detail.\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Answer\",\"content\":\"The + bee is sitting on a pink flower, surrounded by other flowers. The bee is positioned + in the center of the flower, with its head and front legs sticking out.\",\"type\":\"text\"}]},\"metrics\":[],\"models\":[{\"description\":\"Powerful + vision language model with great visual understanding and reasoning capabilities.\",\"id\":\"meta-llama/Llama-3.2-11B-Vision-Instruct\"},{\"description\":\"Cutting-edge + vision language models.\",\"id\":\"allenai/Molmo-7B-D-0924\"},{\"description\":\"Small + yet powerful model.\",\"id\":\"vikhyatk/moondream2\"},{\"description\":\"Strong + image-text-to-text model.\",\"id\":\"Qwen/Qwen2-VL-7B-Instruct\"},{\"description\":\"Strong + image-text-to-text model.\",\"id\":\"mistralai/Pixtral-12B-2409\"},{\"description\":\"Strong + image-text-to-text model focused on documents.\",\"id\":\"stepfun-ai/GOT-OCR2_0\"}],\"spaces\":[{\"description\":\"Leaderboard + to evaluate vision language models.\",\"id\":\"opencompass/open_vlm_leaderboard\"},{\"description\":\"Vision + language models arena, where models are ranked by votes of users.\",\"id\":\"WildVision/vision-arena\"},{\"description\":\"Powerful + vision-language model assistant.\",\"id\":\"akhaliq/Molmo-7B-D-0924\"},{\"description\":\"An + image-text-to-text application focused on documents.\",\"id\":\"stepfun-ai/GOT_official_online_demo\"},{\"description\":\"An + application to compare outputs of different vision language models.\",\"id\":\"merve/compare_VLMs\"},{\"description\":\"An + application for chatting with an image-text-to-text model.\",\"id\":\"GanymedeNil/Qwen2-VL-7B\"}],\"summary\":\"Image-text-to-text + models take in an image and text prompt and output text. These models are + also called vision-language models, or VLMs. The difference from image-to-text + models is that these models take an additional text input, not restricting + the model to certain use cases like image captioning, and may also be trained + to accept a conversation as input.\",\"widgetModels\":[\"meta-llama/Llama-3.2-11B-Vision-Instruct\"],\"youtubeId\":\"IoGaGfU1CIg\",\"id\":\"image-text-to-text\",\"label\":\"Image-Text-to-Text\",\"libraries\":[\"transformers\"]},\"image-to-text\":{\"datasets\":[{\"description\":\"Dataset + from 12M image-text of Reddit\",\"id\":\"red_caps\"},{\"description\":\"Dataset + from 3.3M images of Google\",\"id\":\"datasets/conceptual_captions\"}],\"demo\":{\"inputs\":[{\"filename\":\"savanna.jpg\",\"type\":\"img\"}],\"outputs\":[{\"label\":\"Detailed + description\",\"content\":\"a herd of giraffes and zebras grazing in a field\",\"type\":\"text\"}]},\"metrics\":[],\"models\":[{\"description\":\"A + robust image captioning model.\",\"id\":\"Salesforce/blip2-opt-2.7b\"},{\"description\":\"A + powerful and accurate image-to-text model that can also localize concepts + in images.\",\"id\":\"microsoft/kosmos-2-patch14-224\"},{\"description\":\"A + strong optical character recognition model.\",\"id\":\"facebook/nougat-base\"},{\"description\":\"A + powerful model that lets you have a conversation with the image.\",\"id\":\"llava-hf/llava-1.5-7b-hf\"}],\"spaces\":[{\"description\":\"An + application that compares various image captioning models.\",\"id\":\"nielsr/comparing-captioning-models\"},{\"description\":\"A + robust image captioning application.\",\"id\":\"flax-community/image-captioning\"},{\"description\":\"An + application that transcribes handwritings into text.\",\"id\":\"nielsr/TrOCR-handwritten\"},{\"description\":\"An + application that can caption images and answer questions about a given image.\",\"id\":\"Salesforce/BLIP\"},{\"description\":\"An + application that can caption images and answer questions with a conversational + agent.\",\"id\":\"Salesforce/BLIP2\"},{\"description\":\"An image captioning + application that demonstrates the effect of noise on captions.\",\"id\":\"johko/capdec-image-captioning\"}],\"summary\":\"Image + to text models output a text from a given image. Image captioning or optical + character recognition can be considered as the most common applications of + image to text.\",\"widgetModels\":[\"Salesforce/blip-image-captioning-large\"],\"youtubeId\":\"\",\"id\":\"image-to-text\",\"label\":\"Image-to-Text\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"keypoint-detection\":{\"datasets\":[{\"description\":\"A + dataset of hand keypoints of over 500k examples.\",\"id\":\"Vincent-luo/hagrid-mediapipe-hands\"}],\"demo\":{\"inputs\":[{\"filename\":\"keypoint-detection-input.png\",\"type\":\"img\"}],\"outputs\":[{\"filename\":\"keypoint-detection-output.png\",\"type\":\"img\"}]},\"metrics\":[],\"models\":[{\"description\":\"A + robust keypoint detection model.\",\"id\":\"magic-leap-community/superpoint\"},{\"description\":\"Strong + keypoint detection model used to detect human pose.\",\"id\":\"facebook/sapiens-pose-1b\"}],\"spaces\":[{\"description\":\"An + application that detects hand keypoints in real-time.\",\"id\":\"datasciencedojo/Hand-Keypoint-Detection-Realtime\"},{\"description\":\"An + application to try a universal keypoint detection model.\",\"id\":\"merve/SuperPoint\"}],\"summary\":\"Keypoint + detection is the task of identifying meaningful distinctive points or features + in an image.\",\"widgetModels\":[],\"youtubeId\":\"\",\"id\":\"keypoint-detection\",\"label\":\"Keypoint + Detection\",\"libraries\":[\"transformers\"]},\"mask-generation\":{\"datasets\":[{\"description\":\"Widely + used benchmark dataset for multiple Vision tasks.\",\"id\":\"merve/coco2017\"},{\"description\":\"Medical + Imaging dataset of the Human Brain for segmentation and mask generating tasks\",\"id\":\"rocky93/BraTS_segmentation\"}],\"demo\":{\"inputs\":[{\"filename\":\"mask-generation-input.png\",\"type\":\"img\"}],\"outputs\":[{\"filename\":\"mask-generation-output.png\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"IoU + is used to measure the overlap between predicted mask and the ground truth + mask.\",\"id\":\"Intersection over Union (IoU)\"}],\"models\":[{\"description\":\"Small + yet powerful mask generation model.\",\"id\":\"Zigeng/SlimSAM-uniform-50\"},{\"description\":\"Very + strong mask generation model.\",\"id\":\"facebook/sam2-hiera-large\"}],\"spaces\":[{\"description\":\"An + application that combines a mask generation model with a zero-shot object + detection model for text-guided image segmentation.\",\"id\":\"merve/OWLSAM2\"},{\"description\":\"An + application that compares the performance of a large and a small mask generation + model.\",\"id\":\"merve/slimsam\"},{\"description\":\"An application based + on an improved mask generation model.\",\"id\":\"SkalskiP/segment-anything-model-2\"},{\"description\":\"An + application to remove objects from videos using mask generation models.\",\"id\":\"SkalskiP/SAM_and_ProPainter\"}],\"summary\":\"Mask + generation is the task of generating masks that identify a specific object + or region of interest in a given image. Masks are often used in segmentation + tasks, where they provide a precise way to isolate the object of interest + for further processing or analysis.\",\"widgetModels\":[],\"youtubeId\":\"\",\"id\":\"mask-generation\",\"label\":\"Mask + Generation\",\"libraries\":[\"transformers\"]},\"object-detection\":{\"datasets\":[{\"description\":\"Widely + used benchmark dataset for multiple vision tasks.\",\"id\":\"merve/coco2017\"},{\"description\":\"Multi-task + computer vision benchmark.\",\"id\":\"merve/pascal-voc\"}],\"demo\":{\"inputs\":[{\"filename\":\"object-detection-input.jpg\",\"type\":\"img\"}],\"outputs\":[{\"filename\":\"object-detection-output.jpg\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"The + Average Precision (AP) metric is the Area Under the PR Curve (AUC-PR). It + is calculated for each class separately\",\"id\":\"Average Precision\"},{\"description\":\"The + Mean Average Precision (mAP) metric is the overall average of the AP values\",\"id\":\"Mean + Average Precision\"},{\"description\":\"The AP\u03B1 metric is the Average + Precision at the IoU threshold of a \u03B1 value, for example, AP50 and AP75\",\"id\":\"AP\u03B1\"}],\"models\":[{\"description\":\"Solid + object detection model pre-trained on the COCO 2017 dataset.\",\"id\":\"facebook/detr-resnet-50\"},{\"description\":\"Real-time + and accurate object detection model.\",\"id\":\"jameslahm/yolov10x\"},{\"description\":\"Fast + and accurate object detection model trained on COCO and Object365 datasets.\",\"id\":\"PekingU/rtdetr_r18vd_coco_o365\"}],\"spaces\":[{\"description\":\"Leaderboard + to compare various object detection models across several metrics.\",\"id\":\"hf-vision/object_detection_leaderboard\"},{\"description\":\"An + application that contains various object detection models to try from.\",\"id\":\"Gradio-Blocks/Object-Detection-With-DETR-and-YOLOS\"},{\"description\":\"An + application that shows multiple cutting edge techniques for object detection + and tracking.\",\"id\":\"kadirnar/torchyolo\"},{\"description\":\"An object + tracking, segmentation and inpainting application.\",\"id\":\"VIPLab/Track-Anything\"},{\"description\":\"Very + fast object tracking application based on object detection.\",\"id\":\"merve/RT-DETR-tracking-coco\"}],\"summary\":\"Object + Detection models allow users to identify objects of certain defined classes. + Object detection models receive an image as input and output the images with + bounding boxes and labels on detected objects.\",\"widgetModels\":[\"facebook/detr-resnet-50\"],\"youtubeId\":\"WdAeKSOpxhw\",\"id\":\"object-detection\",\"label\":\"Object + Detection\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"video-classification\":{\"datasets\":[{\"description\":\"Benchmark + dataset used for video classification with videos that belong to 400 classes.\",\"id\":\"kinetics400\"}],\"demo\":{\"inputs\":[{\"filename\":\"video-classification-input.gif\",\"type\":\"img\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"Playing + Guitar\",\"score\":0.514},{\"label\":\"Playing Tennis\",\"score\":0.193},{\"label\":\"Cooking\",\"score\":0.068}]}]},\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"\",\"id\":\"recall\"},{\"description\":\"\",\"id\":\"precision\"},{\"description\":\"\",\"id\":\"f1\"}],\"models\":[{\"description\":\"Strong + Video Classification model trained on the Kinetics 400 dataset.\",\"id\":\"google/vivit-b-16x2-kinetics400\"},{\"description\":\"Strong + Video Classification model trained on the Kinetics 400 dataset.\",\"id\":\"microsoft/xclip-base-patch32\"}],\"spaces\":[{\"description\":\"An + application that classifies video at different timestamps.\",\"id\":\"nateraw/lavila\"},{\"description\":\"An + application that classifies video.\",\"id\":\"fcakyon/video-classification\"}],\"summary\":\"Video + classification is the task of assigning a label or class to an entire video. + Videos are expected to have only one class for each video. Video classification + models take a video as input and return a prediction about which class the + video belongs to.\",\"widgetModels\":[],\"youtubeId\":\"\",\"id\":\"video-classification\",\"label\":\"Video + Classification\",\"libraries\":[\"transformers\"]},\"question-answering\":{\"datasets\":[{\"description\":\"A + famous question answering dataset based on English articles from Wikipedia.\",\"id\":\"squad_v2\"},{\"description\":\"A + dataset of aggregated anonymized actual queries issued to the Google search + engine.\",\"id\":\"natural_questions\"}],\"demo\":{\"inputs\":[{\"label\":\"Question\",\"content\":\"Which + name is also used to describe the Amazon rainforest in English?\",\"type\":\"text\"},{\"label\":\"Context\",\"content\":\"The + Amazon rainforest, also known in English as Amazonia or the Amazon Jungle\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Answer\",\"content\":\"Amazonia\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"Exact + Match is a metric based on the strict character match of the predicted answer + and the right answer. For answers predicted correctly, the Exact Match will + be 1. Even if only one character is different, Exact Match will be 0\",\"id\":\"exact-match\"},{\"description\":\" + The F1-Score metric is useful if we value both false positives and false negatives + equally. The F1-Score is calculated on each word in the predicted sequence + against the correct answer\",\"id\":\"f1\"}],\"models\":[{\"description\":\"A + robust baseline model for most question answering domains.\",\"id\":\"deepset/roberta-base-squad2\"},{\"description\":\"Small + yet robust model that can answer questions.\",\"id\":\"distilbert/distilbert-base-cased-distilled-squad\"},{\"description\":\"A + special model that can answer questions from tables.\",\"id\":\"google/tapas-base-finetuned-wtq\"}],\"spaces\":[{\"description\":\"An + application that can answer a long question from Wikipedia.\",\"id\":\"deepset/wikipedia-assistant\"}],\"summary\":\"Question + Answering models can retrieve the answer to a question from a given text, + which is useful for searching for an answer in a document. Some question answering + models can generate answers without context!\",\"widgetModels\":[\"deepset/roberta-base-squad2\"],\"youtubeId\":\"ajPx5LwJD-I\",\"id\":\"question-answering\",\"label\":\"Question + Answering\",\"libraries\":[\"adapter-transformers\",\"allennlp\",\"transformers\",\"transformers.js\"]},\"reinforcement-learning\":{\"datasets\":[{\"description\":\"A + curation of widely used datasets for Data Driven Deep Reinforcement Learning + (D4RL)\",\"id\":\"edbeeching/decision_transformer_gym_replay\"}],\"demo\":{\"inputs\":[{\"label\":\"State\",\"content\":\"Red + traffic light, pedestrians are about to pass.\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Action\",\"content\":\"Stop + the car.\",\"type\":\"text\"},{\"label\":\"Next State\",\"content\":\"Yellow + light, pedestrians have crossed.\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"Accumulated + reward across all time steps discounted by a factor that ranges between 0 + and 1 and determines how much the agent optimizes for future relative to immediate + rewards. Measures how good is the policy ultimately found by a given algorithm + considering uncertainty over the future.\",\"id\":\"Discounted Total Reward\"},{\"description\":\"Average + return obtained after running the policy for a certain number of evaluation + episodes. As opposed to total reward, mean reward considers how much reward + a given algorithm receives while learning.\",\"id\":\"Mean Reward\"},{\"description\":\"Measures + how good a given algorithm is after a predefined time. Some algorithms may + be guaranteed to converge to optimal behavior across many time steps. However, + an agent that reaches an acceptable level of optimality after a given time + horizon may be preferable to one that ultimately reaches optimality but takes + a long time.\",\"id\":\"Level of Performance After Some Time\"}],\"models\":[{\"description\":\"A + Reinforcement Learning model trained on expert data from the Gym Hopper environment\",\"id\":\"edbeeching/decision-transformer-gym-hopper-expert\"},{\"description\":\"A + PPO agent playing seals/CartPole-v0 using the stable-baselines3 library and + the RL Zoo.\",\"id\":\"HumanCompatibleAI/ppo-seals-CartPole-v0\"}],\"spaces\":[{\"description\":\"An + application for a cute puppy agent learning to catch a stick.\",\"id\":\"ThomasSimonini/Huggy\"},{\"description\":\"An + application to play Snowball Fight with a reinforcement learning agent.\",\"id\":\"ThomasSimonini/SnowballFight\"}],\"summary\":\"Reinforcement + learning is the computational approach of learning from action by interacting + with an environment through trial and error and receiving rewards (negative + or positive) as feedback\",\"widgetModels\":[],\"youtubeId\":\"q0BiUn5LiBc\",\"id\":\"reinforcement-learning\",\"label\":\"Reinforcement + Learning\",\"libraries\":[\"transformers\",\"stable-baselines3\",\"ml-agents\",\"sample-factory\"]},\"sentence-similarity\":{\"datasets\":[{\"description\":\"Bing + queries with relevant passages from various web sources.\",\"id\":\"ms_marco\"}],\"demo\":{\"inputs\":[{\"label\":\"Source + sentence\",\"content\":\"Machine learning is so easy.\",\"type\":\"text\"},{\"label\":\"Sentences + to compare to\",\"content\":\"Deep learning is so straightforward.\",\"type\":\"text\"},{\"label\":\"\",\"content\":\"This + is so difficult, like rocket science.\",\"type\":\"text\"},{\"label\":\"\",\"content\":\"I + can't believe how much I struggled with this.\",\"type\":\"text\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"Deep + learning is so straightforward.\",\"score\":0.623},{\"label\":\"This is so + difficult, like rocket science.\",\"score\":0.413},{\"label\":\"I can't believe + how much I struggled with this.\",\"score\":0.256}]}]},\"metrics\":[{\"description\":\"Reciprocal + Rank is a measure used to rank the relevancy of documents given a set of documents. + Reciprocal Rank is the reciprocal of the rank of the document retrieved, meaning, + if the rank is 3, the Reciprocal Rank is 0.33. If the rank is 1, the Reciprocal + Rank is 1\",\"id\":\"Mean Reciprocal Rank\"},{\"description\":\"The similarity + of the embeddings is evaluated mainly on cosine similarity. It is calculated + as the cosine of the angle between two vectors. It is particularly useful + when your texts are not the same length\",\"id\":\"Cosine Similarity\"}],\"models\":[{\"description\":\"This + model works well for sentences and paragraphs and can be used for clustering/grouping + and semantic searches.\",\"id\":\"sentence-transformers/all-mpnet-base-v2\"},{\"description\":\"A + multilingual robust sentence similarity model..\",\"id\":\"BAAI/bge-m3\"}],\"spaces\":[{\"description\":\"An + application that leverages sentence similarity to answer questions from YouTube + videos.\",\"id\":\"Gradio-Blocks/Ask_Questions_To_YouTube_Videos\"},{\"description\":\"An + application that retrieves relevant PubMed abstracts for a given online article + which can be used as further references.\",\"id\":\"Gradio-Blocks/pubmed-abstract-retriever\"},{\"description\":\"An + application that leverages sentence similarity to summarize text.\",\"id\":\"nickmuchi/article-text-summarizer\"},{\"description\":\"A + guide that explains how Sentence Transformers can be used for semantic search.\",\"id\":\"sentence-transformers/Sentence_Transformers_for_semantic_search\"}],\"summary\":\"Sentence + Similarity is the task of determining how similar two texts are. Sentence + similarity models convert input texts into vectors (embeddings) that capture + semantic information and calculate how close (similar) they are between them. + This task is particularly useful for information retrieval and clustering/grouping.\",\"widgetModels\":[\"BAAI/bge-small-en-v1.5\"],\"youtubeId\":\"VCZq5AkbNEU\",\"id\":\"sentence-similarity\",\"label\":\"Sentence + Similarity\",\"libraries\":[\"sentence-transformers\",\"spacy\",\"transformers.js\"]},\"summarization\":{\"canonicalId\":\"text2text-generation\",\"datasets\":[{\"description\":\"News + articles in five different languages along with their summaries. Widely used + for benchmarking multilingual summarization models.\",\"id\":\"mlsum\"},{\"description\":\"English + conversations and their summaries. Useful for benchmarking conversational + agents.\",\"id\":\"samsum\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"The + tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey + building, and the tallest structure in Paris. Its base is square, measuring + 125 metres (410 ft) on each side. It was the first structure to reach a height + of 300 metres. Excluding transmitters, the Eiffel Tower is the second tallest + free-standing structure in France after the Millau Viaduct.\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Output\",\"content\":\"The + tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey + building. It was the first structure to reach a height of 300 metres.\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"The + generated sequence is compared against its summary, and the overlap of tokens + are counted. ROUGE-N refers to overlap of N subsequent tokens, ROUGE-1 refers + to overlap of single tokens and ROUGE-2 is the overlap of two subsequent tokens.\",\"id\":\"rouge\"}],\"models\":[{\"description\":\"A + strong summarization model trained on English news articles. Excels at generating + factual summaries.\",\"id\":\"facebook/bart-large-cnn\"},{\"description\":\"A + summarization model trained on medical articles.\",\"id\":\"Falconsai/medical_summarization\"}],\"spaces\":[{\"description\":\"An + application that can summarize long paragraphs.\",\"id\":\"pszemraj/summarize-long-text\"},{\"description\":\"A + much needed summarization application for terms and conditions.\",\"id\":\"ml6team/distilbart-tos-summarizer-tosdr\"},{\"description\":\"An + application that summarizes long documents.\",\"id\":\"pszemraj/document-summarization\"},{\"description\":\"An + application that can detect errors in abstractive summarization.\",\"id\":\"ml6team/post-processing-summarization\"}],\"summary\":\"Summarization + is the task of producing a shorter version of a document while preserving + its important information. Some models can extract text from the original + input, while other models can generate entirely new text.\",\"widgetModels\":[\"facebook/bart-large-cnn\"],\"youtubeId\":\"yHnr5Dk2zCI\",\"id\":\"summarization\",\"label\":\"Summarization\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"table-question-answering\":{\"datasets\":[{\"description\":\"The + WikiTableQuestions dataset is a large-scale dataset for the task of question + answering on semi-structured tables.\",\"id\":\"wikitablequestions\"},{\"description\":\"WikiSQL + is a dataset of 80654 hand-annotated examples of questions and SQL queries + distributed across 24241 tables from Wikipedia.\",\"id\":\"wikisql\"}],\"demo\":{\"inputs\":[{\"table\":[[\"Rank\",\"Name\",\"No.of + reigns\",\"Combined days\"],[\"1\",\"lou Thesz\",\"3\",\"3749\"],[\"2\",\"Ric + Flair\",\"8\",\"3103\"],[\"3\",\"Harley Race\",\"7\",\"1799\"]],\"type\":\"tabular\"},{\"label\":\"Question\",\"content\":\"What + is the number of reigns for Harley Race?\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Result\",\"content\":\"7\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"Checks + whether the predicted answer(s) is the same as the ground-truth answer(s).\",\"id\":\"Denotation + Accuracy\"}],\"models\":[{\"description\":\"A table question answering model + that is capable of neural SQL execution, i.e., employ TAPEX to execute a SQL + query on a given table.\",\"id\":\"microsoft/tapex-base\"},{\"description\":\"A + robust table question answering model.\",\"id\":\"google/tapas-base-finetuned-wtq\"}],\"spaces\":[{\"description\":\"An + application that answers questions based on table CSV files.\",\"id\":\"katanaml/table-query\"}],\"summary\":\"Table + Question Answering (Table QA) is the answering a question about an information + on a given table.\",\"widgetModels\":[\"google/tapas-base-finetuned-wtq\"],\"id\":\"table-question-answering\",\"label\":\"Table + Question Answering\",\"libraries\":[\"transformers\"]},\"tabular-classification\":{\"datasets\":[{\"description\":\"A + comprehensive curation of datasets covering all benchmarks.\",\"id\":\"inria-soda/tabular-benchmark\"}],\"demo\":{\"inputs\":[{\"table\":[[\"Glucose\",\"Blood + Pressure \",\"Skin Thickness\",\"Insulin\",\"BMI\"],[\"148\",\"72\",\"35\",\"0\",\"33.6\"],[\"150\",\"50\",\"30\",\"0\",\"35.1\"],[\"141\",\"60\",\"29\",\"1\",\"39.2\"]],\"type\":\"tabular\"}],\"outputs\":[{\"table\":[[\"Diabetes\"],[\"1\"],[\"1\"],[\"0\"]],\"type\":\"tabular\"}]},\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"\",\"id\":\"recall\"},{\"description\":\"\",\"id\":\"precision\"},{\"description\":\"\",\"id\":\"f1\"}],\"models\":[{\"description\":\"Breast + cancer prediction model based on decision trees.\",\"id\":\"scikit-learn/cancer-prediction-trees\"}],\"spaces\":[{\"description\":\"An + application that can predict defective products on a production line.\",\"id\":\"scikit-learn/tabular-playground\"},{\"description\":\"An + application that compares various tabular classification techniques on different + datasets.\",\"id\":\"scikit-learn/classification\"}],\"summary\":\"Tabular + classification is the task of classifying a target category (a group) based + on set of attributes.\",\"widgetModels\":[\"scikit-learn/tabular-playground\"],\"youtubeId\":\"\",\"id\":\"tabular-classification\",\"label\":\"Tabular + Classification\",\"libraries\":[\"sklearn\"]},\"tabular-regression\":{\"datasets\":[{\"description\":\"A + comprehensive curation of datasets covering all benchmarks.\",\"id\":\"inria-soda/tabular-benchmark\"}],\"demo\":{\"inputs\":[{\"table\":[[\"Car + Name\",\"Horsepower\",\"Weight\"],[\"ford torino\",\"140\",\"3,449\"],[\"amc + hornet\",\"97\",\"2,774\"],[\"toyota corolla\",\"65\",\"1,773\"]],\"type\":\"tabular\"}],\"outputs\":[{\"table\":[[\"MPG + (miles per gallon)\"],[\"17\"],[\"18\"],[\"31\"]],\"type\":\"tabular\"}]},\"metrics\":[{\"description\":\"\",\"id\":\"mse\"},{\"description\":\"Coefficient + of determination (or R-squared) is a measure of how well the model fits the + data. Higher R-squared is considered a better fit.\",\"id\":\"r-squared\"}],\"models\":[{\"description\":\"Fish + weight prediction based on length measurements and species.\",\"id\":\"scikit-learn/Fish-Weight\"}],\"spaces\":[{\"description\":\"An + application that can predict weight of a fish based on set of attributes.\",\"id\":\"scikit-learn/fish-weight-prediction\"}],\"summary\":\"Tabular + regression is the task of predicting a numerical value given a set of attributes.\",\"widgetModels\":[\"scikit-learn/Fish-Weight\"],\"youtubeId\":\"\",\"id\":\"tabular-regression\",\"label\":\"Tabular + Regression\",\"libraries\":[\"sklearn\"]},\"text-classification\":{\"datasets\":[{\"description\":\"A + widely used dataset used to benchmark multiple variants of text classification.\",\"id\":\"nyu-mll/glue\"},{\"description\":\"A + text classification dataset used to benchmark natural language inference models\",\"id\":\"stanfordnlp/snli\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"I + love Hugging Face!\",\"type\":\"text\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"POSITIVE\",\"score\":0.9},{\"label\":\"NEUTRAL\",\"score\":0.1},{\"label\":\"NEGATIVE\",\"score\":0}]}]},\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"\",\"id\":\"recall\"},{\"description\":\"\",\"id\":\"precision\"},{\"description\":\"The + F1 metric is the harmonic mean of the precision and recall. It can be calculated + as: F1 = 2 * (precision * recall) / (precision + recall)\",\"id\":\"f1\"}],\"models\":[{\"description\":\"A + robust model trained for sentiment analysis.\",\"id\":\"distilbert/distilbert-base-uncased-finetuned-sst-2-english\"},{\"description\":\"A + sentiment analysis model specialized in financial sentiment.\",\"id\":\"ProsusAI/finbert\"},{\"description\":\"A + sentiment analysis model specialized in analyzing tweets.\",\"id\":\"cardiffnlp/twitter-roberta-base-sentiment-latest\"},{\"description\":\"A + model that can classify languages.\",\"id\":\"papluca/xlm-roberta-base-language-detection\"},{\"description\":\"A + model that can classify text generation attacks.\",\"id\":\"meta-llama/Prompt-Guard-86M\"}],\"spaces\":[{\"description\":\"An + application that can classify financial sentiment.\",\"id\":\"IoannisTr/Tech_Stocks_Trading_Assistant\"},{\"description\":\"A + dashboard that contains various text classification tasks.\",\"id\":\"miesnerjacob/Multi-task-NLP\"},{\"description\":\"An + application that analyzes user reviews in healthcare.\",\"id\":\"spacy/healthsea-demo\"}],\"summary\":\"Text + Classification is the task of assigning a label or class to a given text. + Some use cases are sentiment analysis, natural language inference, and assessing + grammatical correctness.\",\"widgetModels\":[\"distilbert/distilbert-base-uncased-finetuned-sst-2-english\"],\"youtubeId\":\"leNG9fN9FQU\",\"id\":\"text-classification\",\"label\":\"Text + Classification\",\"libraries\":[\"adapter-transformers\",\"setfit\",\"spacy\",\"transformers\",\"transformers.js\"]},\"text-generation\":{\"datasets\":[{\"description\":\"A + large multilingual dataset of text crawled from the web.\",\"id\":\"mc4\"},{\"description\":\"Diverse + open-source data consisting of 22 smaller high-quality datasets. It was used + to train GPT-Neo.\",\"id\":\"the_pile\"},{\"description\":\"Truly open-source, + curated and cleaned dialogue dataset.\",\"id\":\"HuggingFaceH4/ultrachat_200k\"},{\"description\":\"An + instruction dataset with preference ratings on responses.\",\"id\":\"openbmb/UltraFeedback\"},{\"description\":\"A + large synthetic dataset for alignment of text generation models.\",\"id\":\"argilla/magpie-ultra-v0.1\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"Once + upon a time,\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Output\",\"content\":\"Once + upon a time, we knew that our ancestors were on the verge of extinction. The + great explorers and poets of the Old World, from Alexander the Great to Chaucer, + are dead and gone. A good many of our ancient explorers and poets have\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"Cross + Entropy is a metric that calculates the difference between two probability + distributions. Each probability distribution is the distribution of predicted + words\",\"id\":\"Cross Entropy\"},{\"description\":\"The Perplexity metric + is the exponential of the cross-entropy loss. It evaluates the probabilities + assigned to the next word by the model. Lower perplexity indicates better + performance\",\"id\":\"Perplexity\"}],\"models\":[{\"description\":\"A text-generation + model trained to follow instructions.\",\"id\":\"google/gemma-2-2b-it\"},{\"description\":\"Very + powerful text generation model trained to follow instructions.\",\"id\":\"meta-llama/Meta-Llama-3.1-8B-Instruct\"},{\"description\":\"Small + yet powerful text generation model.\",\"id\":\"microsoft/Phi-3-mini-4k-instruct\"},{\"description\":\"A + very powerful model that can solve mathematical problems.\",\"id\":\"AI-MO/NuminaMath-7B-TIR\"},{\"description\":\"Strong + text generation model to follow instructions.\",\"id\":\"Qwen/Qwen2.5-7B-Instruct\"},{\"description\":\"Very + strong open-source large language model.\",\"id\":\"nvidia/Llama-3.1-Nemotron-70B-Instruct\"}],\"spaces\":[{\"description\":\"A + leaderboard to compare different open-source text generation models based + on various benchmarks.\",\"id\":\"open-llm-leaderboard/open_llm_leaderboard\"},{\"description\":\"A + leaderboard for comparing chain-of-thought performance of models.\",\"id\":\"logikon/open_cot_leaderboard\"},{\"description\":\"An + text generation based application based on a very powerful LLaMA2 model.\",\"id\":\"ysharma/Explore_llamav2_with_TGI\"},{\"description\":\"An + text generation based application to converse with Zephyr model.\",\"id\":\"HuggingFaceH4/zephyr-chat\"},{\"description\":\"A + leaderboard that ranks text generation models based on blind votes from people.\",\"id\":\"lmsys/chatbot-arena-leaderboard\"},{\"description\":\"An + chatbot to converse with a very powerful text generation model.\",\"id\":\"mlabonne/phixtral-chat\"}],\"summary\":\"Generating + text is the task of generating new text given another text. These models can, + for example, fill in incomplete text or paraphrase.\",\"widgetModels\":[\"mistralai/Mistral-Nemo-Instruct-2407\"],\"youtubeId\":\"e9gNEAlsOvU\",\"id\":\"text-generation\",\"label\":\"Text + Generation\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"text-to-image\":{\"datasets\":[{\"description\":\"RedCaps + is a large-scale dataset of 12M image-text pairs collected from Reddit.\",\"id\":\"red_caps\"},{\"description\":\"Conceptual + Captions is a dataset consisting of ~3.3M images annotated with captions.\",\"id\":\"conceptual_captions\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"A + city above clouds, pastel colors, Victorian style\",\"type\":\"text\"}],\"outputs\":[{\"filename\":\"image.jpeg\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"The + Inception Score (IS) measure assesses diversity and meaningfulness. It uses + a generated image sample to predict its label. A higher score signifies more + diverse and meaningful images.\",\"id\":\"IS\"},{\"description\":\"The Fr\xE9chet + Inception Distance (FID) calculates the distance between distributions between + synthetic and real samples. A lower FID score indicates better similarity + between the distributions of real and generated images.\",\"id\":\"FID\"},{\"description\":\"R-precision + assesses how the generated image aligns with the provided text description. + It uses the generated images as queries to retrieve relevant text descriptions. + The top 'r' relevant descriptions are selected and used to calculate R-precision + as r/R, where 'R' is the number of ground truth descriptions associated with + the generated images. A higher R-precision value indicates a better model.\",\"id\":\"R-Precision\"}],\"models\":[{\"description\":\"One + of the most powerful image generation models that can generate realistic outputs.\",\"id\":\"black-forest-labs/FLUX.1-dev\"},{\"description\":\"A + powerful yet fast image generation model.\",\"id\":\"latent-consistency/lcm-lora-sdxl\"},{\"description\":\"Text-to-image + model for photorealistic generation.\",\"id\":\"Kwai-Kolors/Kolors\"},{\"description\":\"A + powerful text-to-image model.\",\"id\":\"stabilityai/stable-diffusion-3-medium-diffusers\"}],\"spaces\":[{\"description\":\"A + powerful text-to-image application.\",\"id\":\"stabilityai/stable-diffusion-3-medium\"},{\"description\":\"A + text-to-image application to generate comics.\",\"id\":\"jbilcke-hf/ai-comic-factory\"},{\"description\":\"An + application to match multiple custom image generation models.\",\"id\":\"multimodalart/flux-lora-lab\"},{\"description\":\"A + powerful yet very fast image generation application.\",\"id\":\"latent-consistency/lcm-lora-for-sdxl\"},{\"description\":\"A + gallery to explore various text-to-image models.\",\"id\":\"multimodalart/LoraTheExplorer\"},{\"description\":\"An + application for `text-to-image`, `image-to-image` and image inpainting.\",\"id\":\"ArtGAN/Stable-Diffusion-ControlNet-WebUI\"},{\"description\":\"An + application to generate realistic images given photos of a person and a prompt.\",\"id\":\"InstantX/InstantID\"}],\"summary\":\"Text-to-image + is the task of generating images from input text. These pipelines can also + be used to modify and edit images based on text prompts.\",\"widgetModels\":[\"black-forest-labs/FLUX.1-dev\"],\"youtubeId\":\"\",\"id\":\"text-to-image\",\"label\":\"Text-to-Image\",\"libraries\":[\"diffusers\"]},\"text-to-speech\":{\"canonicalId\":\"text-to-audio\",\"datasets\":[{\"description\":\"10K + hours of multi-speaker English dataset.\",\"id\":\"parler-tts/mls_eng_10k\"},{\"description\":\"Multi-speaker + English dataset.\",\"id\":\"mythicinfinity/libritts_r\"},{\"description\":\"Mulit-lingual + dataset.\",\"id\":\"facebook/multilingual_librispeech\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"I + love audio models on the Hub!\",\"type\":\"text\"}],\"outputs\":[{\"filename\":\"audio.wav\",\"type\":\"audio\"}]},\"metrics\":[{\"description\":\"The + Mel Cepstral Distortion (MCD) metric is used to calculate the quality of generated + speech.\",\"id\":\"mel cepstral distortion\"}],\"models\":[{\"description\":\"A + prompt based, powerful TTS model.\",\"id\":\"parler-tts/parler-tts-large-v1\"},{\"description\":\"A + powerful TTS model that supports English and Chinese.\",\"id\":\"SWivid/F5-TTS\"},{\"description\":\"A + massively multi-lingual TTS model.\",\"id\":\"coqui/XTTS-v2\"},{\"description\":\"A + powerful TTS model.\",\"id\":\"amphion/MaskGCT\"},{\"description\":\"A Llama + based TTS model.\",\"id\":\"OuteAI/OuteTTS-0.1-350M\"}],\"spaces\":[{\"description\":\"An + application for generate highly realistic, multilingual speech.\",\"id\":\"suno/bark\"},{\"description\":\"An + application on XTTS, a voice generation model that lets you clone voices into + different languages.\",\"id\":\"coqui/xtts\"},{\"description\":\"An application + that generates speech in different styles in English and Chinese.\",\"id\":\"mrfakename/E2-F5-TTS\"},{\"description\":\"An + application that synthesizes emotional speech for diverse speaker prompts.\",\"id\":\"parler-tts/parler-tts-expresso\"}],\"summary\":\"Text-to-Speech + (TTS) is the task of generating natural sounding speech given text input. + TTS models can be extended to have a single model that generates speech for + multiple speakers and multiple languages.\",\"widgetModels\":[\"suno/bark\"],\"youtubeId\":\"NW62DpzJ274\",\"id\":\"text-to-speech\",\"label\":\"Text-to-Speech\",\"libraries\":[\"espnet\",\"tensorflowtts\",\"transformers\",\"transformers.js\"]},\"text-to-video\":{\"datasets\":[{\"description\":\"Microsoft + Research Video to Text is a large-scale dataset for open domain video captioning\",\"id\":\"iejMac/CLIP-MSR-VTT\"},{\"description\":\"UCF101 + Human Actions dataset consists of 13,320 video clips from YouTube, with 101 + classes.\",\"id\":\"quchenyuan/UCF101-ZIP\"},{\"description\":\"A high-quality + dataset for human action recognition in YouTube videos.\",\"id\":\"nateraw/kinetics\"},{\"description\":\"A + dataset of video clips of humans performing pre-defined basic actions with + everyday objects.\",\"id\":\"HuggingFaceM4/something_something_v2\"},{\"description\":\"This + dataset consists of text-video pairs and contains noisy samples with irrelevant + video descriptions\",\"id\":\"HuggingFaceM4/webvid\"},{\"description\":\"A + dataset of short Flickr videos for the temporal localization of events with + descriptions.\",\"id\":\"iejMac/CLIP-DiDeMo\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"Darth + Vader is surfing on the waves.\",\"type\":\"text\"}],\"outputs\":[{\"filename\":\"text-to-video-output.gif\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"Inception + Score uses an image classification model that predicts class labels and evaluates + how distinct and diverse the images are. A higher score indicates better video + generation.\",\"id\":\"is\"},{\"description\":\"Frechet Inception Distance + uses an image classification model to obtain image embeddings. The metric + compares mean and standard deviation of the embeddings of real and generated + images. A smaller score indicates better video generation.\",\"id\":\"fid\"},{\"description\":\"Frechet + Video Distance uses a model that captures coherence for changes in frames + and the quality of each frame. A smaller score indicates better video generation.\",\"id\":\"fvd\"},{\"description\":\"CLIPSIM + measures similarity between video frames and text using an image-text similarity + model. A higher score indicates better video generation.\",\"id\":\"clipsim\"}],\"models\":[{\"description\":\"A + strong model for consistent video generation.\",\"id\":\"rain1011/pyramid-flow-sd3\"},{\"description\":\"A + robust model for text-to-video generation.\",\"id\":\"VideoCrafter/VideoCrafter2\"},{\"description\":\"A + cutting-edge text-to-video generation model.\",\"id\":\"TIGER-Lab/T2V-Turbo-V2\"}],\"spaces\":[{\"description\":\"An + application that generates video from text.\",\"id\":\"VideoCrafter/VideoCrafter\"},{\"description\":\"Consistent + video generation application.\",\"id\":\"TIGER-Lab/T2V-Turbo-V2\"},{\"description\":\"A + cutting edge video generation application.\",\"id\":\"Pyramid-Flow/pyramid-flow\"}],\"summary\":\"Text-to-video + models can be used in any application that requires generating consistent + sequence of images from text. \",\"widgetModels\":[],\"id\":\"text-to-video\",\"label\":\"Text-to-Video\",\"libraries\":[\"diffusers\"]},\"token-classification\":{\"datasets\":[{\"description\":\"A + widely used dataset useful to benchmark named entity recognition models.\",\"id\":\"eriktks/conll2003\"},{\"description\":\"A + multilingual dataset of Wikipedia articles annotated for named entity recognition + in over 150 different languages.\",\"id\":\"unimelb-nlp/wikiann\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"My + name is Omar and I live in Z\xFCrich.\",\"type\":\"text\"}],\"outputs\":[{\"text\":\"My + name is Omar and I live in Z\xFCrich.\",\"tokens\":[{\"type\":\"PERSON\",\"start\":11,\"end\":15},{\"type\":\"GPE\",\"start\":30,\"end\":36}],\"type\":\"text-with-tokens\"}]},\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"\",\"id\":\"recall\"},{\"description\":\"\",\"id\":\"precision\"},{\"description\":\"\",\"id\":\"f1\"}],\"models\":[{\"description\":\"A + robust performance model to identify people, locations, organizations and + names of miscellaneous entities.\",\"id\":\"dslim/bert-base-NER\"},{\"description\":\"A + strong model to identify people, locations, organizations and names in multiple + languages.\",\"id\":\"FacebookAI/xlm-roberta-large-finetuned-conll03-english\"},{\"description\":\"A + token classification model specialized on medical entity recognition.\",\"id\":\"blaze999/Medical-NER\"},{\"description\":\"Flair + models are typically the state of the art in named entity recognition tasks.\",\"id\":\"flair/ner-english\"}],\"spaces\":[{\"description\":\"An + application that can recognizes entities, extracts noun chunks and recognizes + various linguistic features of each token.\",\"id\":\"spacy/gradio_pipeline_visualizer\"}],\"summary\":\"Token + classification is a natural language understanding task in which a label is + assigned to some tokens in a text. Some popular token classification subtasks + are Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. NER models + could be trained to identify specific entities in a text, such as dates, individuals + and places; and PoS tagging would identify, for example, which words in a + text are verbs, nouns, and punctuation marks.\",\"widgetModels\":[\"FacebookAI/xlm-roberta-large-finetuned-conll03-english\"],\"youtubeId\":\"wVHdVlPScxA\",\"id\":\"token-classification\",\"label\":\"Token + Classification\",\"libraries\":[\"adapter-transformers\",\"flair\",\"spacy\",\"span-marker\",\"stanza\",\"transformers\",\"transformers.js\"]},\"translation\":{\"canonicalId\":\"text2text-generation\",\"datasets\":[{\"description\":\"A + dataset of copyright-free books translated into 16 different languages.\",\"id\":\"Helsinki-NLP/opus_books\"},{\"description\":\"An + example of translation between programming languages. This dataset consists + of functions in Java and C#.\",\"id\":\"google/code_x_glue_cc_code_to_code_trans\"}],\"demo\":{\"inputs\":[{\"label\":\"Input\",\"content\":\"My + name is Omar and I live in Z\xFCrich.\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Output\",\"content\":\"Mein + Name ist Omar und ich wohne in Z\xFCrich.\",\"type\":\"text\"}]},\"metrics\":[{\"description\":\"BLEU + score is calculated by counting the number of shared single or subsequent + tokens between the generated sequence and the reference. Subsequent n tokens + are called \u201Cn-grams\u201D. Unigram refers to a single token while bi-gram + refers to token pairs and n-grams refer to n subsequent tokens. The score + ranges from 0 to 1, where 1 means the translation perfectly matched and 0 + did not match at all\",\"id\":\"bleu\"},{\"description\":\"\",\"id\":\"sacrebleu\"}],\"models\":[{\"description\":\"Very + powerful model that can translate many languages between each other, especially + low-resource languages.\",\"id\":\"facebook/nllb-200-1.3B\"},{\"description\":\"A + general-purpose Transformer that can be used to translate from English to + German, French, or Romanian.\",\"id\":\"google-t5/t5-base\"}],\"spaces\":[{\"description\":\"An + application that can translate between 100 languages.\",\"id\":\"Iker/Translate-100-languages\"},{\"description\":\"An + application that can translate between many languages.\",\"id\":\"Geonmo/nllb-translation-demo\"}],\"summary\":\"Translation + is the task of converting text from one language to another.\",\"widgetModels\":[\"facebook/mbart-large-50-many-to-many-mmt\"],\"youtubeId\":\"1JvfrvZgi6c\",\"id\":\"translation\",\"label\":\"Translation\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"unconditional-image-generation\":{\"datasets\":[{\"description\":\"The + CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with + 600 images per class.\",\"id\":\"cifar100\"},{\"description\":\"Multiple images + of celebrities, used for facial expression translation.\",\"id\":\"CelebA\"}],\"demo\":{\"inputs\":[{\"label\":\"Seed\",\"content\":\"42\",\"type\":\"text\"},{\"label\":\"Number + of images to generate:\",\"content\":\"4\",\"type\":\"text\"}],\"outputs\":[{\"filename\":\"unconditional-image-generation-output.jpeg\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"The + inception score (IS) evaluates the quality of generated images. It measures + the diversity of the generated images (the model predictions are evenly distributed + across all possible labels) and their 'distinction' or 'sharpness' (the model + confidently predicts a single label for each image).\",\"id\":\"Inception + score (IS)\"},{\"description\":\"The Fr\xE9chet Inception Distance (FID) evaluates + the quality of images created by a generative model by calculating the distance + between feature vectors for real and generated images.\",\"id\":\"Fre\u0107het + Inception Distance (FID)\"}],\"models\":[{\"description\":\"High-quality image + generation model trained on the CIFAR-10 dataset. It synthesizes images of + the ten classes presented in the dataset using diffusion probabilistic models, + a class of latent variable models inspired by considerations from nonequilibrium + thermodynamics.\",\"id\":\"google/ddpm-cifar10-32\"},{\"description\":\"High-quality + image generation model trained on the 256x256 CelebA-HQ dataset. It synthesizes + images of faces using diffusion probabilistic models, a class of latent variable + models inspired by considerations from nonequilibrium thermodynamics.\",\"id\":\"google/ddpm-celebahq-256\"}],\"spaces\":[{\"description\":\"An + application that can generate realistic faces.\",\"id\":\"CompVis/celeba-latent-diffusion\"}],\"summary\":\"Unconditional + image generation is the task of generating images with no condition in any + context (like a prompt text or another image). Once trained, the model will + create images that resemble its training data distribution.\",\"widgetModels\":[\"\"],\"youtubeId\":\"\",\"id\":\"unconditional-image-generation\",\"label\":\"Unconditional + Image Generation\",\"libraries\":[\"diffusers\"]},\"video-text-to-text\":{\"datasets\":[{\"description\":\"Multiple-choice + questions and answers about videos.\",\"id\":\"lmms-lab/Video-MME\"},{\"description\":\"A + dataset of instructions and question-answer pairs about videos.\",\"id\":\"lmms-lab/VideoChatGPT\"},{\"description\":\"Large + video understanding dataset.\",\"id\":\"HuggingFaceFV/finevideo\"}],\"demo\":{\"inputs\":[{\"filename\":\"video-text-to-text-input.gif\",\"type\":\"img\"},{\"label\":\"Text + Prompt\",\"content\":\"What is happening in this video?\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Answer\",\"content\":\"The + video shows a series of images showing a fountain with water jets and a variety + of colorful flowers and butterflies in the background.\",\"type\":\"text\"}]},\"metrics\":[],\"models\":[{\"description\":\"A + robust video-text-to-text model that can take in image and video inputs.\",\"id\":\"llava-hf/llava-onevision-qwen2-72b-ov-hf\"},{\"description\":\"Large + and powerful video-text-to-text model that can take in image and video inputs.\",\"id\":\"llava-hf/LLaVA-NeXT-Video-34B-hf\"}],\"spaces\":[{\"description\":\"An + application to chat with a video-text-to-text model.\",\"id\":\"llava-hf/video-llava\"},{\"description\":\"A + leaderboard for various video-text-to-text models.\",\"id\":\"opencompass/openvlm_video_leaderboard\"}],\"summary\":\"Video-text-to-text + models take in a video and a text prompt and output text. These models are + also called video-language models.\",\"widgetModels\":[\"\"],\"youtubeId\":\"\",\"id\":\"video-text-to-text\",\"label\":\"Video-Text-to-Text\",\"libraries\":[\"transformers\"]},\"visual-question-answering\":{\"datasets\":[{\"description\":\"A + widely used dataset containing questions (with answers) about images.\",\"id\":\"Graphcore/vqa\"},{\"description\":\"A + dataset to benchmark visual reasoning based on text in images.\",\"id\":\"facebook/textvqa\"}],\"demo\":{\"inputs\":[{\"filename\":\"elephant.jpeg\",\"type\":\"img\"},{\"label\":\"Question\",\"content\":\"What + is in this image?\",\"type\":\"text\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"elephant\",\"score\":0.97},{\"label\":\"elephants\",\"score\":0.06},{\"label\":\"animal\",\"score\":0.003}]}]},\"isPlaceholder\":false,\"metrics\":[{\"description\":\"\",\"id\":\"accuracy\"},{\"description\":\"Measures + how much a predicted answer differs from the ground truth based on the difference + in their semantic meaning.\",\"id\":\"wu-palmer similarity\"}],\"models\":[{\"description\":\"A + visual question answering model trained to convert charts and plots to text.\",\"id\":\"google/deplot\"},{\"description\":\"A + visual question answering model trained for mathematical reasoning and chart + derendering from images.\",\"id\":\"google/matcha-base\"},{\"description\":\"A + strong visual question answering that answers questions from book covers.\",\"id\":\"google/pix2struct-ocrvqa-large\"}],\"spaces\":[{\"description\":\"An + application that compares visual question answering models across different + tasks.\",\"id\":\"merve/pix2struct\"},{\"description\":\"An application that + can answer questions based on images.\",\"id\":\"nielsr/vilt-vqa\"},{\"description\":\"An + application that can caption images and answer questions about a given image. + \",\"id\":\"Salesforce/BLIP\"},{\"description\":\"An application that can + caption images and answer questions about a given image. \",\"id\":\"vumichien/Img2Prompt\"}],\"summary\":\"Visual + Question Answering is the task of answering open-ended questions based on + an image. They output natural language responses to natural language questions.\",\"widgetModels\":[\"dandelin/vilt-b32-finetuned-vqa\"],\"youtubeId\":\"\",\"id\":\"visual-question-answering\",\"label\":\"Visual + Question Answering\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"zero-shot-classification\":{\"datasets\":[{\"description\":\"A + widely used dataset used to benchmark multiple variants of text classification.\",\"id\":\"nyu-mll/glue\"},{\"description\":\"The + Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced + collection of 433k sentence pairs annotated with textual entailment information.\",\"id\":\"nyu-mll/multi_nli\"},{\"description\":\"FEVER + is a publicly available dataset for fact extraction and verification against + textual sources.\",\"id\":\"fever/fever\"}],\"demo\":{\"inputs\":[{\"label\":\"Text + Input\",\"content\":\"Dune is the best movie ever.\",\"type\":\"text\"},{\"label\":\"Candidate + Labels\",\"content\":\"CINEMA, ART, MUSIC\",\"type\":\"text\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"CINEMA\",\"score\":0.9},{\"label\":\"ART\",\"score\":0.1},{\"label\":\"MUSIC\",\"score\":0}]}]},\"metrics\":[],\"models\":[{\"description\":\"Powerful + zero-shot text classification model.\",\"id\":\"facebook/bart-large-mnli\"},{\"description\":\"Powerful + zero-shot multilingual text classification model that can accomplish multiple + tasks.\",\"id\":\"MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7\"}],\"spaces\":[],\"summary\":\"Zero-shot + text classification is a task in natural language processing where a model + is trained on a set of labeled examples but is then able to classify new examples + from previously unseen classes.\",\"widgetModels\":[\"facebook/bart-large-mnli\"],\"id\":\"zero-shot-classification\",\"label\":\"Zero-Shot + Classification\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"zero-shot-image-classification\":{\"datasets\":[{\"description\":\"\",\"id\":\"\"}],\"demo\":{\"inputs\":[{\"filename\":\"image-classification-input.jpeg\",\"type\":\"img\"},{\"label\":\"Classes\",\"content\":\"cat, + dog, bird\",\"type\":\"text\"}],\"outputs\":[{\"type\":\"chart\",\"data\":[{\"label\":\"Cat\",\"score\":0.664},{\"label\":\"Dog\",\"score\":0.329},{\"label\":\"Bird\",\"score\":0.008}]}]},\"metrics\":[{\"description\":\"Computes + the number of times the correct label appears in top K labels predicted\",\"id\":\"top-K + accuracy\"}],\"models\":[{\"description\":\"Robust image classification model + trained on publicly available image-caption data.\",\"id\":\"openai/clip-vit-base-patch16\"},{\"description\":\"Strong + zero-shot image classification model.\",\"id\":\"google/siglip-so400m-patch14-224\"},{\"description\":\"Small + yet powerful zero-shot image classification model that can run on edge devices.\",\"id\":\"apple/MobileCLIP-S1-OpenCLIP\"},{\"description\":\"Strong + image classification model for biomedical domain.\",\"id\":\"microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224\"}],\"spaces\":[{\"description\":\"An + application that leverages zero-shot image classification to find best captions + to generate an image. \",\"id\":\"pharma/CLIP-Interrogator\"},{\"description\":\"An + application to compare different zero-shot image classification models. \",\"id\":\"merve/compare_clip_siglip\"}],\"summary\":\"Zero-shot + image classification is the task of classifying previously unseen classes + during training of a model.\",\"widgetModels\":[\"google/siglip-so400m-patch14-224\"],\"youtubeId\":\"\",\"id\":\"zero-shot-image-classification\",\"label\":\"Zero-Shot + Image Classification\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"zero-shot-object-detection\":{\"datasets\":[],\"demo\":{\"inputs\":[{\"filename\":\"zero-shot-object-detection-input.jpg\",\"type\":\"img\"},{\"label\":\"Classes\",\"content\":\"cat, + dog, bird\",\"type\":\"text\"}],\"outputs\":[{\"filename\":\"zero-shot-object-detection-output.jpg\",\"type\":\"img\"}]},\"metrics\":[{\"description\":\"The + Average Precision (AP) metric is the Area Under the PR Curve (AUC-PR). It + is calculated for each class separately\",\"id\":\"Average Precision\"},{\"description\":\"The + Mean Average Precision (mAP) metric is the overall average of the AP values\",\"id\":\"Mean + Average Precision\"},{\"description\":\"The AP\u03B1 metric is the Average + Precision at the IoU threshold of a \u03B1 value, for example, AP50 and AP75\",\"id\":\"AP\u03B1\"}],\"models\":[{\"description\":\"Solid + zero-shot object detection model.\",\"id\":\"IDEA-Research/grounding-dino-base\"},{\"description\":\"Cutting-edge + zero-shot object detection model.\",\"id\":\"google/owlv2-base-patch16-ensemble\"}],\"spaces\":[{\"description\":\"A + demo to try the state-of-the-art zero-shot object detection model, OWLv2.\",\"id\":\"merve/owlv2\"},{\"description\":\"A + demo that combines a zero-shot object detection and mask generation model + for zero-shot segmentation.\",\"id\":\"merve/OWLSAM\"}],\"summary\":\"Zero-shot + object detection is a computer vision task to detect objects and their classes + in images, without any prior training or knowledge of the classes. Zero-shot + object detection models receive an image as input, as well as a list of candidate + classes, and output the bounding boxes and labels where the objects have been + detected.\",\"widgetModels\":[],\"youtubeId\":\"\",\"id\":\"zero-shot-object-detection\",\"label\":\"Zero-Shot + Object Detection\",\"libraries\":[\"transformers\",\"transformers.js\"]},\"text-to-3d\":{\"datasets\":[{\"description\":\"A + large dataset of over 10 million 3D objects.\",\"id\":\"allenai/objaverse-xl\"},{\"description\":\"Descriptive + captions for 3D objects in Objaverse.\",\"id\":\"tiange/Cap3D\"}],\"demo\":{\"inputs\":[{\"label\":\"Prompt\",\"content\":\"a + cat statue\",\"type\":\"text\"}],\"outputs\":[{\"label\":\"Result\",\"content\":\"text-to-3d-3d-output-filename.glb\",\"type\":\"text\"}]},\"metrics\":[],\"models\":[{\"description\":\"Text-to-3D + mesh model by OpenAI\",\"id\":\"openai/shap-e\"},{\"description\":\"Generative + 3D gaussian splatting model.\",\"id\":\"ashawkey/LGM\"}],\"spaces\":[{\"description\":\"Text-to-3D + demo with mesh outputs.\",\"id\":\"hysts/Shap-E\"},{\"description\":\"Text/image-to-3D + demo with splat outputs.\",\"id\":\"ashawkey/LGM\"}],\"summary\":\"Text-to-3D + models take in text input and produce 3D output.\",\"widgetModels\":[],\"youtubeId\":\"\",\"id\":\"text-to-3d\",\"label\":\"Text-to-3D\",\"libraries\":[\"diffusers\"]},\"image-to-3d\":{\"datasets\":[{\"description\":\"A + large dataset of over 10 million 3D objects.\",\"id\":\"allenai/objaverse-xl\"},{\"description\":\"A + dataset of isolated object images for evaluating image-to-3D models.\",\"id\":\"dylanebert/iso3d\"}],\"demo\":{\"inputs\":[{\"filename\":\"image-to-3d-image-input.png\",\"type\":\"img\"}],\"outputs\":[{\"label\":\"Result\",\"content\":\"image-to-3d-3d-output-filename.glb\",\"type\":\"text\"}]},\"metrics\":[],\"models\":[{\"description\":\"Fast + image-to-3D mesh model by Tencent.\",\"id\":\"TencentARC/InstantMesh\"},{\"description\":\"Fast + image-to-3D mesh model by StabilityAI\",\"id\":\"stabilityai/TripoSR\"},{\"description\":\"A + scaled up image-to-3D mesh model derived from TripoSR.\",\"id\":\"hwjiang/Real3D\"},{\"description\":\"Generative + 3D gaussian splatting model.\",\"id\":\"ashawkey/LGM\"}],\"spaces\":[{\"description\":\"Leaderboard + to evaluate image-to-3D models.\",\"id\":\"dylanebert/3d-arena\"},{\"description\":\"Image-to-3D + demo with mesh outputs.\",\"id\":\"TencentARC/InstantMesh\"},{\"description\":\"Image-to-3D + demo with mesh outputs.\",\"id\":\"stabilityai/TripoSR\"},{\"description\":\"Image-to-3D + demo with mesh outputs.\",\"id\":\"hwjiang/Real3D\"},{\"description\":\"Image-to-3D + demo with splat outputs.\",\"id\":\"dylanebert/LGM-mini\"}],\"summary\":\"Image-to-3D + models take in image input and produce 3D output.\",\"widgetModels\":[],\"youtubeId\":\"\",\"id\":\"image-to-3d\",\"label\":\"Image-to-3D\",\"libraries\":[\"diffusers\"]}}" + headers: + Access-Control-Allow-Origin: + - https://huggingface.co + Access-Control-Expose-Headers: + - X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range + Connection: + - keep-alive + Content-Length: + - '74829' + Content-Type: + - application/json; charset=utf-8 + Date: + - Fri, 03 Jan 2025 04:13:03 GMT + ETag: + - W/"1244d-rY02FKAQRZwcoD2xI/AqH93OPBg" + Referrer-Policy: + - strict-origin-when-cross-origin + Vary: + - Origin + Via: + - 1.1 c9d18591280ab48b39f7a8e685801258.cloudfront.net (CloudFront) + X-Amz-Cf-Id: + - WZgpZeQof0JMoxJiQ-43mwsCF8TpdXj614ozMHc2aiRyFFJR-ql9MA== + X-Amz-Cf-Pop: + - BOG50-C1 + X-Cache: + - Miss from cloudfront + X-Powered-By: + - huggingface-moon + X-Request-Id: + - Root=1-677763cf-31a214064143fa982d8893ac;6c7b5d10-38a2-4471-b304-01774de542df + cross-origin-opener-policy: + - same-origin + status: + code: 200 + message: OK +- request: + body: null + headers: + Accept: + - image/png + user-agent: + - unknown/None; hf_hub/0.26.5; python/3.12.8 + method: POST + uri: https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev + response: + body: + string: !!binary | + /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a + HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy + MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAQABAADASIA + AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA + AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 + ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm + p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA + AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx + BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK + U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 + uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDwKiii + kAUUUUAFFFFABRRRQAlFFLTASloopAJRRRTAKWkpaACiiikAUUUUwCiiikAUUUUAJRS0lMAooooA + KKKWgBKWikoAKXFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFBBHUEfWpIGVJlZugqxdzRyRhVIJz1q + rCKdFFFIYUUUUAFFFFABRRSUALRRRQAUUUUwJIIWuJliU4Jqzd6abaISB9w78VVikaGQOhwwqe4v + 5blNrYA74oEVaKKWgYlFFLQAlFLRQAlLRRQAUlLSUwCiiigAopaKBBRRRQAUUUUwCiiigAooooAK + WiigAooopgFFFFABRRRQAUtFFMAooooAKKKKBBRRRQAUUUUALSUUUALRRRQAUlLQODmgB5gcLk1H + U7T7kxjkioaYBRRRSAKKKKAEpaKByaACirjWWId4bkDOO1UqYXFpKWikAUlLQpwwNAAVIHIpKkdw + y4qP3oAKKWigApKKKACiiigBlFFFYFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF + FABRRRTAKKKKQBRRRQAUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKYBRRR + QAUUUUAFFFFABRRRTAKKKKACiiigAooooAWiiigAooooAKKKKACiiimAUUUUAFFFFAgooooAKKKK + YBS0lLQAUUlLQAUUUUwCiiigAoopaYCUtFFABRRRQAUUUUCCiiigApaKKACiiigAooooAKKKWgBK + KWigBKKKWgBKKKKACig1opoGpyWn2pbVvKIyD3I+lMG7GdzRRyCQaKACiiigCY3Uhj2EjH0qGiig + AooopAFFFFABRRRQAlLRRQAUlLRQAlLRRQBFS0lFYlBS0UUgCiiigAooooAKKSimAUtJRQAUUUUA + FLSUtABRSUUALRRRSAKKKKACiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ + AUUUUAFFFFMAooooAKKKKACiiimAUUUUAFKOvNJRQBdlEYhyAMY4qlmpbaB7u5SCP7znAr1HRvhf + bXFmr3DO8hGTg4qrXJbUTynNFdn4u8CyaEhuLfe0I+8p7VxgpNWGncWikpaBhRRRQAUUUUCCiiig + AooooAKKKKACiiimAUtJS0AFFFFMAooooAKKKKACloopgFFFFABRRRQIKKKKACilopgJS0UUAFFF + LQAlFLRQAlFFLQAUUUUAFFFFIAooooAKKKKYCdCD+Nd5B4vshpy7twlVNvl471wlGKadiZRUhZH8 + yV36biTj0ptAFLSKCiiikAlFLRTASilpKACiiikAUUUUAFFFFABRRRQAUUUUARUtJRWJQtFFFIAo + oooAKKKKAEpaKKAEooopgFFFFABRRS0AFFFFABRRRSAKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAF + FFFABRRRQAUUUUAFFFFABRRRQAUUUUwCkpaKAEpaSloASilopgFFFFABRRRQAUUUUAXdInFtqUUn + oa+jPCV/FPYxkkdK+ZgSpBHUV1ej+ObvS4BFs3AdOaqLIkrnr3xDurRNFn3leUIr51FbuveKb7XT + tmbbEP4QetYdDdxxVhaKKKQwopKWgAooooAKKKKACiiigAooopgFLSUtABRT48ZOaRwAeKYDaKKK + ACiiimAUtFFABRRRQAUUUUCCiilpgJS0UtACUUtFACUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF + FLQAlFLSUAFFFLQAlFLSUAFFFFABRRRQAUUlLQAlLRRQAlFLSUgCiiloASilooASloooAhpaSisS + gpaSloAKKKKQBRRRQAUUUUAJRRRTAKWkpaAEpaKKACiiigAooooAKKKKACiiigAooooAKKKKACii + igAooooAKKKKACiiigAooopgFFFFABRRRQAUUUUAFJS1atreOSMs3J/lTSEVaKdIAsjKDwDTaBhR + RRQAUUUUAFFFLQAUlLRQAlFFFMQUUtFABRRRQAUUUUAFFFFMAooooAKKKKAClpKKAFooooAKKKKY + BRRRTAWiiigAooooEFLRRTAKKKWgBKWiigAopaMUCEopaKAEpaKKACiiigAoooxQAUUUUAFFFFAB + RRRQAUUUUAFFFFABRRRQAUlLRQMuw6ZLIFYkc/w962Lu0tEsGGxQQuQccismPU5EQfLlh3qrNcyz + kl3JB7dqCdSAAswA6mtKbRporcyFwSBkqKzlJVgw6jkVqTa1JLbGMRgMwwWzQhu/QyhS0UUDDmii + igAooooAKKKKQBRRRQAUUUUAQ0UUViUFFLRQAlFFFABS0lLQAlFFFAC0UlLSAKKKKYBRRRQAUUUU + AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUwCiiigAopKWgAopKWmBq6Fo/9r3T + I0myNBliOpq34i8OLo8Uc8MzPG5wQw5BrL03U7jS5zLARkjBB6GptU1u61baJiAi8hV6VWlidbmb + TgzKOCQKbRUjA0UUUDCiiigAooopgFFFFAC0lFFAgooooAKWiigAooopgFFFFABRRRQAUUUUAFLS + UUALRRRQAUUUUwCiiimAUtFFAgoopaACiiimAUtFFABRS0YoEFFLRigAopcUYoEJRS4pcUANop2K + MUDG0UtFACUUtFACUUYooAKSlooAKSlooASilpKACiiigAooooAKKKKACiiigAooooASloooAKKK + KACiikoAWkpaKBiUtJS0CEpaKKBkNFJS1zlBRRRQAlFFLTASlpKWgBKKWigAooooAKKKKACiiigA + ooooAKKKKACiiigAooooAKKKKACiiigQUUUUDCiiigAooopgFFJRQAtFFFAgpKWkpjClpKWgAooo + oAKKKKACiiigAooopgFFFFAgooooAKKKKACiiigBaKKKYBRRRQAUUUtACUUtFACUUtFMBKWiigBQ + pboKCCDgino+0EU1juOcUANoopaYBRRRQIKWkpaACiilpgFFFFAgpaKWgApcUUoFAhMUtFGaAFxR + RmjNABiiiloEJRinYoxQA3FGKXFFAxuKMUuKKAG0UtBoASkpc0maACiiloGJRRRQAUUUUAFJS0lA + BRW34c0uDUZ5jcZKxgfLnGab4h0230+5jEGQrgkqTnFO2lxcyvYxqKKKQwooooAKKKKACiiigBKK + Wr+i2kV7qSRzfcwTj1oB6Gfmiun8SaZZWtoksACPnGB3rmKGrCTuhaKKKBhRRRQMgoopawKEpaSi + gBaKSlpAFFFFABRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAt6bYPqN15 + KnaMZJq5rGhnS40k83erHGCOlUbG+k0+486Lk4wQe9T6lq8+p7RJwq9BV6WJ1uZ9FFFSUJS0lLQA + lFFLTAKKKSgBaKKKACiiigAooooAKWkopgFLSUUCCiiigAooooAKKWimAUUUUAFFFFABRRRQAUtJ + S0AJS0UUwCiiigAooooAKKKKACilopgFFFFAgpaSloAKKKWmAUUUUCClFFLQAUtFGaBC0madFFLc + SrFChdyeAK9D8K/C271N0lvQVQ87B0obsJux52ivK4WNWZj2UZNbNn4T1y/AMOny4PdhivpXQPh5 + o2lQqPs0e4D+7XXQWFjbKAkKD8BWTqC1Z8qw/C/xJMM/Z1X86fJ8LPEcYz5Kn6A19Yr5A4CrTv3J + 6qv5UvaBZ9z44u/BHiCzyZNPdgO61jT2lzattuIJIj/tqRX25JaWkww8SEH1FYupeC9H1KNlkto+ + fRRTVQLM+OAaWvePE3wQgkDzaWxibqAvI/KvH9c8Lar4enZL22YIDgSKDtP+FaKSYXMejFIDS1Qx + MUlPxTcUAJikNOxTWFIZLZWNxqN0tvbIXkY8AV0938M/ENpY/ajAGXGSB1q58MJLaLWmabbuyMZr + 6IuL6yOltvdNu2ght30PjxlaORo3UqynBB7UVt+MGt38UXbW2PL3dqxBQWhaSlooASiiigYUUUUA + S2t3PZy+ZbymNumRSXN1PeS+bcSF39TUdFAhKXiiigYlFFFABRRRQAUUUUAFOjkeFw8bFWHQim0m + aAJ7i8uLvHnys+OgNQUtHNABRRRQAUlWbKFJpSH6AdKff28cLKU4zQBnUUgpa5ywooooASiiimAU + UUUALRSUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRTEFFFFABSUtFMY + UUUUAFFFFABRRRQAUUtGMUAJS0lFMAooooEFFFFABRRRTAWiiigAooooAKKKKACiiigAooooAKWi + imAUUUUAFFFFABRRS0wEpaKKBBRRRQAUUtFABRRRTELRRRQAUtFFABTqSloAWhEaWRUUck8UlWbF + ttyrY5zTJZ6h4B8LwRBbm4UE9cmvYrO6treJUjKgD0rxXSdVuVhVIyQAK6exur1huJY1nKNyLnqP + 9oDbkNVG51kRn79cWNRvAduGq3DZ3V3hmzg1PJbcLnV2eurI+0mtyK4EqgiuOtNK8rBYkfjXQ2Ui + RAKWqJJdBxb6mocgZBqo99NE+MHFTiUY4ppQOckVKKLVpfLOMMMGquteHbHWrVo54lYkdSKkjtwp + ytXYnI4NF+wb6M+avHvwsudEkkvdNiZ4OS0Y7fSvMuVOCMEdq+4ru0hvrdopUDKwxzXzt8Ufh02l + zyanp8X7vOZEUdR6itoTvoyWuU8npCKBS4+lajG0hFONIaBi29xNZziaByjjuK2pvGetT2vkG5wp + GCR1rDxSYpBZDDuZizHLE5JPejFOxRQMbRS0lABRRRQAlFLSUAFFFFABRRRQMKKKKAEooooAKKKK + ANHQdL/tnV4bMybFbJZh1wK6DxT4OttI04XlpNIwVgro5z17iuVsryfT7xLm3fZKnINaeseKL/Wb + dYJyqxg5KoPvGmrW1JalzabGIKWiikUFFFFADldo2ypwaJJHlOXYk02igCClpKWucsKKKKAEoopa + YCUUUtACUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFMAooooEJS0lLTGFF + JS0AFFFFABRRRQAUUUtAE1sFLnPXtUt1tEYHG6qlGT60xCUUUUAFFFLTASiiloASloooAKKKKACp + bW3N1dRwKcFzjNRU6KV4ZVljO11OQaEBu6l4dW0sWuI5Sdn3gawK0rzXbu9tvIk2hD97aOtZopyt + fQmN7ahRRRSKCiilpgFFFFABRRRTAKKKWgAooooEFFFFABS0UUAFFFLTASloooEFFFL/ACoAKWkp + aACloo/CgQVo6RAJJwW6VnmrthMYm4polnomnz29sq7gBXVaXq1tIQgIzXl1vcM55NbunTmOVWpO + JDPVhBG6h8CtK0lSOPp0rltM1MzRqme1T32qrZr15rO3QDWvNVeOTCjiqbX1yzBo2NYU+srPEcfe + qfRdWUXSxzn5Sepp8ornoOi3Ek8I80HPvW4EGOKpWCwtArxkdKuxKxf2rB7miHj5BzTHuY1PLDP1 + qDV5HgsndOoFea3GtXjSn94etVCHMKUuU9at7hZBwc1Bq2mw6nZSQSqDuHGa5Dwtqs0zEOSQDXcx + TLIAAeaTXKyotSR8jeP/AAtJ4Z111VCLaViV44B9K5QGvqn4oeFYtd8PzMEHmqMq3oa+V3jeGV4p + Bh0JVgfUV0QldE7aCUhp1IaoY2mmnGkoGIaSlpKQxKKKKAEopaSgAooooAKSlooASil/CkoAKKKK + BhRRRQAlFLRQAlFLSUAFFFFAFy28vy+cZ71VfG846Z4ptFABRRRQBBS0lFYFi0UUUgEpaKKYBRRR + QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRTAKKKSgBaKSlpgFFFFABRRRQAUUU + tABRRSUAFFFFMQUUUUALRRRTAKKKKACiiigAooooAKKKKACiiigAooopgFLRRQAUUUcUAFFFFMBa + KKKACiiigQUUtJQAUtFFABRRRTEFLRRQAUUUUAFLSUtAC0CiloAKWiigTCp7f7wqCpoThqaJZt2f + aum0uAzY21y1oeBXUaLerC+1u9DJZ1mlqYZMHrUWsszMPTNWrAeewZaq6yCrDjvUrclmdGMCn8gg + g8io49zdATUhJHUVZJ6R4Sv3ksRvcnHvXQwa/BFdiCVgG7V5Ppmty6flVPy0291eW5nEoYgjmsnT + uylKyPc5BFe25AIIIrgdc8LywSNLbjKk521W8N+J7lItshLAV1Np4ntLyXyJSFb3qEpQehTaluYX + hO2mikl8yNl56EV1drI6akFydpHSrYa2SIugXp2rCt9QB1Zl7DpSb5ncEuU6q8hW4tHjYZDDFfJH + xH0b+x/F1wqrhJTvH1719bxyiSMfSvBPjppgD298q8q+0n2NFN62Kl3PGBSGlFFdADabTjSUDEpK + WkpDEpKU0lACUUtFACUUUUAFFFPjIDjNADCMUlWJmUqAOtV6ACiiigAooooGFFFFABRRRQAUUUUA + JRS0UAJS0UUAV6WkorAsWiiikAUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopgFF + FJQAtFFFABRRSUwFooooAKKKKACiiigApaSigBaSiimIKKKKACloopgFFFFABRRRQAUUUUAFFFFA + BRSZozQAtFJmjNAC0UmaM0XAWjNJyeB1roNE8OWt5Op1bVYdPh/uAb5W9go4H4n8KLgc/mlVWc4R + Sx9AM19A+GfD3gfT1RoNMhvJP+e14fOJ98H5R+Ar0zTLyyjRVtreCFewjjVR+gqXJk86PjR4pY/v + xOv+8pFMzX3Wjw3CbZUR1PUMARWVqvgHwnrsZW+0Gxdj/HHEI3/76XBo5hp3PioGlzXv/ir9nWJl + kuPC+oFH6i0vDkH2Vx0/EfjXhus6Jqfh7UXsNWspbS5Tqki4yPUHoR7jiqUkx2KdLTQadmqEFFFF + MAooooEFLRRQAUUUUAH5UUUUALRRRQAtLSUtAC0Uc0UCYU+M4am0q8NTEbNqeBW1p43TKPesnSlW + ZlBNdalnFDCHAAI70NkM6/S5Yba0BJGcVRvr+3uJiOCBXMDVJHbyFY9cVqwaJLNF5m45PNK3URv6 + VLZyttIXPpUGvRwx7WjABz2pmi6FOtzuY1q61o0gtd4Gcc0rpMXQ5IGn54qNleMkFSMVteGrCLUb + vEvQdjWjdlcixZ8NyoXZD1qzqqbZ1kiJDe1dWPDNpBH5kS4bHauT1UGK5KHJArOMrspqxb0zW7oS + pDLIShOK9B0+xgmRZtoLYzmvKrYM0y7RzmvTtCuyLRVbqBUVVpoOG+puKBGdorzD40Wwl8MTuRym + GH516Gs5e4xXC/F0j/hE7rP9ys4bmj2PmgGlNItKa6QGmkpTSUDENJSmkpDEpKWigBKKKKACiiko + AWiiigBDRRRQAlLRzRQAlFLRQMSiiigAooooAKKKKACiiigAoopKAIKWiisCwooooAKKKKACiiig + AooooAKKKKACiiigAooooAKKKKACiiimAUUUlAC0lLRQAlLRSUwFpKWigAooooAKKKWgBKWkooAK + KKKYgooooAKWiimAUUUYoAKKKKACiiigAooooADQqs7BUUsx7AZpDXb6LokkGhrMx2vcqJW4OQuf + lxj8/wAaA2Lvw+tPDMMkUHifQ5Ly4vLxIYQ0joVXgcKCO5HU/SvQNX+A2h63c3t54b1k2cSOyG1a + PzljkX7yZ3bh+OTz9K80ebV9FuvtcF8wZxtSQqH2d/lJHykccjB4r1rwX8UdEmnjbWQdK1SUAT3M + f/HvdPjG51/hPA5x+OKzYHDzfs++IP7PN1Z6rp1y2P8AVkPGT7cr1+uKoHwBP4Mtbe+8SeG7i/cy + MZY1l/cpGMYO6M53cnrxgV9Pw3Mdym+F42EnRopA6PkZyMc/5701pLS/SSxkO/O5G9iOOvY85FFw + PNz8P/hlJZ2M91o8dsL2MSQstzKFYEA9Q2O46+tU/Efwm+G2g6Ncapfre2tvGOBFdEs7Hoqgg5Jr + b8SLpOi6NZX2oLI1zGhtUghbYHkDgE4HbI/UV5J4r12+8UamslzKWtbXKW0X8K+rY9T6+mBQtRHE + /YYVnkkt4pIoyxMaSPvZV7AsAMn3AFNe3AHSttrfjpS2ulXOpXP2aytpLibuqDhfdj0UfX9au9h2 + Kula3cadKqs7GPpn0r1PR/EiW9qlxdTxQxHo8sqxg/TcRmuWbwjpWhRifxNr0Vk2NwtrY5kP44LH + 8FFZkvjLwlpLkaH4cF1MD/x83h5J9edzfqtQ532Dkue0af8AELRSgxeeZ/1yikkH5hcfrW1b/EPQ + TgNcuPdlVf5tmvnX/hYXim9OLGwtUXsILHzMfi26nHxN8RG5CXeP7osUA/LZUcw1TPqSx8T6PqAH + 2a+icnsGB/lUXifwpo3jLSWsdVtkmQjMcq/fiP8AeVu38j3r5dk8Z+KLTD6rotvMg6tdafsJ/wCB + KFNdR4b+LVrBKqLLeaO5P3d5ubY/VW+ZfwzT5h8rRwvj3wJqPgPXDZ3WZbSXLW10BgSr/Rh3Fcrm + vrK4udF+Jvh99B1lYYriYb7W4hYMjOOjxt6+qntkc15jZfBq1s7t4dVe7uJIXKSLFNHCrHgjBO5i + CCDnA6/WrU1Ylo8czTga9h+K/wAK9L8N+G7PxBoSyW8XyJc2ss3mY3dGB+vB7cgjFeNitE7iJKOa + QUtUIKKTNFAC0UUUAFFFLQAUUUUALS0lLQAUtJS0CYtFFLTEXbC7MEgIroDq8ssO3Nckpwc1s2Fz + GQFYj8aZLL1vMyzK49a77StYxAoIxxXJWdtBKwORXWWdpCkQPFS7E2Oo0u+VzkAVvxvHdqI2wQa5 + OxMacLgVu2LBZAwNZtAak/hm0ktWby1yRmuOs7R9O1xo4uEzXottdpJDsPcVnT6RHJc+eBzUxl0Y + 2uxoWxEkQDtjIqvd+H7a7BfaCfWua1vUrmxIjiJFb/hnVXu7MCU/PjmhppXC6ejMz+w4rKYtjgVt + aU6ltoqnqv2h5sRgkVf0Kzkj5kHNDd1qJLU2o4MSFsV5p8Z7oReG5I88v8tes4ASvn7436oJJYbN + WzlskfSphqy2jx5elLTV6UtdIDTSGlNJQMQ0lKaQ0hie1FFFACUUtJQAUUUUAFJS0lABRRRQAUUU + UAFFFFAwopKWgApKWigBKKKKACiiigAopyJvNDrsbFAFaiiisCwooooAKKKKACiiigAooooAKKKK + ACiiigAooooAKKKSmAtFJS0AJRS0UwEopaKAEpaKKACiiigAooooAKKKKACiiimAUUUUCCiilpgF + FFFAAKUnNJRQAUUUUAFFFFABRRQaYFzSLA6nqtva8hHb5yOyjk/pXrTBAwjEeEAChQfugdMVyHw3 + tIbmbVnZQZ4rdTF/31z/ACFd1KiyokqdSMipJe5k3GnG4EkShCrnJRshCR345Rv880ljq+p+HLJN + K0vSrSTUJmx9oWDzpmJOcD1PTtV4LOpZ2DSDqCgwy/T1+lM0rVLvR/EMGsxqXlhlYmHlQ6kYIPpk + E/Q49Kye5ojsPhf8P9TN8nifXZri3lV99vbgeWznkFpBgcei8evpXaaHrg1DR7/UFjaGWeV5IY3A + 3ADCDp7p+tcTqnxd1iQf6Lp9vZxFCCHYyNkjGQeMY69KoeHvE1xdaiZ555CGjRGEjcFlUKT+OM0m + waZH48vJL/W2t23f6OxlPpl8bcfr/wB8CuRa1CgDFbl3fwapq2peXKjTJNyuRnauB0+pNLb6fBct + NNeyiDTrVPMupScYX+6Pc+3P4kVSdlqSZmmaCL+CW+vLgWWkwAmW6Y7d2OoUnp6Z/AZNZupePJXX + +w/A9i9tByDcKn72T1Yf3R/tHn6VmeIvEUni6ZgJP7O8OWJCxxheSe3yg/M5AOBnCjPI5J5i81ff + C1np8P2SxONyBsvLjvI38R9uAOwqXdmiSSuy3Nb6bayvLqt/Lf3jHLRWsmRn/alOQT/uhvrUf/CQ + vbgrp1jZ2S9mEQkk/wC+3yR+GKxqSjkT31H7Rr4dC9cazqd1/r7+5kHo0px+VVvOkJyXYn61HQKr + lXYnnl3NjStYv7KcGC+uovXy5mX+Rr1/wr4SsPiDpxXULGMzAf8AH5bqsMqe5wNrfQjPvXiVopaU + HKqoPLN0Fe2/DHx5BoMS2TqHgmf526Een9a5ays09kdMJXg+5zl7pep/DHV40muhf+H7mXZ50YK+ + W45wR1Rx1x36j29pW6bWPD1tqQbzbtB9nldWx5gA3K3UD7pJ7csa8+8eahY3mvX1q7+Zp18q+cBz + gEZWQf7SE5H4jvWx8IbuaPw3qmm3oRrnTJ1hIcblOCdp9xgkA+iirjK+pjOLsdx4fD61YT2etWkV + 7bkFUeWMOpUjlPugY4HTP16V8yfEzwivgvxrc6dBv+xSAT2pbk+W3bPfBBGe+M19RWniS8fXILCW + 2jCSNtLKrAjgn19q84/aQsLR9D0e/LKL2K4aJR3aNlyfyKj866KbuZM+dx0paRadW5JuaXbQtZBy + qsxJzkZxWTdqiXcix/dBqNZJEBCuyg9cHFNpkpahRRRSGLRRRQAUtJS0AFLSUtAhaKKKAFFLSUtM + QUoYqcikooEbOl6i0TgMciuzsNV8xQM15qrFDkGtvS78hwCaGhM9NtLg4BzW9YXfIya4/TbkSxDn + Na1vK6ygCoaJOwS6ZXBVq6GwuPNh+brXJW4JjBPWtaxnMfGazaGhdT05bu6zgYrR0nSRbsCpxUYn + DN71pWsrDFJt2Gkaq2cRHKgmnLGsZ4AFNjmOOaUybqzLG6hdrbWTyMcYWvkvx7rB1jxTO6tmOM7V + r274peLE0jR5IY3HnONoAPevmzc0jl2OWY5JrenGyuS9xw6UhpaQ1qAhpKKKBiUlLSUhiUUUUAJR + RRQAUUUUAFJS0lABRRRQAUUUUAFOjjeeVY41LO3AAptX9FvI7HUkmlHydCeuKAexBdafdWYDTxFV + PQ1Wr02ZtNv9O8xjHIpBxmvNZwi3Eqx/cDED6U2rCjK42ikopFBRRRQAUUUUAKrFTkUMSxyaSigC + AUUCisCwooooAKKKKACiiigAooooAKckbyHCKWPtTav6Zdx2pcScBu+KaQmUWVkbawIPoaSrN9cL + cXJdB8uMfWq1DAKKKKBhRRSUAFLRRTAKKKKACinpjvSNjPFAhtFFFAwooooAKKKKYBS0lFAgoooo + AKKKKAFooopgFFFFABRRRQAUUUUAFFFFMBaaaWkNAHb/AA1doNRvJSCI2iEZbsDnd/JTXokiKMFB + hd3zAfw57/niuQ+G1j5mhXty6/L9qTGR1AU5/wDQq7SGMQu0LEt8vyk/xL/9aoZL3IJIgMtIFDAZ + 31WZo2nj2JiTad2WyGHt71owukUwSYnZ1Bx3pbmGzkul8mPaqJuOD35H9DWEmaRMTUrbNrIdvRc5 + qGwt3ht8qME81qajiaNLeNcGRsH/AHR1/wAPxpRGETGOBU30LOQsSlt4gtJ4JDIlzN5TEnpwfboQ + xOPUd6f4/wBSmL23hWzOxHYXN02eGY/dB9lUA/8A6qvWNpNLqViq27rBbXUc0kjsDuZo2wB3C/pn + P0rmPFTmXx3rb7jmKBgPwiC1pcnqczqF2szJb24K2kGViU9T6sf9o9T+A6AVSooqloJu4UUtLtNM + QlJTwhzjr9KXypCMiNsf7tFx2YglcKF3HaDkDtn/ACKv2F88D5DY/GqHlSf3G/KlCSA52N+VTJKS + syotp3OoOrtMwaRixxjk17L8L41uYbm9GCL2wiEo/wCmkMjx/wDoJSvn+0s7653mG2lkCKXYqp4U + ck17x8C5TPoV0jdYp5V/BhEf6VgoKL0NKkuaJ3sesXGlXC7ojcwDtuwy/QmuA+N8aeJPBFtr8MTx + Pp14YJEYg5RwOePfb+Zr026sEkH3ea4f4gxLB8IfEKMBgXMRH13x1rTepgz5nWn0xelPrrRIUUUU + CCiiigBaKKKAFooooAKWkpaBC0UUUALRUgjG3rzUdMBaWkooEFSwMyyAiojUkDhJATQI7zw6zuVB + ru7WFFUMetedaJqcUBXJFdzb6lHLCNpyamRJti52gKK0bWXKZrnYJQzc1sW7jaMGoYjbtiC+a2rZ + 14rnLdm4xWxaZByTUMpG0pzWdruswaPp8k0jhdq9zUOo63b6XatJJIAQO5r578e+Op/EF29rbSEW + ynBIP3qIwuMxfF3iOXxHrMk5YmFWIQH+dYYFIopa6EAUhpaQ0DEpDS0lIYhooooASiiigBKKKKAC + iiigAooooAOaSlxRQAn4UUuM0lABSUtFAx6zTIhRJGVT1APWogKdRQIKKKKAEopaSgYUUUUAFFFG + fegCCiiisCwooooAKKKKACiiigAooopiCiiigYUUlLQAUUUUxCUtFFAwooooAKKKKACiiloAKSii + mAUUUUCCiiigAooooAKKKWmAUUUUAFFFFABRRRQAUUUUwCiiloAKKKKACmmnU00Aek2PiGfwt4d0 + BLeyFxBcxvJcDnJG4jj0P+FdzDJFqEEMtrJlXXzIGYYJB/hPoexrjdPtbrVPA+mWV3E9tBDG7w3K + Y+cFjgZz9ePb3rP0mbWtJkew01TdwI2+SKQ9Ce6kcg4//VWYrHo4a1gI+0lUmI5D9B7D1qqJ0LSz + KrbHb5cLxtAwP8fxrm7vxQ5tXgvtPlJKgpnBKtnofUe/FRp4kjvgFuJUhT/nkFK59iT2rFpmq0N+ + OVZZWnJwCNqA+nr+P9BUjSIFODn6VnxahA4+VlP0NWFuovUCpGa6IDotvMi9JUDfQP8A4Zry/VUj + k8V+MGcfdtJCvs26Mf4121tqV9Dr9tpamGTT76CRyu7Dwuufmx3BO0dD39K5db6fRfGutatFGkpW + 7VFWRcq4yXwf++BTd1FtCirysc3pXgTxNrMay2ukziBuk02IkI9QWxn8K6yz+DtyED6lq0UR7pbx + lz+bbR/OvXtH16x8TaaL2yfkYE0TH54W9CPT0PQ0+aLmvIq5hWva1jthhoddTzq1+Gvh+1iXzYJ7 + qTqWmmKg/QLj+dag8NeHbSBkj06CB1O4S+VuI9gTuJFdNJAc7lGD9P8AP+RVaa1mjVXjjVyDwozw + P84rkliKkt5M6FTgtkZLWlmUZ7a3SPcMkKwUdvYemMGqMsCAq6SMQy5baxPJJ/lmr9zHNACs8Oxj + jlsc9M9OPSs2TnP73CE5Y9u/ahSb6lNIqSq/QOxX2bH0qnK8gz8749yatSg4yenaqr98HFapsixV + mkd1KsxI9zXqHwo02GxsL5oU2I7K592KqD+sZP4ivMo4JLu5jt4hukkcIo9STivdvCthBaaMDAzO + kzEhm6sqgIp/ELn8a7cGm5+RzYlpRSNkbZYw8ZDoehB615d8a5vsXwxNvnDXepIuM9gGb/2UV3t6 + dG0BxqV7q40yHoUeZVjkP+6ev4V8/fGPx5Z+LdWtbHSJjLplkC3mbSollbqQDzgAAD6mvShF3OE8 + zWnUgFOrrICiiigAooooAKKKKAFooooELRSUtAC0UlLQA7e2MZ4pKSloAWiiigQtJilopgPiuJIW + yDx6V0Gm688eFLHHpXOYpOQcg0Csep6driSAfPzXVWF6HAOa8KgvZoD8rmtu28WXNugAJzUuIrHv + NvdwxLukcKPes3W/HljpVu2Jl3Y4GeTXi8vibU77cqTMi+tYl35zS5mkMjHnJOaXICRveJfGV/r8 + zIJGSDPQHrXNqMUoFLV2GLSUUmaBhRRSUhhSUtJQAUlFFABRRR+FABSUtFACUUUUAFFFFABR3ooo + AtnZ5PbGKqUUUAFJS/yooASiiigAooooAKKKKACiijmgBpOBVzT9Jv8AVXK2VtJKR1KjgfjVJq9o + +FeraTb6WkUzRrMDh93WgUnZHiVFFFYGoUUUUAFFFFABRRRTAKKSigAooooAKKWimAlFLRQAUUUU + AFFFFABRRRQAUUUUxBRRRQAUUUtACUUUUAFFLRQAUUUUwCiiigAooooAKKKKYC0UUUAFFFFABRRR + TADTe9ONPtYftN7BADjzJFTP1OKTA9P8D6Zcw+Go7maRytw7eVGxOFT1Hpk5p9pYQS201087wTmd + ykqE8fNgdO3FdeLaO1tVgiAFvCgSPHoox/SsGwjEWlWsgALGMkEjrkk1kxIq+ZLcwxm4kMuF+Rym + MjPSozbxHqin8Kvu0YTCRiM91HSqTsFJrM1IjY2jdYIz/wABph0+0xgIV/3XI/rQ06g4zTDOPWlY + CfQ7B7TxKb5N7R+RtV2YsUYMDgZ9ev4Go9T0SW7ttftrUlrsvHqdsAOZIgHVlHqQrY+qj1FaGiz7 + ppY+oK7sfSrMkh0+7t3NwbdRJus7zGfs8h6o/qjdCD/9etErohvU880PXLyxu1vdPuWt7yMYbb0c + e47g+hr2Dw74+03W1WDUDHYX/QqxxFIfVWPT6H8zXA+KvCbXUs+saJbfZr+EGS/0pednrLD/AH4z + 3HVc81ydndx3BAY7H7qa8/E4WM9Tuo1b6Pc+g/FV1c6N4S1HVLKJJZreIMm45XBYAt74BJ/CuAs/ + Fuv+GtIg1DUZhqFtqtu01vNM4xBOFJKYA6HgYGB6d64zU9b1q0shpLNLb20isWCSHEq4IIwDgj8K + w7WY3FuIZJMxRqSEdj1z/CBWVHCRjD3rM1cryse1a14sR/Bun6pC9qbx5Vl+zE7kk2qd6kcYID5x + zgjAJOCVka0v7eO6ijEYljDhSMFQRnBHrzXmmmzJNss9WnuJLC3kVoIHbauS43Ln+EFS3II5xXsK + zaRqLSxaYP8AUYEmwZjGemG6Hv0rjxFKNNJJGyvuzlZ4m3ttQr82S3VfT+lZsoYnGCD3xXYXNhtj + KhcDpgDp9KqW2hS31ykUSZYnGTwB7n0Hc/jWdOTeiFK25F4W0W4uS88AxcMfJt3PRHP3nPsqkt9d + vqK9gE1rpltBZ28bymNFjighG5iAMD2H1OBUPhrTodO01fIX5HUBNw6p/ex6sct9Co/hrciYKeAB + 9BivcoUfZxs92eXVqc8rnmnxv0GTVvhn9u8gJdabKtyyg7iEPyuM/iCf92vlxRX214yjiufA2vRS + jKNp8+f+/bV8TL0rspmTHAUtAorUkKKKKACiiigAoopaACiiigQUtJRQAtLSUUALS0lFAC0tNpaA + FooooAWiiimIMUYopaAHwymEnGCD2pZJGlbcfwFR0UBYWikooAKKKSkMKKKSgApKWkoAKKKKACii + igAooooAKSlpKAHJG8jYRSx9BTWVo22spBHUGr+m3MUBcSHbu6Go9QnjmnBjOQBjNMCpRRRSAKD7 + 0UUAFFFH4UAJRRxRQAUUUUAFFFFABRR+FFACGlSSSFt0Tsh9VOKKSgZBRRRWBYUUUUAFFFFMAoop + KACiilpgJRS0UAFFFFABRRRQAUUUUAFFFFMQUUUtACUUUtMBKKKWgBKWiigAooooAKKKKACiiigA + ooooAKWkopgLRRRQAUUUUAFFFLTAKKKKAENavhVYm8W6Usw3Rm5TI/Hiso113w1Fm3ivbdAF2gcQ + ZHG/j+m6pkB6lqB8iwuXXp5bNj8KoRRxrpdvErA+XCFyD6CresnGnSIf4iFA+pAqvOIsMVTY5O0n + p+dZSEjPvHjjRWG7BHGawLu8GDg9au6mPLZiZCfrXM3bksRn2FJI0LqXWITIx+8f0qnNqMnROMnq + eBVczyogXy12gYzk5/OnbGVPOTMiHqp6n2quUVzQ0XUbvTtXzNk+coCY6H6ep9u9dPqurJJZmB7D + 7bZXCH7RFE22aP8A20H8Q/l3rkIxHFCsh/eWLkbgc/uj2PqB79q6aHT2lt1ltCt2owWhlOHB9Qw7 + +hGD9aG0Firpms3FnHEsVy2qWEB3QSRnZeWn09QOmBkY9uKdqOm6Hr+6+hljsbtvv3NvH+5kP/TW + Ecxn1K5HfaKW50tbpsyQZmHVbndFKPpMo5/4ED9azLnRZ428z7RNbuOhvYyyn/tvFn9QKVgTKN/o + ms21ptuYDeWC8Jd2refGnuCOV+hx9KyLXS4pGDLdpJkjARlB/IkGtxLPXrRzdWcNyW/576fKJwf+ + +Tn86ZLrl3LJjUrewuJO7XtoVf8AFsZ/WocH0No1rPVXHQaQ0F3ZXEcUpEcgeRbiM7Gxz2BGDj9a + 6vxV4t1kuLaK8hhSJUMbQIYiQ6glSCScDjH+cc1aajZowZdI0Pd6i6lT+T10emapOrZsxoWmyH/l + pbQTTS/gwBb9a5pYVyknJ3sdEsZFrRWZqeEU1Cx0qSTVGe2juJfM+16gdi52gAKp+dycDoOfWvRd + GtpbkCCONhayZEk0sZiaYZGEwfur7ZZmz2AIritN04LN/aV9Nqs7j71w8Isk/GaU+Zj/AHTn2r0f + ww5kli+x2QMHVp1jMcSj2LjfK55G44H07708PCEua2pxzrSnozqJUaONSQODgbR0XtmmRupbGRV7 + gCmSwRyjDDkdCOorRozsc745lFv8P/EEpOANPmH5oR/WvixeK+0fHvhu+8T+Cr/RdOuoree52APK + DtKhgSpI5GcelfMHiT4VeLvC8bT3mnGe2Xkz2reYoHqQOQPcirg7bhZs5AGlqPOKcDW1yR9FJS0A + FFFFABRRRQAUUUUCCloooAKKKKAFooooAKWkooAWlFJRQA6gc0lSIu4UANpKc4xTaAClpKKAFpKK + KACikooAKKKSgAooooAKKKKACiiigAooooAKKKKAEopaSgA6UUUUAFFFFAGnCsX2cZxjHNZz4DHH + TNNzRQAUlFFABRRRQAUUUUAFFFFABRRRQBXooorE0CiiigBKWkooAWikpaYBRRRQAUUUUAFFFFAB + RRRTAKKKWgQUUUUwCiiigAooooAKKKKACiilUFjgdaAEoqR4XQZPSo6ACiiigApaSigBaKKKYBRR + RQAUUUUwCiiigApaSloEFFFFAxDXT/Du3ebxlayIOIEeRvptI/mRXMGu9+FUWdW1CYg4SBVyO2W/ + +tUyA7/W3Hl26kgAyqT7c/44qlqogih+0PJsIOWarupBXdXYgKoyd2MAAjPX6GuC17Wm1S72REi2 + Q/ICcZ/2jnn/AA/OotdiTKWp6nLeylISyR569zVOGzcElXZSevcH6jvU8US5GTz9f/rVpQwDHSm9 + NitynDbsflZO2cDkH3H+FOWD7PJtP+qk+U+2a10tdwGOD1B9DT3tBcQMhG0kH8DUcxVjNtozFK8e + 3PfaejA9RVm3M2mHfbFntDyoAy0Y7jHce3ahQWt7e7xhl4f88Gre1oJCy/dY5+h/+vSGa1l4gRkV + ZXIUj5TjfG39RWtFe2sihlRCp/ii5H5da4u5st4M1qwjc8lf4WP9D71Ri1Bo3YOXjmU4bacMD79j + U8oHftaaJdPmSC28z+9t2P8AmMGrCaRbMMRahfxDsFu2Yfk+RXCR+ILkDHmRTj0YYNWYvEwXh7PH + +62KLS6AdxHokykFdbv8f9c4D+vl1eisNnE2t6qV7hJki/8AQEBribfxCJSAlpNn/rpgV0WkxXmp + MWhEMUS/fmd9yp7Fs4z7Uve7kux2Gk2GlwyieC1Ek46XFy7TOPozkkfhXU2l+zmJIMP5j7RI3C9z + lf73Q8jj3rnrDTLGxsU1HUJ3uYsgQpISBOx6YU/w/hz16ct18VuZLqC4lK+YiEFU6An0+nI/GqSZ + Ogl3eKmo2lmrfM7bm+g/z+lJeapHZ26ysRzMY/1I/pWDFK0/jedmPEREa+2FP9Sa5/xDeyTJBGhO + 1ZpJD+JYj+dFwPQdZ1qw0DTZNQ1G4WG3TjJ6sT0AHcn0rh7X4g3M96t3qek/Z9BnYxw3IDSPGyls + hwoJ3HHPYY6nBxxPjvWNUXxdaaleWa3+k6fgxxDJETYGXZe57g9OBnHfFi8Sebpc899qH2m0aZmW + xUlZprg/dZCo+UchjtOADggk899CjCcLvX9Dmq1Zxlpod54x+DuheL7Y6roU0VpeSrvSSIAwze5x + 3PqPxzXzr4g8Oat4W1R9P1e0e3mXlSeVcf3lPQivojw+mowSw2l5nVfEcsYke2mci00yM9N6jjf+ + G4nv1J3ta0HSfHGkSaVfyS6rNGxAvLaNI47WT/YPt3GWPrXLNeylZO520+atDmaPkcGnVt+L/COp + eC9bfTdQCsMboZ4+UlX1Hv6jt+RrDBrRO5k007MdRRmjIpiCijNFABS0lLQIKKKKACiiigBaKKKA + CiiigBc0UlLQAZp6OVplFAD2bcaSkooAKWkooAKWkooAKKKKACkpaSgAooooAKKKKACiiigAoooo + AKKKKACkpaSgAooooAKKKKACiiigBKKWigBKKKKACiiigAooooAKKKKAK9FFFYmgUlLSUwCiiloA + KKKKAH+UwXdTKlMxKYxz61FQAUtFJQAtFJRTAKKKKBC0UUUwCiiigAooooAKKKKACiiigApyOUcM + OoptFMCeafzF2gY9agpaKAEpaKKACiiigAooooAKKKKYBRS0UAFFFFAgooooAKKKKYDTXqPwlgzp + +qy7cs0kag/QH/GvLmr1b4c3MVj4F1K4aQRubopuHUfIOR74zj3xUSB7E3iO9N7emxtbe6u0h4lE + CfJvz0Zsjp6VkpZNg4imhfrtMKY/rT5NR1i+At9JtFt7WPgFgWP/AHyMn8SMmoP+J1Ac3F1InqWg + YD9QKlgiVIFV9l1Bj/ppbjBHuUPBq2tmYAjq8ckDnCSp9xj6EHlG9jS280t3HtaaG5I7Jw/5Vdsm + Ry8e4Bj8rKw4Psy1DZaHRQDAOMeo9Kl8nbJ04b+f/wCr+VSJiNijAgDsTkgfXuPf86mkHCn3H9az + bKMhLX/j+t8cbi6/8CXP880ipvgXPdRV7gX9wexiQ/qahKbEVPQD+VFwMqdmhUsG2gdc9Kw7u8t5 + pTLLCNzYXevOcDtXQahGJbedAoLbSQD0PFULPQYrXUjp9zMblSqOGI24+Zegye2RWiaEyZ/hz4qk + G6LRdQweQGRT/Wt/TPgt4ourRZppILSRufKnO3H1Kk/yNdFjTLm6ubeCS3lmt22zRqQTGT0B9Oh/ + KmPptoettEf+ACp5xElp8H76zkyL3RQQeGnaWQn6qSFH6/WultfCGrWxRpPEumAoMIPJbCf7vzjb + +GK4bUI9H06HfcW8JY/djWMFn+g/r0HcijT10nULfzrSC2ZejALGSp9DtyM/jRfS9gsenRaFDHdr + f6jrdpPIm3bmTaiEDHALHHTP1rfh1nR7VQsmsWPPT/SF/wAa8cGm2gORbxKfURr/AIVSOhRx3sVz + HcOoRnLRlBtk3DGCBjp1FCkhWPULeXyvFc8xKtbT7pIJ42Do+OcAjuPSueufntw55yGP6VQ8Ioth + rckcKhIpreUvGqhULKmQ20cA8YyB3PrW1dwgWwwOgYfpUsRmX8e43DZI+bG7PI/yAa4660BNK1SH + XdMtojqEaFlglH7oOwO1wOzDr6ZHbrXfy2vnrsx/rJtp+nGf61S1C1EsxiA4ckn2UcfrTjNxd0Pd + WZy/hrXoLmKLQLq6fSkdGvNcvLlwkt0+eUU/3cYAx2z759P8Peb4oto5YYn0/wANxjZaW0eY3ulH + G9iOVT0A69+OK821rRrK7ET3kPmRwEkKDgn2yO3FeyeG7y3/ALJtYWuYGuPKBZIyMDjoAOw6UWcp + XbOt4pKmoQVmv6v6lLxl4A0nxf4b/smWNbZoctayxIB5L/TuD3Hf64NfIviHw/qPhfW7jSdThMdz + Ce3KuvZlPcGvuPzAeik/hXn3xb8AxeMvDMlzbRY1ixQyWzDrIOpjP17eh/GtYuxyN33PkrdWrpOg + XmrhpUaG3tUzvurmTZGuBk89ScdgCar6ZaRTTSTXQYWtuN0oBwXPZAexJ/IAntVnUL2W7dHmwNi7 + YolGEiXsqjsP59Tk0TqW0RpSouevQj1bSpdIu0he4t7mOWMSxT27lo5EORkZAPUEEEAgg1Rrf8U2 + 6Q2vh+SFSIJdNVl5z8/mPv8A/Hs/nXPirpy5opmU48smh1FFFWQFFFFABRmikVWkdUQFmY4AHUmg + Az1PYUoNdp4KkNnp3iuQnzbGLSpEmUgFJZmIWP8AIliD7EjrXErUQnzNrsXKDilcfRRRVkBS0lLQ + AUUUUAFFFFAC0UmaTNADqKaDS0ALRSUUALSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUlLSUAFFFF + ABRRRQAUUUUAFFFFACUUtJQAUUtJQAUUUUAFFFFAFeiiisTQKKKKYBRRRQAUUUUAFFFFMQUUUUAF + FLRQAlLRRTAKKKKACiiigAooooAKKKKACiiimAUtJS0AJS0UUAFFFFABRRRTAKKKWgAooooEFFFF + ABRRS0AJRS0UwCkpaQmgBrGvT9HWz0PwxYQzRyz3N2v2j7IuWZ2b7uFXoNoXrXn+iacNV1i3tWYL + EW3SuTgKg5Y/kK9SkuJoQz6eIrNJOt5c4Ekg/wBleDj0z+QqGDFEXiS5jDSPa6VB/DEzgNj3VRx+ + OKVIfElupaDVbe7TumTk/geP1rGlsFuX8yfUbi5kz1Eo/kRSwW8lvL/o126yf3JTtJ/HoazZSNCS + 7t5WI1PTYt6/eeIbHX3q2bRLiMSQXDS7R8rOMSIPr/EPY/gagXUAwWO/jKsOA5GCPoRUix/YiJoG + 3QtyQOn1H+H5elQyi0rtcL5My+XOgyjjkEeo9R6iolnJjRWGGEgUj0I6ii4m+VXU8r8wx6d6zp7p + VvCAeG2y/oQf5VNhlmOXzNRnA6KiKf1Y/wBPzpHmV3JB46ZrHsrh51mYHaJpC7N/s9APyFWpJQAQ + OgFOwyG5mwJDntTYb+K78ToYpA6+WBuU5B5FUbifKnms3wy+3XYxgDAA4GO4q0tCT1600Gx0zUr6 + +tkdZrxt0xLlgTkngHpyTVtlJ4HU8CrL9TUJHestwPGtXuhrniC5a6kkFnEGcqp+Yov3VHB5ORzg + 43McHGKmtJ28N+LIlhjkt4zL5E8DSF8p8uG5AODu3DIHTjqQLXiDRtQ0TVpLq1WSON92y4RSy4Oe + DjJHDbSCMMBn1xH4f0O617W0vJolW2RlLtFEY4wFAG0ZAySFA4z1LE9j0XVvIk9SKY47io2FWG55 + PWo2WucoteHk/wCJwSByLaf/ANANdDeRfI6+hP8AWsLQMJq25lZk8ibeF6kbDnHviulmhkgAgmkE + rqqnzR0lU9HH17+hz7ZOhLK9mm514+6Xb8en9ar/AGYMs0xGS7lV/wB1eB+ZBP41dsSAXPopP61K + YAbWJP8AZ5+nT+n60IDlL2238kZXPA9TWLCLyy1H7VBcyW+G2m4Ubiv+yi/xMfT+XWuu1EJCoO0s + zcRxr1b6eg9T2rCuITaHzpiJLpgRHGo4X2A9PUnr39KpCO50vVL7UXjluPKthJxDb8STyY/iP8K+ + pwDj1rroxLtG8rn0FeLaBq0mh6w1/fCWeaYbQsaF2Vfb0FeraHrsOsW5eKK5XHUyxgfqCRV3uCPm + b4tWum6X4/vdN0uPy4t/2q5UdPOkUEgewGCB2LNXnssu563PGGotqvjbXb9if3t5KVz2UMQv6AVz + RY7qi13c7OfkppHaTRNq/wAMIJkBebRb5kbHVYZgCD9N6n865aKBiQXBVOpJ4yPau/8AhHKJ73Xd + PlG6G40yRip55Ugg/qa0r3TNFO/zoo41TLMVwoHr0HuK5njVQn7OSuarBvELnizyyRdhAzkdj603 + Nehv4V0a9CiG4OW5T96Bu9SMjnt3qjceBhA4AnjUn7on3oD/AMCGV/WuiGPoy0bsYzy+tHW1ziz0 + BoPY+tbGq6De6Rt+1WkkMcnKvnejj1Rxww+hNZsNpNOzgbUROXlfhVHrn3/OupTi1dM5HCSdmiAA + swVQWYnAAGSTV6dV0qJoyytfuMNtORAD1Gf7x7+n16RG8jswUsS3mEYa4YYbHov90fr9OlVYIjPO + kecbjjPpWU539DWnT18z0nQtPaD4J63crE5kvblUyqk/KhU8+3DfnXmwr3HVoF0H4IwWzNh5iGCm + QITuJOOevHavD+M8DH41jgZualLzLxceWSj2Q6iilrtOQKKKKACiiigAopaSgBpr0Xw74J06+0OK + 5uizTTruBDfdrzs1u6X4t1TSbM2tu6NH/CHGdv0pq3UmabWhn6xp/wDZerXFlu3CNsAmqdPuLia7 + uZLid98shyxNMpFLYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopKACiiigAooooA + KKPpRQAUUUUAFJS0lABRRRQAUUUUAV6KKKyNAooooAKWiigBKKWkpiCilooASloopgFFFFABRRRQ + AUUUUAFFFFMAooooAKKKXmgBKWiigAooooAKKKKACiiimAtFFFAgooooAKKKKACloooAKKKKYBRS + 0UCENNNKa1PDGjtr/iK1sOREzbpmH8MY5Y/lx9SKTGdT4O0LUBpjXlnY+bc3BwJpcCOFB05PBJPP + ftV288OQGUvq3ieHzz1SENMR7ZyP5Vs+ILgXFslqt2dP01FwgQZd1HouQFX0J5IrBtND065fFvBq + F4veSaURp9cgf1rNsFqV00vSImxHrc4PYvbED9a0Y7C4CZhvbW9i/usmD+Yp76b4WsgVnEckndIp + XYD8c1W8nw+G3Wcl1ZydishI/I5qbll2OaWEBJIWVf7rncp+jf41ZiliCMYhtX+KP0/D/Cs9b1ox + tlkEyY/1irg/iO9Me6VSCrDPZh6VIy1LMEQhTwucfT0rltSvTLqHkRMctGEJ9Bkk/pj86uajqSww + SSE9AePfkYrm7N3eV55DhnOSaaQzqLeZYogq8egFFxdLHEcnk1k/b4oV5PNMt459U3XLIw0+GVFn + lzjaGYA/zz7U0gbHPHqVxGJYLRmhb7ruQof/AHc9fwqLShPaa0huIpImyo2yDnkcfhxxXrn/AAjc + V2lndRzyW08MZULsDLz1BX26Dp0rF8ZeGbex8LpfQspu7IqfMA2+YCRuGOg55wOmOKXP0JOtv737 + JbxSLbT3DSuECQqCRwTk5IAAx6+nrVC31a5ub6KBdIvEhbcHuJMKqYz2PJyR1HqPfGQPG9vHpscr + 2xKbFO7zNoPH0qODx8twNtpYLJ/22J/9lrOzGdltx0JB9QcUFSeSST7nNcbP43u7cjzdPgiz03yN + z+lMi8cXs7Yhs7eQ4z8m9uKXKwOyKfSmNE3t+dchJ4y1KIqJLa2i3cDej8k9B1ptl43mvtSgs0ns + S8rY4VuO/rRysD0nwzbF9SkwpLfZ5doHUkjGBnvzT08baUBHp2qRBWgHlm5tSZlhIwrZwoOzI68j + j2Brmf7TuLG/thvEiyMYZCTsADqVONvTr9fesvVvCEdwqpDrV+FSVW2K+No6EJjAHGOoONo98tNd + QZ6PFmC9ki3K6NGGR0OVdTyCD3BzWgP9UD1wAP1rmNBikEM1jGWZtOG9dx4ETsfk/A5wPr7V0MUo + EbFs4UZI+lT1JKVyqWwMpUyTuMAdyOw9uf61lNaiKOS4uWBlblnI4HsB6V0DRokbXFxgt6dh7f0q + jLbyTMJXQ5H3UJ+77n3/AJfnmkxHLz2zElmRlTOQpByfrjpXQeFdaNjMUlhcxg8+S4UL7lOM/n+F + VLlY4VLMoGPY/wBKxLnxRZWCl3ljbbnnPzKff2+tc88TGDstWddLCzqK+yPEvEEDWviTVoGyCl3K + vPX75rCbrXZeNGttSvzrtjjyLs4cDs6/KT9DjP51x2CzV0U5cyuKvG1ononwmSSK813UNhMdtpUx + PHBJAIH44NQ+HNXGoeIDbMTJC1v5axvxvwuWH4nP51btdf0nwr8OZ9OtSZNX1PInweUUcc+gIJwO + vNcp4QZR4kiuZW2RQK80jAdFVSen1wK53S9o5TfyN41nS5YL5nbXNmmlLaXayLNp15KI3ViRtJ5V + s9sg5yORg9e7Lq+m0eVbTUFN9pNxkxS8CVCOqkj+Nf14I64q/PBJL8NLaSYbpFCFgOwZumf91wPy + qppm3XtJksbpvmkgjm3n+B+VEo+jgg+zn0FYzppWk9jqjVb91bnOanf61oID2OotcaVc8xvgMkns + 6EbS3rkc49iBzN7qt1fJHHM/7qMYRF4AH+ePpXSWsj6JdG21GHzdLumMdzAw4Rs4OMdCCMgjtVTx + P4RuNDmWaAtcafMN8M4HY9mx3BIHocj1xXZTlFaM4K0Ju7RzYNdl8PfDp1vxDbpIpMYbc3+6Oprl + 7K0M8uG4UDJr2PwOlj4a8IXmv3DIJjlI0cgce2f88VhjKrUeSO70N8JTsnVlsjO+L/iDzbiHRrSW + LyLcbZEABYN+WRXlQFWNRuBd6jPOoAV3J4OR9agFd+HpKlTUUedWqOc2xaWiitjIKKKKACiiigAo + opaAEooooAKKWkoAKWiigApKKKAFpKKKACiiigAooooAKKKKACiiigAooooAKKKSgAooooAKKKKA + CiiigAooooAKSlpKACiiigApaSigCvS0gpayNAooooAKKKKYhKWiigAooopgFFFFABRRRQAUUUUw + CilpKACiiloAKKKKACiiigAx7UVIrKFx3ppwTTAbRRS0AJRS0UCCiiigAoopaAEpaKKACiiimIKK + KKACiiloAKKKKAGNXqXw1S20rwtqOtPEZLmab7NGoGSVAU4A9y36CvLmr134cQCTwUWPJW8l2+x2 + oM/kTUTGTxadJc3H2zUQJ72TkRdY4R2Hu3v0Hb1qpr11s3WkK/aJo1zJufZDEP8AbPc+1b+oXQ02 + 0AhA+0y5WPI4X1Y+w/wFcsEMUaSkFhkvCjHmRu8r+3p3rMZgNp91tMtxMVQ8/KBEv5kZ/SqEptI+ + yzc4+UO+fxJArYuLeS72T3BaV5CTEh4BH94+i/qapC2MhLKSUHG/GN309BVoZSivHhP7uKRF/u5J + H5Hp+dWPtrMv3WGecYqVbVncqi5K/ebGQv8AiaWOBpXKwqcA/Mzckn60WQ7mHqMs88iqsUhTOeFP + JqpulXh1dfbBFdNKWVjFGxwv+sf39BUiWpDhWA345JOQvt7tx06Dnr2AucqWLD5VY/hXVWN/cWmg + 27acspuApjkh8skHL5JIIwQRgfjVqG3a2Bdw3zdEQ/N/wI9Afarmn6ZdNKsl1K8UQ6sMNgf3sE8r + 7ipbA0vB19q8unGMz7nE7l1Y/wCrB5A/PPGazvidcalssY5j/obAkbT1k9/w6fU1nS+Ixo+qSHSL + 1JFmbdKpiIRX77T3Hvgfj1qj4r8RXOq2NtDcSxu+8uVjGAoxgfzP5VNne4DYda0kWsVxqMFxqN6i + hEt3CxwRgcDoeeMfw1Yh8U6M0ii50GOFe01jIEkT8NoDfQ4rK03SbSSSN7ucSKcZRDgDPYnrXQ3W + gaPdW4hgtxBORhJEY8HtkE80OwJM0LhLWcRXcEi3UEqboptu3dg8gj+Fh0I+h5yK19IhtpXGoiMC + RUMSuc5C56enoPwxXD+DLp915p0n3ceegP8AC6kKcfUH9BXXo0kKh4oEKDIeR5toT/gNS+wzkvGu + tte6i1lGx8iHAfB+8wH9M/nn2rnoibe9VrWSRJISGVmAB3DHTHoa0fFelT6bqZlkO6K5/eI49e4+ + o/kRVLSre4vbyO3s42lnkYAnsBnuew9TWitYnqer3pl1jw8vlHZNcwKUOcbWOD17V0NnZag2n2cd + tayGWGJFdUxtyAATnpjNYdlPHYabpzNNFA8PlEGQjGVYHp36frXuWsRRf2c08aouwAqVH8J47Vgy + jndI0uPRtLuJbt2lvNTABaPpGq52qM9eSSfr7Cp4XWQEZBkGNy9COe4PNM1S8dLO1WNkA28rLkD/ + ADzWO+q+Wg8+3MqL0IOSv0K8iolJIcYOWx0Jj86VTnKRdB6t6/h/jXNa/wCJrSyikjt5XmlTO8wk + BU/3nPA/Dn6Viax4u1NLN47CwIi53S3rfKB75Kk/jmvF/EniK81W4Mc10JFU42xEiMfRelK7npE3 + jSUPemdPrvxDmMrpblGY5BZZWcfjng/kfwrg7vUb3Vrn99K8jOcBc8c1TALsFUZJq/bReWxKgsyq + WyPXoP1NaQoxg9NxTrzmuyRuxeTDo32cYeJcBiR1BGQR+Ib8CK5khYpWYDIH3frWlDeolkoMvlyK + uxlPcZ4/z7Vmyl5WJVWI+lOMXzMcpx5EV3YuxYkknua0bGY2mnXUi/625IgX/dzub+Sj8aoGJwMk + YrW0eDz9S0uHHHmGUj1wef8A0GtJaLUwhrI9Q8QOtn8Pb20bImiaBT2AK+WD/I1zdtPHp9zpF0MC + F/OsLn5ccbtwP1HmAj/cFW9dvhceFtXQktLLcSPuz1xMg/lz+NZllGb+3a2fj/SYJ0LHAG5Op9un + 5Vyu3Jqdy+PQ7HUtEt9QuLqO4481f3m3synGR742NV/QdPlTS38PaonmeWpeBu0sWMFfqAf5HtWf + p2os+n2V1MSJIrdBOO+VbymJ/BlP/Aa7izsReQRCFgk0YEls/oRwR7jsfYj0rzKjkvdPQXLa7OV/ + 4V1pgk3lDHtGZBG20OvZxngA9COx9Biub+I2qtb2cGkR2kRsI/8AVOo+X88Hn6HNeuXAM2miZBJH + LAC+EPzBejr745HplRXzx4pnvLDXrqAP5YY5Ij/1UinkMB02nOcds114KPtKnNJ3aOLF1WqfJ0Oc + /CnUmQTnAH0p3417R44UUUUAFFFFABRRS0AJS0UUAFFFFABRRRQAUUUUAFFFFABSUUUAFFLSUAFF + FFABRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFABRRRQAUUUUAFFFFACUUtJQAUUUUAQCik7UtZmgUU + UUCCiiimAUUUUALSUtFABSUUtMBKKWkoAWiiigBKWiigAooooAKKKKACiilpgFFFFAgooooAKKWi + gBKWiigAooopiCilpKAClpKWgAooooAKKKKACilooAY1exfCh1l8IXkX8UN4xP0ZV/wNePGu/wDh + Nq62mvXOlSHCX8fyf9dFyQPxBb9Kia0Gdjf263esOJj+4gQeYfb7xH4kr+ArMurZ7kRGRdrXjncP + 7kS/w/yH4muovLTBmOP9Y+T9OKqXFnuljAH3Lcj8yP8ACs7gcxd27SRqFGHujgf7MQ7fj/Wo57Ha + ghjGCB19K6aSzH2tDjhY8D86i+yfNuI6kfzFFxnMS2Rjh8uIYOfLQD+8ep/KklgWCPYn+riTcx9c + VvfYmaZOORHn8WY5/QYp0ulh/KhI4nnVSMfwg5I/IGi4zl2sJrSyWXafPKhsdxK5G0fgCPxrSttI + uif9ChErxKIkZuFX1Yk8DJBPqc8Vsz2pnFrIwz5t7v8AwG4D+QpsFhPeXAj+byYMMyAkAk8nP4Ck + 5DRSfTW0t4Xu5pJblmw0gyqwr0O0EA9x2waw/FtxLb2dtp0BJnuiWl2jG4ZxwO2Tk8eldld2vmaV + DtBOzZGVXgDqp/Mov5mubvrfb4vvpSoZ7fyra2VuzsoOfw5NSn3Gc1Dpv2NSjIjXAGZXYAiP2Hv6 + mopoIiNhijGf7yDJ+gxmur/smSPcuSST99hnnk59zwPzFMtrJUlJSMeZ1LNyfqf8B/LrpzaCscwN + EWJA2xhM/wBxBlTj1P8Ah3/nft0urfUYYblXRg6/635SOe5PBHv/APrrZk064AMy/PMDuBY/ePXm + ur0+bRvF1mU8vbdxj99bvxJGfUeo9/zqJTKSPIPDzPaeJ/LkVkYmSJ1YYIODwR65FddqHmy2Lxxl + zvZRtQZLZYcY9+lL4s8EXWkD+27GQyiKRNzAfMoJ2jcO4yVGR685zmufk1nVI7UFUMT5U+agIZcM + DkehyFwe1V8WqFtudFFoeoaRp9/DbMZDZ7ZLmKK9jkNrniQSIMHgEDK5wQwJ5407J4bC3kkZVUrl + pCBjpn09qbpWhroPh55tQUtqGrx+SsBHMVuCruT/ALTYUeo3fhT5RpGm2Rn1m5WF5Sfk+Y7vUbR1 + 61MmCPNL2+l1bUkmuJNiMyxrxkRp9O/c/X619H/DbxNLqPhhtC1KeKe6gsVubWRGXMttkoAwB4ZG + XafqvfJrzbR4rVJ7fxL4btra5uNPO+S1ijO3AyM7PvBsN3GDjjmux062s9c8dx+LIIbq3lntCzQQ + RNHtkOE2SHZhyRubPHQZ6AkeqFbU72a+hhslEtp5igdGli4/Nq848U+L9ItFbytIhE2Mh/tKYH4J + nNbHiaz1VYGuZ0s4Y0BIM7tv9sYx/T614H4hvd928ZuVmKnGIhhfzrmXNLRo64RhFcwzxB4kvNZn + PmynygfljXhR+FYJOTQTk1PZwedNkj5F5P8AhXSkoo55Sc5Fi2h8qLeR87dPYVcgt52DRwwO8vl+ + e46fuwu7g/Tn8u9RSnrUt9f77CC3IKm3iwpVmGWZs5IJxwCRwBTp6u5VVcsVErhlRQJGSNupCqXY + fn0qGSeI9RM59S2P8ad5Ais0kPV+arMQar2rewvY2V2xGlQ/8sz+LVu+HCz3LyIArx2kkcfP8RDY + P6k/hXPGtrRJlgkt93Rrld3+6Bg/o9RVbcSqKSma7TtMLy1ZskyXEYP4L/8AEitDQPLe6jhlJ8i4 + s4uRjjDhePp/jWFeE2WsagpGWgvfNx2wHIP55FbOlhYmtPn2JFPJal/RWwyn/wAeJ/CuSovdO2nq + zqdh+2m1lIRZQ8TjPI8yPfnP+8r1f8H+NI7C2XTtRguRewMhCiMsNoBDcjJ5APGOp9Aa0bXRJNbN + vdwIN5AinHTDIev57h9Grd0HQtD/ALXuYdXv7uS7eQuIBIYUjDEvgFDuP3ieoBz0rDDxjN2l/TLx + VTlXul3UtQXTb2G4Rg1vcoZ4mAK5wBvGD6qQ34GvJ/irocNtPaXMIH2WdWa3k/555IJQ+wJ/DcPQ + 59j8U+D7ax8L3Mmih0jtgbpLYu0ihlBLFMkkblLKR0Oc4zyfHfFV7/angS33SBjbsWXPXqAR+KyK + f+A1cKTpYhNbMwlNVaD7o8tAI4PWnCgncc9+9KK9g8sKKWigAooooAKKKKACj8KKKACiiigAoooo + AKKKKACiiigAooooAKKKSgBaKKKAEopaSgAooooAKKKKACiiigAooooASilpKACiiigAooooAKKK + KACiiigAooooAr0UUVmWFFFFMAooooAKKKKYBS0lLQAlLRRQAlLRRQAUUUUAFFFFMAoopaAEpaKK + BBRRRQAUUtFABRRRQAUUUUxBRRRQAUUtFACUtFFABRRRQAUUUUAFFLRQAUUUUAIadbXE1ldw3Vu5 + SaFxIjDqGByKSmkcUAj6K8P6xaeLtAjv7fas6/LcQ9437j6HqPb6Grb2+JASOqFf1zXiHw81K+0/ + xnZJZyYWcmOaM/dkTBJB/LOe1e7xXcF3gD91N18pzz74PcVzzViik1uDIDjqn9aY9nlOncfzFahi + yAR1XtS+WGXHYis7lWMkWWJDgdFUfpTnswsto5HAlIJ9MqwH6mtQIPvfgR6USQpLC0T52t3HBB7E + e9K4WMq5thHY27kcW86sw9Bu5/Qmr+nWaRy3h2gbnUj6bQP6GlEitGYroAORtfIwkg9Qe30pIJJL + Q7WDTRrwJEGWA9GXqfqPyqWyg+xwmZ4ZRhJ8gezAlgR78n8q4W4iKfEieG4AAe83pnvugwv8iK7+ + S7iRsySRbDggE4ZT6jg5NcB8RptBubEXaa01trMAGyGJCxmxyoIBymDyGPTnrTT1Ha50l1pnlQA7 + cEyMD+S1R/ssRiOMMqSSHIDEZY+2etc/oXxdiXTRa+I9OmuJo+UurUqGfjHzqcDPuD+Fbtp4o8He + NZBpkjy280pAjjvY1QO3orAkZ9OR7Zp6pBZrdEWofatJl86S0knsyMXEaDMkXo6jv7ii70bS9Zto + 9V0G88u5iIKXEBIaJvRh1H0NXs6h4cY2mo+dqOlD5UmX5ri2Hpz99fbqO2elNXR4jOutaTdRxrIC + Furc/LJ6q69D3yCOKTl1KST0J7EXfirSb3w7qDmy1doSUkiOI7gLgg/Tdt3DqO1eb6JYXdhrSG/j + YRpIIp1KnKksFIP48VqeJP7W1G5ebSLuWCfTreS7cQMYmEY2IzJzkAbmJGeBmsPwJBd3/igmeRZ9 + sbktNKSwxgggE5PIFaQVosiT1PRtZeS+8ZCRx+4jtcJnpnOWP64/CvIdSuJte1OW9lJ2McRKf4UH + Qf575r2i5spBMJPmbcjJj68/yBryCG2aAtC4+eMlGHuODWM5uKuj0stw0K9RqfQbpMTafqMFzHcy + QFWGZIxlgO/GRn6Zr3bS9Y8MppUN1bXlzDeLIskuFYzOByVwDgZBx6Y+leK21k13cpG0ohUnlm4w + Pr/gDW5e3Qs9MS0tX3QjjLDYCeOT/E5+vHsKw55uW534vDUIxso2GeOvFv8Aak8ifaLtYQSBG83m + Ofqei/QZrzaR97HAwPSrWoSmW4YsxZs8k/4VSrshGyPCrS1sthK2reH7PaAH77fM1Z1hB590oIyq + /Ma1pzyaJvoOjHqVn6884rR8VaV9inkuiI4IrqYtaW6HcTAB8smcnAORjueTxxmpHF5koH51UvX8 + /wAp+waRV57DGKqndq4q/wASRPqimO3twoOzYOfwrIzXTqUufDjeYASiYB/PH8q5gjmlAK19Aq1F + JsWIduSfx/8A1VVUZpxbnFU9SI6anVartm1i3uj92+t0Z/8AeZdjH/voE1v+GtDudQsri1uYnTz4 + kaKQ8glcrn3wG6dwDWF4df8AtW8sbR8FbdW5YD+I9M+meR6E8V7dp17p1u9jaNIkcklx+6Tbyzfx + gYHuD9T3HFYcl1Zm86vLsaXw+0+8GjCS5jb7RG3lzJ6sOAw9cjb/ADrA8Xzw2vjNJ4SMmNfmVznq + eMDgEdMdenFeq6esFupMahCR86gY465HtyfzrxPxs1xp3i7ZdShYpXJhkHU57N0H45zx3o9koxsj + KNVzndnseg6kl5ZqAwkDJ09eOa+a/iTocngvxVcacm46XeRb7c9f3ZJx+KHK+4H+1Xsem+JotM0W + W5mVcwR792CDgDOD3FVPGOkWPxe8Ax3mhOjanZMZYIywByR88R9M4BHuB0GaVOSTSY5xaTaPmgHm + nikkhmtp5Le4ieKaNijxyKVZWHUEHoaBXoI5GOooooAKKKKACiiigAooooAKKKKACiiigA/Ciiig + AooooAKKKKACiiigAooooAKKKKACkpaSgAooooAKKKKACiiigApKWigBKKWkoAKKKKACiiigAoop + KAFooooAr0UUVBYUUUUAFFFFMApaSloAKKKKACiiigAooopgFFLRQIKKKKACiiigAoopaACiiimA + UUUUCCiiigApaKKACiiigAooooAKKWigAooooAKKKWgBKKWigQUUUUAFNNOpGoGdV8NoPN8WCTGf + KgdgfTOFz+pr12dVZcOK8t+FmB4hucjn7PgHt94Zr1W4XaDWMw6lWHUru1yBL5ig8CTn9etSHxJ5 + aMz2g+Xk7ZMf0qi461QuRmJgefaudo2SNbTPG1tql1cQJp9xFJAoLEspUjPqK0TrsWP9RJ9MiuQ8 + OQxw2l7d4VBJLgsTgYUY/nmpLzWbC2JR7mPeOqg5I/CrUEyW9dDoptelwRFCq+7Nn9Ky7jUbyZSr + XLhT/Cnyj9Oa5+TXYnPyZP14pg1ORugX8Wo5LDVyXUrMz20yqzB2UgNnkcVwMVpsUq6kMrbSuO9d + 19tlP8Ckezf41l6hYJdSefEPLlP3lYYDf59aicW1od2Dqwpz/eLRnPyWyBcYH4HIqL7JFIhBT8R2 + q8bGffsSKUkn7oXP6it3SfCM906vfyi1txyV3AyN7AdvqfyrBKV7HtVKuGUeaVjrPBur6lqfh7/i + agziGQwxXD8vMoHf1I4G7v8AUElbvVZbe5vdPsoI4YpDEZCOTuIOSMcA7SBnBPA9sakBtre3igt1 + WOGJQkaD+Ef4+/rXKXOrWcniSeETxmU3CJsDc8KB/PNbxifNzacm46IfDO+m+NNK8s7BeW1xak9Q + SVyOvX5ttdTaaDaJrct82mpYTM7iIxygxShlBYooOcdOoH9Bw/i24Fn/AGPqIAzbX6N+GMkf+O13 + FpfxQarDbAR/ZVjM8UkcRURD/VODyT99eeOhHYVf2TN7mneWpt4hdb/liYEgKTnPGP1ri/EvhO4a + d9XsIWkjl+aaJBkqf7wHf3rtbfxHpGq2nlwzxTwSMqb93/LRgCF2kZBGcknGMexxqW1rLp1kBMhc + qMgoc596xnG61OjDYiVCopw3PGrPS53iklhwEHMpdwqL7E/0xXN+ILy4eUxmZQgGCIhgH8e/+eK9 + M8Yay0SzCUEIclRMcDHsgPPTqa8d1G8SeXK7mPTLdPwFZ0Yano4rGSqq7VjOem0pznmhVLuqjkk4 + Fdx4zd2a+lQ7LZ5SOXOB9BUsvL/jVpYxDbrGOiriqb8tXPJ3Z3U42ViVT5UM8x/gTj8qztv+iWRP + RmkH8hV6+PlaUfWRgP8AP5VBcpssNPHTB/nzW9PSNjlrayb7GrpNlJdeHJXWJpwJMeXEfm4wefbJ + rHn8mNykli0eOvzZIrW8Js3n3UaLvYK5WNuVdgpKgjuCQBWfcaXdXFtBqUGJ45yQTBHjypM/cZVG + F7EdiCMdwJjC7YTq8sUVpbWNYvOibchHFUMZNdFJbpLa3MSbfMgcq+3p9f0NYXln8aFo2mU/fSaN + TQdVTR7oTFcse4ODj0rr4vFceoX9tOQ48pg29DgjPXnpwVB5z0zxivOWGDUttcPbTrKhwwPXGaLd + SW+h9P6l4qaHw8tzbtiV4w8fTIOBkEc5zkj0zxXLrs8RwfZrmItxuCAEhPQqOuOD+tcTq2vSnwwq + QMFT7w5JweMkHPH3Rxkj0ArsPhhcrfzRGYcMuc55XscH69u/1qJ33CEUi9e6ebHT3to0IRk2kMcr + 05Abt9DXmfgHxVeeC/GhRZWFu0phmjY8Ng4/OvoXxRDFEmSiMzqT/vjvkev618ueMbdLXxZfJDgI + zhxjtuAP9aiMbtxNHP3Uz1X49adptwui+IrNUS4vFdJSowZVAUqTjuM4z7gdq8Y2sOqn8q9X8T60 + b/4a6HpkOqtbarbxCWS0BKefG+cDcOMjqFPUHjnAryg5DHdnPfPWurD35NTmqpKVkLRRRWxkLRSU + UALRRRQAUUUUAFFFFABSUUUAFFFFABRRRQAUUUUAFFLSUAFFLSUAFFFFABRRRQAUUUlAC0lFFABR + RRQAUUUUAFJS0UAJR/KlpKACiiigAooooAKKKKAK9FFFSWLRRRQAUUUUAFFFFABRRRTAKWiigBKW + iigQUUtFACUtFFABRRRTAKKKKBBRRS0AFFFFABRRRQAUUUtABRRRQAUUUUAFLRRQAUUUtAhKKWig + AooooAKKKKACkanUhFAHVfDnUlsfEv2aRCyXqeUMDJDDlT+hH417DOC0OQwdSOGFfP8ApGpSaNrN + pqUKK728gcI3Rh3H4jNeoweKLLWkD6NrC6feOQXs9QJ2k+iv0/n9BWNRFxVzceMjOaz7gqg+cgD1 + JwKpXF/4ttP+PnRI7tP79u+M/Tnn8qtqWuNPgvL21NvIV3GGQ5MZzgZ9/wDGsVG7NG7IxLk30ltH + bwSrHbB2kBC7TknIPPPHY4689gayZNOtQoU3bqQf+WfH+Na99cOxLOCB2Dcfp1rHlmdyeTj06Vsl + YzTuVzZxKflvJD/vJn+YpFtnz+7nhc+hBQ/1qQZz98CpVQtxuRvY4pM1iQky2/NwJYl/vY3p+Yq1 + FJcxqslvKsqH+FjlW+h7UqebAfkyuf4G5U0qW8byE2jizujyYn/1cn4f1FSUy5a3VleyCKZTbXI/ + A/ga0vsl7B8ybLhPphqx0SC+DQXULQ3Ef3kP3kPqD3FXLZ9S0zASUT2/bf2/GpsJmjHeIp2zRPC3 + +0vH51bj8mTDKEPcEAUyDVYpRi4gKH1xkfnV+O3sZl3Kgye6nH8qRNzk/HiRf8I7GWVm/wBIXG1s + YO18E5HStPwrqq614fZvIjhu7cSII42JBjlyvAYk/fVe/V/esPx89ybN7aC2ZrGGRDJcfOSkmDhS + cYHB9+1Wvh9bSW3h251WKKS7nNytrBDFHxE25WJkcr0J24GSOD0q0vdJe56ZJFZLJLctYQoZwXeQ + KvzZwct3PQVhaz4kgsIiliBJKchVRiyn6KD/AIVcki1iy+02+rm3jMcmFEagjbgEHP8A9YVzOsa/ + FZLILRY/OYYMhAbb+J4/Dmuao3sdNCCbva5wevzaldzNNqM5i3fMI8cn8P8AH8K5mTAJx+taWp3p + nuHbzC7scs3qfc9TWUxzW1NaDrSGk1f0mDzLsORwnP49qoV0GmweTZqf4n5NXN2RjSjeRYmOFqi3 + WrdweKoue1c7O1DtXz5dpAOrc/0qbWFCWq7eiOuPyNNvF8zxBbRdo1B/LJqbVF3WMntg/rXQnaSR + yW5oyZFoNybTXzg4ycj+Yq/rnh6Tz3u9P3eVKcsqds9QRXPxyeVqFvL6hT+mD/I118V9IgIVsj0z + UzbhO6CEVOFmczZrd6TcCeWBmi+7Ip7qau3FpA+ZLc/I3zCrt1cmYMrDhuorLD+T8gPyDpWc5c2p + rSg4uxnTwlDyKrEYrWmZZU4xmsyQYNXCV9xVoWV0PWWb7OyrIwQHp25Fe1fBcCUx/LnO5WwPr+oH + 6H2FeR2tkzaVLcgkjlSp4Bx6H1Hp716/8A2EouIj/DJuBx9OM96dTYyidn4pvcXcsSH5o1JUjsQO + h/D+Veat4TtdY8UW+o32xbOaP7RMc4CIind+GRn6V1/iBnfxReQg53O4OPqa5H4g6jN4f8OWWjRg + C41CA+ZIDysIfJA/3iAM+in+9XBTqSnW5InZUhGFLmZxHii8trzXpdSsXZ7W6AZFdcbQAAUI9sD8 + MGsLOaAx24PTOaUV7MVZWPKk7u4tFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB + RRRQAUUUUAFJS0UAJRRRQAUUUUAFFFFABSUtFACUUtJQAUUUUAFGM0U5cYoAbSU9sZ4plABRRRQA + UUUUAV6WiipLCiiigAooooAKKKWmAlLRRQIKKKWgBKWilpgGKSnUhoEJRS0lAC0UUUAFFFFABRRR + QAUUtFABRRRQAUUUUAFFFLQISloooAKWiigAoopaAEpaSloAKKKKACiiigAopaKAGkUwrUlI1AG/ + 4Kg1DVPElpp0F9dQ25JebypWUBF5PQ9+n416hrUyKzEYWNDhfbtwPXsPpXn3wumEXjMIQf3ttKoI + 7YAb/wBlrs9Wm8yQshA2glWY4Cr03H69qzsuYbZzt4/zFpGwT/ADz/wI/wBKoW1vfarc/Z9OtZrm + X+5BEXx9T0H1NSXDefKEg2En/lpKQB9eSAB7kgV6F4W0/wAI20UY1PxBBqE3BMJl8yFT7IY9g/X6 + 0PQEYFl8MPF13HvWxtwf7jXse78lzVbUPBmv6OcX+lXUQ/vhfMT/AL6XIr6G0SLQXgDaZBZBQMZg + iRf5AVvDGKm5SPkuJZImKcj1Rh/Q1ZFtHcrtC7sclM8j3U19RXWnWd2Va4s4J2X7pkjViPpkVVvd + A0bV4il1p9vJjjdsCup9iORSZV2j5hnjeFI/tDM0KkiG6A+eI/3WHcf/AKxWjYXYLeTOAG/MH3Fd + x4x8FPoEv2iBWuNOmO1gR8w9j7+h79D2rz2W3Fnc/ZS2UI328nse30z+WaloadzoUsYmOUGM+lTl + IbGCS6upUit4l3ySHjA/qewHcnFUdLvCQgf1wa5H4ma4Z9Qi0e3k/cWwDzY6NIRxn6A/qaSV2JmB + f6xe3VoVM8gt7i4lu2iD8biQoz9AuBXR/CvWJbHxfHppjWax1hTb3MTdOASG+o5/AmrE/gpV+Glr + q73IsL+EkTRzfIsiFiR2yXw68DspGM1zWn21h9ugi06XULu9Vj++gXy1HTG0fex1ySV+lbOOhCep + 6nq9tHZ3V1aC5mkWBeCIzIojzwGJ+7g8Zz/KvOPEE8TsUjmLqP7pY5HuTXbrLbJpj2Vrp8Wr3jDD + C0tQBH2+aQE5PH555rg9ajRZzBHZeVIOo37z9eOM1yThaSZ30J3TRzUlRGrLxndjgmq78cVsjGor + asls4ftF0ifwjlvpXSgYTFZmkQbYTMRy54+grSY4Ws5u7NaUbRK1weo9qpnmQD3xVidsk1UZsMG9 + MGoRt0LyjzPE103aMED9BU12u61mH+wf8abaLnVtTk/2sfmSf6VZK7vlPQ8VbfvmFNfuzmJSfJiY + dVYj+R/qa2Rd7UilB4Zc1kMpNtIpHKsD/Mf4VZtz52nMn8UZ4+laVlrcyw71sajyrLDuXHrWZM3J + plncFJNjH5TRcrsc1go2lY6k7q5B5uGpsh3c0xutIDxWyRg530Z0vhmAXum6lbJ/rgm8AZzjB54B + 4/x6ivSf2f41e9uxn5o33cHBHGOfUHn/ADiuC+GAR/F6wuMrJGwIIr0v4Pww2PjTVbQRmGZHdHTr + ghj09vb6HvUz7ELY2tRgDeM7tjjh3k6emTz+VedfGpCut6Ew+6dMUD8Hf/GvWdQtC/im9XH3kkA/ + EH/GvJPi3eJfQ+GZgcv9kkVvqGH9c15uCf8Atf3ndjP4C+R5utOpFp1e8eOFFFFABRRRQAUUUUAF + LSUtACUUUUAFFFFABRRRQAUUUUAFFH4UUAFFFSwwGbPOBQBFRT5YjE+CfxplABRRRQAUlLSUAFFL + SUAFFFFABRRRQAUUUUAJRRRQAUUUUAFFFFABRR+FFACUUUUAQUUUVJYUUUtACUtFFMAooooEFFFL + QAUUUUwFpaSnCgQYpCKeMUHmgCOinEU2gAooooAKKWigAooooAKKWigAooooEFFFLQAlFLRQAUUU + tACUUtFABRRRQAUUUtACUtFFABRRRQAUUtFAhKa3SnUxqBnafDWDbqGo6hgkwW3lr7F//rKfzrpr + +LERa4YrEvJQHHmN7+gHQfSsj4ZqBpmtytypMa/kGNbeoI0ga4mZF/2pD8qfT396z6jZy6TSterH + DBHcMxwsRDBM+5Vlz9ScV634YsfE32ZDbXnhiIAcQW0pyPY7Cf5mvILtFlJIdpVz1CEL+orX8N+L + brQJVh+wWd7blv8AVTQAt+DDnP5/SlLUdj6B06+1y3cJqull4/8An4s5xMo+qna/5Bq6WCaOeMPE + 4ZT/AJ6dq8qsfGfhu8eO21Jb3w/duBsc74B7YY4BH+8MV18X/CRaWq3MFxHr9gRnbhY7gL6qw+ST + /wAdqBo6us3VhLbQNqFqjPNCMtEn/LZB1X/e67ff2JqTTNXtNXtjNau2UbZJG6lXjburKeQaZq90 + trZK7hirXEMRKnkbpFUH8yKBkcps/EegPHHIstveQZjkHcEcMPQg4+hFfNviFwdOtJzgMsgBA/2h + kj88/lXrd74gPhWXUjIohiWSO7MCHIR/MjEyr7Mskbj/AHz714B4o1ndbx2kTZlZzIcH7uSSP50b + gF94pltdltY8z/xuADg+gB71k2N/FpV+NTuUi1DUNxkSKX541c/xyf3j329M9e4ObKhtf3ef3xHz + n+77fX1rT0fSVkkFxdkLGi+aQ/3VX+8/t6Dq305OiXKG5oMmr+KM6hrWoyGFAXBmZiqgnJIHRVPP + A5PYYyRFNrDTN/ZmjRlLduGbaFMvAySB0Xjpz6ksag1PVZ9duVsLFXFsG3fOfmkPd3P9OgpZ7mHQ + 7U29mVe6kGJJSOv/ANb2/Opbb3GkjYsvEur+H7Qafb3iIrNh5ViXMRGCSMdeo5PsB0rOurhpFkaW + 8MjzHLttw7D09eT/AC71z0Vy6ytKzfOxyWKgn8D2p8l0WztXGepPJNZThdnTRqKKYXEqZKxjAqui + NLIqjqxwKDk1esIgLi0Y93f9AKpKyM5tzlqbUcYijVF6KMCklOBUmKrTNWB1FWVuarkZwPqtPkbk + 0iruYr3PI+tBSNPSxvN3IershP8A3zn+tWG4NVdEfMlxEepVXA+nB/mKuyrg0SepMY2Vjn7mPbdX + KeoYj+f9KZp5CXhjb7sq8VbvRi7MnZcbvoRiqjREWCTIf3tvKY3x6HlT+jV1TXNE4oPlmMuIWgnI + 9DUrOJYge4HNEl0b0KFgZnxyRTPIMf8ArX2/7K9azjSnJam8q0IvQqvgUgR25VSR64q1wv8Aq4QP + 9puTQYJ5RuIYj17VuqVtzmdS7ujV8H6rbeH/ABHb6lePmGMMHjQZYggjjjGe/J7V6j4c8W+Fh8Qb + jxImszW0d0AZYJrJwFYgAnchYdRnkD+teJNGiH52z7LXT+HNdstEmXFxrFizYLmJ0dD9UIGRUuEG + 9ROUktD6W8201LV01OxuIrm1nHyywsGXOBkZHf26188/ENsPpcR6p9qwPQeewH/oJr0jRNU03VEN + 7omo2i6ggDNPbxGFyB/z2t+kierLyOory/4kmdvFzGe3+ynygfs4ORESWLAHuCxZge4YHvXNSwXs + q/tYu6ZtLGe0o+zktdDlVp1NXpTq7jlCilpKACilooASilooAKKKKAEopaKACiiigAooooAKKKKA + EopaSgAqWKZos4wQaipaAFkcyNuNNoooAKKKKACiiigAooooAKKKKACkpaKAEopaTOKACikzSbhQ + A6kppem7yelAElITjrSLFNIfkic/QVZj0m/l+7A340XGVtwo31qx+GNRk6qFq7D4Mun++5/AUrgc + 2XpN9dtB4GHG/e1atr4LgjI/dD8RS5gPMaKBzTxGTTKG4oxUwhOM4proR2oFcjoowRS0wEpaKKAC + iijmgQUtFFAAKcKbS0AOpaSjtSADTaU0lABRRS0wEopaKAD8KKKKBBS0UUAJS0UUAFFLRQAUUUUA + FFFFABRS0UAFFFFABS0UUAJS0UUAFFFJQIWkzSclgqgkngADrW1Y+GLq6w91KlpGezfM/wD3z/ji + onUhTV5M0p0p1HaKMQtTC2a9K0vwtosCCSSBrojkyXDYX/vkYGPrmpb3xloHh9DFptnb3NyO0CKk + a/VgOfwri+vqUuWnFs7HgHCPNUkkR/DOGYaZqnmwSLCZIyrMpAY7WyAe/b86v3omv5swRmfH/LZw + REvsoH3vwIHv2qXwt4n1LxbpV5FdiFfLuEJEa7QIipyvvkrjnn5j6VoXEDs3N7MSP4YwqqP0rqTd + rvc42kpNLY5a406eMESNknr8qj+QqPTYraDU4mvLb7RATho/NaPOe+VII/zxW5PbsBzIz/71ZssO + DnFLmHbQ9u0LTdFksVtGs5BbMuPKmneZCD7MxH6Vo2nhyTw0/m+HpmFmxy+mTSZibPeJjyje33T7 + dR5x4K1uVZBaySE4+6CevtXouq6neaHoratHAdQ06Nc3lngF0j/idD3wOSp6juMchKvsWNVt5WC6 + /oyldQiQiW3cbftCgZMbjsw/hPY+xqObW7LVvD2l3g/eadqpWCT1QyA7eexVwF+pz2qO31/Tki06 + /s7tZtH1B1WGQnPlSHOFyeQpw42n7rAAdcD5w1vx5cReF38M6dIyW8t3Jdyvu5UM2VjU9gBgn/aJ + HQcpIom+IvjFtV8Q3CpP5qxbYyyfdlkRdhk+jYB/AegrgVnaKYzsczE5BPY+tR52je3LHpVnT7QX + EyvKpdd21YweZG/u+w9T2rRaBuXNL08ykXVwFOQXRZPukDq7/wCyP1PHrTNR1B75xZWhdoi+WY/e + nf8AvN7eg7U7Wb8MfsUDAqMec68CRh2Hoq9APxqWyt00y0N3OP3rD5R6D0+v+fWpZSXQV3j0WxMc + ZBuJPvN/nsKwnZncsxJY9TT7id7iZpHOSf0pqJuNTsHxOyEVSakCVIq44p2KlyOiNNIYseTV9UMe + npOo+a3mDkf7JwD+oFQRJk4rXtlQxsjj924KP9DxRB3lYKsbQuickGPcpyCMg+tUZ2x+FNtpntme + xnPzx/cP95e1Rzyc1lKLTsawkpK6IHPzU+Mfdbup5qHOfwqeP5Tnt0NJ7GsSWKX7JfR3KjIB+ZR3 + U9a6GaFWUPGdyMNysO4rnX6ewq9pmpNaL5EqmS3P8PdPcf4Vm9rlcupW1IeTdRE/dkUqfwP/ANek + awlgsftEs0dvFcbCizKQZyrEZTGeAQck49Kua2Le6t43tpAxVvmGMEA02/1SzvNNhkksjNewAopY + BUQZyc45c7iSAeBkjkcDthJunE8yrHlqMz0WWVDyVUYBGcY+ppGWCDglnb0jH9TVFJpGdS7ZCMeM + YAz7VoXHzQBh+dFSvJOyLpYeMldjo45HQtGqR+n8TfmazZt5c72Zj7nNX7Ocq4U9DUV5GBOfesFU + k5e8dPsYJe6jNJKsCDyDkV9BardweOvhLp+vyRRte6ZIomLbSdpOxweOnIP4V4DKm016b8JNaKWO + t6HIQY54TIqEdeMH+laN6HNy2kdd4t+HWnf8IpL4l8OwnT9SsYlusW7lVdAAWwM/KQASCPTHevN/ + GmoPrGkeHNSukC3slvIkpAxvVWAVse5LfqO1fRfh8w6joEdqV+SWAxOvsQVNfMPiEPAbC0m5MNkq + ID/APMc/ryfxrDA1ZSTg3sx4qmlLmMVelLQKWvSOMKKKKQwooooAKKKKACiiigAooooAKKKKACii + igAooooAKKKKACiiigAooooASipYgpBzgmmPgOcUxDaKQmk3ikMdRmoy9ADv91GP0FADyaQsKmj0 + +8mPywt+IxV6Dw1fS/eG38KLhYyi4pC9dTb+C5XxvZjWva+CYhjdHn60uYdjz4FmPygk+wqaOzup + T8sLn8K9Ut/CcCAfuh+VacPh63jHKClzAeSQ+H7+b+Db9a0rfwdcyY3sfwFerR6XbR9hU6wQR9FF + LmA85tvA6cb1ZvrWza+DbePH7lfyrsdyL0UUhl9MUriuYkHhqFMfuwKux6Lbp1CirZlJppkNIBFs + LdOw/KpBDAvRaiLmkLUAT/ux0UUeYB0AqvupCaAPBooGbmriQ+1Pt1BFXEhyK0KIVhBXpUT22c8V + fEeKGUYoEYc0BQ5qDpWtPFuqk8GKYFainFStJQAUUuKSgAoopaACiiigBaKKKACiiigAoxRRQIKW + iigAoopaAEpaKKACiiigAoopaAEpaKKACiiigAopaKACiiigApaSloAKSlooEJSqhdsAgepPagDJ + /nUM02fkThR+tTKVti4Rvq9jpNIt1CmSCM7u8z8ce3oKlvNes7D5IiLuYehwgPuep/D865iXUbqW + 3WBpm8pRjaOAfr61Vrj9hzS5pnb9Z5I8tNWNDUdcv9UOLic+X2iT5UH4VQAPWnhNqB27/dHrXS+D + /Cw8RXryXk/2XTIMefOSBk9kXPGT+g/AHpjBRWhyym27tnW+DbuKw8IW/lxyt5srmYwxM5BzgZxk + 9AK0m1m1LbEbZ/10Vl/mK17Xwtpum2/laY8sUDncw8wtuPrnscelTGzdF8uaTzfRmHNTKSISMZcz + DcGDA91OajltCVJxWuYFjPGPwprRgis2zVGPYzHTNRiuMfKG+b6V7b4a1I3cXlRgXEBXkjkAEd81 + 41eQEISRx60tr4v1rSdJfTtPuFgjcnMyoDIB/dDdhyT6+9NMTiReL7my8EXvibwv5hl0m5VbywWF + /ms7rIZVHpyOf9kDvmvGd3JY8mtnxROJNS8oOXZRukYnJLHkknv2rErRaEgSWPNaFrqslnZPBBBE + JXyvnnJcKey84H1AzWeBk1q6faKIWu5RgKCVB9u9PZXYIg0uAS3ReQZWMbiD3PajUrtriYICdifq + adFL5FnLLnDyNx/n86z+ppD6CqMmp1GBTFXAqQetZtnRTjYXOOPzoU55/CmFqevYUjS+pbgHNatq + Awwe4rKhPNatp0J9qz2Zb2Kd5b/aCE3bbmL/AFbf3h6VmGVmJDgq68EHtW3coJVHOGHIb0NZ8yrO + Qs48ucDAkHQ/X1rpVqq03ORqVF+RXQMRkVai7dweMVHHJ5DCO4UL/dcdDVsRjGQcg81yzunZndSa + krojbgcH86RaGx07ihfrUdDUtwpuR48/eHH1qkqFjPF6kkD3K5/pV2M4A55ptvZ3d5rcVpYw+bPM + d4TIUbQCxJJwAAAck9hXTh6i5HF9DhxlO0lJdTHtVWSWWM9xkfWrtofMVoT1q7J4Qme4mttP1Sxv + dQgyZLOFmDnAyfLLACTAzwpzxwDWFaztBdKzZGG5BqZR5tUTTq8q5WjUS2Kt05BpL5cJk9a1AqtK + CPxrM1U4U47HFRGLbNXUMuQ7h710Hw/naHxbboCQJkeNgO+V/wDrVzJJrovAZx4008lCw3nOBnbw + efwrVrSxjKd2mfQfgG+kLm3mPzwyMhAB456fy/OvnfxO7t4q1NHJ/c3DQKD2VDsH6LXvunsul+P/ + ACcbY7yPd8p4LA4yfc8V5F8WtEbQ/iPqI24iviL2I+of73/j4cVzYFctWaNMZrGLONHSlpFPFLXq + HnhRRRSGFFFFABRRRmgAoqZINybi2M1ATgkHtTELRTd4pN4pDH0VHvFJvoAloqPLN0Un6CnCG4b7 + sLn/AICaAFyKM1Ithev0t3/Kpk0TUpOkJH1NFwsVMijcK1I/DGpP1UCrUXg69f7zEfhSugsYG8Uh + euti8DSn7zMauw+BU/iVj9TRzILHC76NxJ4BNekxeCoFx+5H41oQ+E4Ex+6X8qXMB5UkFw/3InP0 + FWYtIvpekRH1r1qLw7An8Aq5HpFunYUucNDyeHwrey/eOPwrSt/BLtjzC5r1BLO3TooqULEvRRS5 + mBwdr4KhXGYgT71sW/hSKPH7sD8K6XzFHQAU0y0rhczotCgjH3Vq2mn28fYU8yU0uaAJBHCnRaXc + o6KKhLGkzQBMZKTzKhzRmgCQuaQsaZmk3UAPzSE03dTS9AD80maYXpC1AEmaTNR7qTfQBJkUhNRl + 6aXoA8hhXaKvwsMVD5fHSnpleK0KLGMimMlSx8ikfikBVkjyKqyKOc1dY5qu8RbpTAy5hzxUaoTV + 17cg8imiLb2piKpQgUyrkiYFVWXmgBtFLiigBKWiigAop8ab2wTxTpYhGAQSaAIqKWigQUUtFABR + 0oooAKKKWgBKKWigAooooAKKKKACilooASloooAKKKWgBKWiigAooooEFABZgqjJJ4FIav6fb7lM + pHJ4X6Um7K5UY8zsULg+WuwHnuap1bvVKynNVcVjc3kraISrNtAuxriYfulOAveRvT+p/wDriiys + 3vbpYVIUYLO56Io5LH2AqW9uEmlCwqVt4xsiU9cep9z1P1qoK7M3oV3YyOWb8ccAe1ej/D1v7U8L + arot5CBZPKGinA5WQj9cbVP/AOsV5wVYusSDcxOAB3Jr2zRrEaLpKaVtAe2OJGA++Ww2788j6CtJ + 6EMXRbgRWTrdrPFLbt5VyiHIRx3x1wRgg9K2BLbXKD5WdT0YMeaia3SWdLhJGgnCbBMoyGX+669x + 6HqPWlawVW3MHhY/xwPhW9//ANdc0nqaRGS6YG+aCeWFu275h+IP+NH2aVYx5hUuOpXpUywzxfcv + JGH/AE0Ab/CmyTTxjLxrIvcpwfyP+NZtlooXK/L5UpCh+FY9M1xGrX7WlnNMq/OhKFf7rdK9Alhh + 1K1kijYSI33kBwyn19Qa8k8X29/pepT288pliuMMHYYPHrjv0+tVHVjeiOZd2kdncksxySe5poop + 6Dqx6Ct4q7MixZ2rXVwkC9Tyx9BW1q00MMYtEGHK4wOmMH/AVJotqLbT3u5Bh5Ocn07VhNP9pv2k + PIJ4z6Ur80ivhiVpHLYHYdBRGueTSOu2Rl9DUqDAqZMqmrsdQeBRTWNSbt2Q3PNSA1F3qUdaGTFl + uH71a8HEBPrWPD1rYTi3X3rJm6I3PaoJFDphhkVM9RGsuZp3RtypqzKrRNtK48xPQ9qiRZYifIfK + /wDPNq0UTmntbpLw2QfUd66FiIy0qI5ZYWUXzU2Zv2obsSKY296mQg4PBHtUstk+OCsg9Dwf1qkY + DFJhWaJ/Qnim6MZr3GJYicNKiNWEZIFdL4i8NNp3w9s/Eds00Ny1w1tKVYrvhde49Nyt9Q/Ncvpd + zHb3MbXyu9uTy8OCy++CefzFeseJfEGj+JPh2NE0YGaaaSK3igXAlRgdwJU9jsPI9a5pQq06i00N + p1adWm7PU8u8aDyvFCanauYvtsaXsbxkgox6kH13KT9apeI8XepRXwRVlu4FmnCjA83lXOPdlJ/G + u21TwQ80Vjp11q9nJq+nWsjfYrdXkNxHlplCsVADFWf5Tzhc4PSuAvZvMS2ychYQufX5mJ/nXXTs + zhkWLS9wyqeoqLVpQyrj+LmqMO6WdUTkk9q0b3S5QV+0XEED4+WKR8N+I7VpZIV2YtanhvUTpfiG + yusnasoDY7qTg1QuLaW1lMcq4PX60zBGDUtCPp3xJGLbVNB1IMdoJHtzjn+Ypvxo8MQeIvA669bg + fbtKXflf44SRvU/T7w+h9aw9S1E3PhXw5F5+6ZkDYzzgAf1NehQNZXOgf2Lf3cMD6naNDEJZQDJv + Tb8ozk9f1rCEOWfMjSVTmgovofIyHIqSlvbK40rUbnT7yMx3NtK0MqdcMpwf5VFvruWpzWJKM1Fv + z0p6QzynCRMfwoCwu6kLir0GhX8/8G0e9a9p4NmkIMjE0rhY5jzPSnJFPKfkjY/hXotn4OgjxmME + +9blv4dgiA+QD8KXMOx5fBp2ouoCxY+tWovCl7KcscE+gr1aLS7ePsKtJbW6dFFLnEeXQ+CJW+87 + /lV2LwGp+9uP1r0oCFeiineYg6KKXMwOCh8CW46xZq/D4Jtlx+6X8q67zwOwpDcntSuwMGLwnbp/ + yzX8quJ4ct1/gFaBuW9TTDcMaAIV0S2X+FakGl2qfwrSmZz3ppdj3pASC1tk7D8qXy4F6LUO73o3 + AUATfux0UUbgOgFQeZSGSmBY30nmVWMlJ5lAFnzKb5lV99G+gCffSbqh3H1o3UAS7vejNR7qN1AD + 80U3NLmgBaSiloASkJp2KNtADCTTSal2UeXQBDSVP5dJ5VAEGaQmpzEab5RoAgJpMmp/Jo8mgCvz + Rg1Z8oUvlgUAeVhadtFSFcUzvVlEi8CopTTi2KiZg1ADKepGOlOVARSNHjmgRDKgI6VVbrVtumKi + MWTTAryLlaqsnWtAxHFVpFxxQBSYc02p5EGKhNMAooooEOUlTkUM7PjJ6UlFABRiiigAopaKACii + igAoopaAEopaKAEopaKACiiigAopaKACiiigAooooAKKKWgQlFLSGgBY4zNMka9WOK3Y1EeVHRRi + qOjRb7lpCOEXj6mrrNtilb/pqB+FY1Ja2OmjHS5k6qmJjWcBWzq6jKkdxmoNGskvL1nn/wCPW3Qz + T89VBHyj3JIA+tQtTSeiuSSr/ZujiLAFzehXc91i6qv48Mf+A+9ZygDLHoo4+tTXt29/fTXUmMs3 + AHQfT2qKQbEVPxP1rqgrK5yt3N/wNow1fXi8wJt7aNpHP+0Rhfxyc/hXpumzS3MSWV5MINWtAIi7 + Di4T+FvfIH51ieALRbDQ1aQbTejzC3oMlV/9Bz+NdSY4Lwm1vExMgwOzD0KmspsS3FVb6E4eNXHq + hq1HK2P4k9R0qsqXdkNsrG4gHSUD5lHuKsxypKu5XDL7Guds1QrMcfeA/CqFxcSLkAA1dkdVXlc+ + 9Y19OEySwUYzUloxNW1SOEs0kJDqOGU7T+Yrz7W9em1l9rRqkStuXks/THLHrWx4m1eN4jHE+6Ry + QdvQVyUgwxH4flWsIq1yZPoMq3aWxurmK3Gfmb5sdgOtV4xySRnH866Pw3a5mnumHCDywffqf6Vr + fli2Qld2JfEU/wBlsVt4zgv8pArmbcYlX1OQPyrQ164+06n5anIT5fxrOD7ZlZeiEEfhUQ01HJ3Z + JfJ5d2SOjYYU0dKu6jGHt1lXojbT9DyP0qihyKdRWZdFjieKYac1MNQjSbAdalWoalU0MIMt2/Li + thuIlFY9r/rR9a15Dwv0rCZ0xISc9TzTT94U8jmmkc/WsDdEiCphzUcYxg1MPUVDLQje9NIXbgqC + vow4NPOBTcZODQnZ6BJJrU1tC8KweJ7sQQqbF8FfMjJZSx6fKewGc8+lZWs6Bf8AhrxKNNvSn2hH + RkljJCupPBB6j0PoQa9J+Hoh02wvdWuRiK3Q7f8AaJ9PfjFLqmjQeIPB73eo7lv577zIJl+9Ezkb + vqu1c4/2R0rSljZqpyy1TOSthY8vNHdHEeH7WTVNdVPCNtNFdnc8gutjG1BGzKv1YAO3b+7wSM1y + uq262009umdtvcSQjcOcBjjP5GvWdO+GOnQMsp1O4eRmDmXygH9wDuI5z3BriviHo40zxVqCxKFg + ulW7hCqABnhhgcD5g3Hpiu2nOLlZHFKDSuzC0wf2dpdxqxAMmfJt89m6lvwFYckjyyNJIxZ2OSSc + k1v34/4o3TivT7RKG+vH9DXPVXUlmzeWjjQ7GVwS2Dz/ALJPA/z61msDsXHUcV1ejyLq3hWe0wDc + 2XIB6tGe/wCHT8qwfIVCW7DimncdjfHiVpL2yjb5UtoRGMcAHOT/AE/Ku0+J1muqeBfD3i6zu2D2 + gSzePPAOWIZT6gjn2I9K8m8tvN3HOTXY+NNSksPBfh7woCfMCnULpfRpM+Wv12nP/AhS2E0L400q + 41vxnd6lCgWO+jguvxeFGP6k1Xs/BTNgyEmvS205LZLWOYfPFawRnPX5YkH9KcPLQfKoq09DNnI2 + nhCCMD92D+FbEHh+CP8A5ZqPwrXMnpTSxNK4ivHp8EYxgVMqRp91aXBNOC0AAYjoMUuSaXaKXAoA + bzS80uQKaZAKAF5o/GozKKjM1AE9NJqAzUwy5pAWSwpC4qr5tJ5lMC0ZKaZKrb6QtQBYMnvSeZUG + 6lzQBLvpN1R5pc0AP3UZpopwFAC5ozQFNOCH0oATNLSiM04RmgBlOFOEdOCCgBgpwFOwKWgBAKXF + GaM0AKBThimbqTdQBLxS5FQb6QvQBYyKNwqvvpN9AE5YUhYVBvppegCwWFMLiod9N30ATF6aXqLd + SE0Aca+i3Kj/AOtVV9KuVP3c16YbeE9VqM2cB7CnzDPL5NPugP8AVmq5s7gH/VNXqrabAewqM6RA + ey0cwHmaQTDrG35U9opMf6tvyr0f+xoT/CKQ6JF/dFHMB5i8Un9xvypqxuD9xvyr0/8AsKE/wimn + QIT/AACjmA8ykRwPuN+VZs+8N91vyr10+HYT/AKjbwxAf4BT5hnjzliPuH8qrkNn7p/KvZj4VgP/ + ACzH5U0+E7c/8s1/KjmEeNZI7Gjd9a9kPhG2P/LJfyph8H2x/wCWK/lRzAePb6N9euN4Ktj/AMsV + /Kq7+BrY/wDLBfyp8wHle+l316TJ4Btz0ix9KqSfD9P4d4/GjmQHBbhRuFdhL4BlH3ZHFVX8D3i/ + dkJ/CjmQWOa3CjcK3m8G6gvRh+VRnwjqXbB/CndBYxsijcK2P+ES1P0FJ/wiWqegougsZG6k3Ctj + /hEtT9Fo/wCES1L0Wi6CxkbhRuFax8KamP4VpjeGNVX/AJZg/jRdBYzMilzV1vD+qJ1tyfoaibR9 + SXrbPRcVivmjNSHT75ettIPwqIw3CfehkH/ATTuFh2aKjyw6qR9RR5lAWJKKZvFLvFAD6KbvFG4U + CHU1qN1J99wo6k4oA6DSYfLsQx6yZb8O1KI/MtrgDqCG/WrUYEaJGOirtqK1IErg9GGK5JO7ud8V + ZWMnVeFTPZRTpz/Z3h2G3HE98fPk46IMhB/6E34irV7ZvfX9tax8GaQR5/ugnr+HWqOtXCXmuSmE + Ygi+WNfRVGFH5AD8K0oxuZV30KUafOB2UZNNdXlnSNAWd2wAOpJOBUqcRs/97+VLb2s15q1ta22f + PkdVTHY+tdktEcy3PaLDS5bHRrDT7jyxcwQCI8/JJgkkZ9QSadtzi2mG7b91JTtkT/dbuKgh17yV + S111BEzAEXOP3Mp/vZ/gPqDxnvWyPKmiVX2yxMMq2Q2R9f61xTKiQwSzw4VZg4/uy8MPx71K8cMp + 37DFJ6oaa1myj9zICv8Acfkfn1qIlkBEkIH0NZM1Q2dWjGSUkHuMGsPUfIY7XjBDqc5JOK1JZV5A + Ax9a53Up1RWkPAx69BSLRwfiWeObVhFGoWOJMYA7nn/CsaU/vGqeWU3N7LO3PmyHH0zVZvmkJ9TX + Ra0bGL1ZNF8uG/ujdj37V3MUSaToMe8crH5j+uTya5zQbMXmrwxOqsiMGJPQhRz+pFbPjC58qzEC + kFpWA684/wA4/OlVeqiXDRNnHF2kaSd+WYnn3PWhUwufWnBA0ixj7qDn3NSMKU3bQulC65mXLUia + DynIw48sk9iOVP8An0rMAMcjIwwQcEGrVs2JvL/56cD2bt+vH40X6bwtyo5PDj0Pr/n0NafFC/Yz + fuVCu1RnrS7sim1mi5yuAqRDzUdOU0MIPUv2fMorWflRWRZH96DWrmuaodtPUT2NM/ixUnSoz/rB + WJuWUHFSgDAxUcfAqXjb71my0MP0zUttA09xHCg+Z2ApgXmun8G2Mc2pyXVwwS2tE8yRyOB3/T/C + pk7IDc1CSHTNNs9EXl5sSuo9B0z+prT1a4Gn6d4ftpEbZJ5sz4HOMbQf/Hz0ri7O+fW/Es95g4kk + CRL/AHV7D8q734nacYPDuj6hGh3WbrH9FYc/+PKv51NCF6yuZ4mdqWnUu6bcwyW6BLmN9ox1wfyr + kfijp6XOl2N8hVnhlaFsf3XXv+Kj863tBuILrTYbi1iIVh8wDng9xVD4gXdnF4RlilDrczyRrbDO + cuGBJPsADz9PWu2npVSRxT1hdnk+lompaNqGlf8ALZD9rt/fAw4/LB/4Ca5yWF4mIYEVpRS3Gman + HdW5KSI/mRk8/gfbsR9a6W/srXU7JdUsY8QScSw9TC/dfp6Gut6M5lqc/wCFZpLfX7eRchDlZPQq + R0q1ewLBczRA8BiB+dS6db2lrdLcLI/yHJXFQ3M7T3LydSSSc0dRpWLWiacl9rdpAULojGWVV6mN + AXbHvtU1p+E9HufG3iu78Q6wD9hhl+0XTAYVjn5Il+uAAOwBPaun+CGnpfeOWuGUMtrbyOcjj5vl + /wDZjXa+I59MtZf7I0O3httPtnIKQLtXzM4Zj688c9NvHBpdSJMy7u6e+u5bg53SMWKf3fp6ioBU + R69qcDVGZJRmmbqaXxTAmzS7wKrGWommoAuGYDvTGnHrVIymmbyaALbXFRmYmoMk0uDQBIZCabup + ApNOCH0oATNGTTxEfSnCA0ARUVYEFPEHtQBVwaUIauCAU4RAUAUxGfSniI1b2LS4AoArCE+lOEJq + xkUbhQBEIaeIhS7xSb6AHCMUu0UzfRvoAfgUcVHupd1AD8ikzTc0ZoAWkozRQAUlFFACGkzSkUhF + ACZppNBFIRQAFqaWoKmk2GgBC1JmniM0oiPpQBFS4qwIacIaAK2DS7DVoRAU7YBQAu6jfTaKQx+8 + 0u80yigB++l31HSZoAm30u+oc0uaAJw5o8yoQaXNAE++lD1ADSg0AT76UPUOaXNIROJKXfUANLuo + AsbwewpfkP8ACKr7qXdQBMUiPVRSGCE/w1Huo3UDHG1gP8NN+xwelG6l3GgBPsVv6Ck+wwelP3Uu + 6gBn2G3/ALtH2G3/ALop+6nBqBEf9n25/hFJ/ZluewqbcaXcaBlc6Tbn+EU06Lbn+Fat76dvNFxG + c2gW7fwLUD+Gbdv+Wa/lWzvpd9FwOam8H20nWFT+FZs/gSzf/l3X8q7kSGneZ607sZ5pN8PLU52x + lfpVGX4dqPutIK9a3KeqijER6oKOZgeNP8Pph92V/wARUDeAbodJT+Ve2eXCf4BR5EB/gFPnYjw4 + +Bb0dH/Son8J3em7bucjyo2GeO+eK95S1tyfuiuU+KAis/DFqkagNPdAE+wUn+eKHN2KgryR5qkm + 5qiyUlzUMMnOM1JPwN1Ys7UXBKttaXuonG6GAxx8/wAcny/+g765FZlxKxPzvXU3On3Vx4Ziu1hM + tn9ofzpI13NCygABl9MHOf8Aa/PA/s2SVS8AE6DqYTuwPcfeH4iumgvd0OWs7yG5VoI1BBycVu+C + YzL41t5B/wAsBJJz2IUgfqRXN+QwZcEjPf8Az9K7j4c2TvLql5KD8ipAGx3J3H/0AfnWk3pqZJHo + b2cVwhAXdE33lx80TdwQex/I9ax28PT2RZ9MuJLXJyVQb4W+qH7v4VpK8krDeSs6jAlTqR7juKnW + 5uYjiaPcP76DrXJJsuJjpqup2Y23unSSqP8AltZtvH/fJwwpJfEmkOMT3Rgf/pvE8ZH5its3Ecn3 + lP1GKrzJC6nczEejJms20ao5261rTNhMWp2re3nCuS17VopbOWO3nWRmGDsOQBXX3w0pCS9kGYes + QFef+I9UE8v2WCJIYR1VB19Mmqik2NuyMePgJ7KzUyFS0gABLdgO57U8/KJD7BRWppem3Ek6WtrG + 0t/PwFQZ8lD1J9Gx+Q9yMb6J6mSVzovCNgsFvdXhUsv+rDduOWI9s4H4VzPiK/F7qz7CdkXyj696 + 9F1h7fQvDQitwAsSbFyMHI65Hrn+deSqDLLycknk1ipc0nI0a0UUWrZP3ZY9SacwqwiYjFRutZ81 + 2dcY2jYqOKurKsqbm5WT5ZAP73r/AF+uaqOKSFwjlWOEbgn09D+Fb05WZzVo3IpomhlKH8D6imVd + kUyr5TjEifdP9P8ACqXTg1c42ZgncKcKbSioKTsXbM4etUHgVjW7YYVqRPlRXLVWp6NLVE+eM5qP + /loKd+NN/jFYnQXE6AipR0qOPJAxUoB6CsmUCg9hk9q2L7UU0zw2ulWx/e3eJJ5Bx8vZfxPP0A9a + zB+7XOenJrOuZXmnMkhyTwPYdhRGPMxS0R2Xw8szd61Eu3IUj8ycD9M17f4p0lNc8OXWnjrJGVXP + Y9VP/fQU15t8LtOEDJPIMHHmMT+n6fyr1W3l3F8c55xnjHT/AA/OinL3m0YV1sjxTwDeSp9osHyk + sZ37T6ZwfyOPzrkfGXiE67rck6tusrTMNqB/Ec8t+JH5AV0HxAhufC3ii+S0zH/aG/yHH/PN8FyP + odw/KsPwVof9sa7HK0cxstPKyHyk3F5P4R6ds88ce9epBJXqnnTk7cgaz4VvNOsdPnvIiIJoEzKv + zCKXurY6df8A6/FXNN0uSysJ5UcxiWPCqOVfoRj8a9n0lPPM5vbP5NpRLd8FCD1ZyeXbgdsD9ao+ + MfCGlaDZWt5ZPdWM08wSQWk7ImMEk7c4OMdsVF5MLpbnhj6Xcu5Jj257Y4qF9HuQdoQlm4GBXqtq + 8tvJkXN4WUBgfO3bhzyMqatDUrhmbbO2/oCVTIzyOdv+c0e+DnEr+ArZvBnhS9vXBTVdUxHbp91k + iGfn9sknHuB2qBw20FmLYGAx/iHTBHZh098fmks0k0jSSu0jPwxY5JppY4IJPPU+vvWqVjKTuxQa + N1M5pME0yRxeomen7CaPKoAgLE0BCatCECniMCgCqIj6U8Q1YwBS8CgCEQ08QipM0bqAEEQpwQCm + 76N9AEgUCl4qLeaN1AE2RSbhUWaM0AS76TfUeaTNICTfQWNR5pc0AO3Umc0maKAFzRRS4pgJmjOK + XFGDQAZpaMGjFAC5ozSYowaAFzRRtNKFNABmjNLsNOEZoAbRipBHTglAEWyjy/apsCloAh8ql8oV + LRmgCMRgUoUCnU00AGQKQtRim7aAAvTdxp2yjZQAuKTFPxRikMQCl204CloAjIphFTEUwigBlFOI + pMUAJmlzSYooAcDTgajzS7qBEmaXNQmVR1NMNyo70DLWaUGqouQakEwNAE+aXNRCQGlDikBJmlzU + e6l3UAPzRmm5p1Ahc0bqSlxQAu6lDU3FGKAHh6cHqLFHNAE26lDVBk04GgCbdS7qhBp2aAJQ1Luq + LNLmgCXdS7veoc0uaQEu+l31FmjNAFqJ/mFcX8XZCNL0dM9ZZD/46K6+IneK4n4utm30ZPeU/wDo + NDLp/EjzSF/mFXwPMjZe45FZKttYGtBZNqrIOnQ1DOxGp4Y1y40bU1iAMtrcuqTQ5684DD0Iyfr0 + Pt011pfg3XLsiO6gt7zPAD+RIG/kT+dcfZxq97BIOzg1kauub6Q+pP8AOlHQmcOY7fUfh9q8IMlp + eJdR54S7jySP94Z/pWr4Rt20XTpYdQtxC9xM0p2HcoxhfU+hP415tp2v6xpJH2HUbmFR/AHJX/vk + 8V7Fpr3upeGdL1C52TzXEG+UEBCx3HBBHAOMfWtVUk9GznnDlJ3tVmQSQSZB5BBpqzXMPyyEkepF + VlEdvJujme2YnlJRgH8elX1laReSrn1BrOTCKGGUOPmQH6VSuVtyCfmU/wCyatyDByUI/Csy+u47 + ePc7xxD+9If6VBojD1XylifM07AjA7c/WvMJSst27J9wvxz2rtvEF4sllNJBMXYqQXdSOPQelcTE + hEe89Af6GtaaJmTWsbTTRxr9+SQAZ9a9f8N6NbaJYrIF/evgySNyWJ9T/kV5LpziK+tXP8Myn9TX + pGteK7fTtI2gh55FISMfzPtRVbukFPYwviHrHnNFYI4Y/ekx7H0PTmuNtI/nzTZZZLy5e4lOXc5N + WrZcVD92NjenG75mW1XgVFInBqwoyKbIvaskbszJBzUDVbmGCaqsK2iY1ESK+9AP40H5r/8AW/l9 + KbKvmAyD7w+97+9R5KsGBwRyDUu4HEijHqPQ/wCFdEXzKzOOSsyvQKkkQAb1+6f0NMFQ1YaJIzg1 + oQSYxWeoqxGcGsZq520W0aqNuHSgD5sCorc57/Spx/rB61yNWZ2otxLkZqYDmmxgBc0+MhnrFssJ + /liC+vNZ8IWS8QP90Hmp72bAPrVC0lDXiL2zzWtOLtcibPdvCEgjgMagcxnvxnH+Fdra5jkVFH0B + Prx/hXBeDpERUaRjjGCO9WPiH4nHh7wu4gkxf34a3t1H3hkYd/wBH4kVjTg3LlRlWlZNs8x+IviR + fEni+4mgbfZ2i/ZbYr/EATucf7zZx7Yr0Pwpo7eH/D0Nq0f+lS/vrnH99v4fwGB+Brh/AHhSa9Mu + uzRA2OlsrDcOJZgRhfoudx98e9eijULct89tuP8AsyMK9Sq0rQj0PMivtM39Bu1h1BWulJTjYoKh + c+rZ6+3/AOqrnxQZW0awAIObnIx3Gxv8ax9G8i81GNLXSftEyncVkmYqo9W7AfXP0rV+INldXNnp + rTbMq7g+WpABIGBz9DRAmZ5vG7IAFPQ5HsacScgjg1cOlyDpmmnT5RWpmVyQxJxjJz/n9aTAqc2c + o7UwwSj+GgBmBS4FBRx1U03kdjQA/ijNMzSZNAD91G6mZozQA7NGabRQAuaMmjFGKACjNLil2mgB + KKcFNOCGgBlLTxHThHQBFijFTiKnCOgCuFNOCGrAjpdlAFcR04R1PtpdtAEAjpwjqYClxQBEI6PL + qbFLigCHy/al8v2qXiigCLyhS+UKlooAj8sUuwU7NFACbR6UYpaSgApKWkoASilpKACiikoAKKKS + gBaXFJmjNAC4FJijNJmgApaTNKKQxaXFIKWgAppFOpKAGEUhFPIppFADDTScU8ioyKAGM+KgkmPa + pylN8od6AKDvIx4pFilY81oiOMU8GMUAVUhbvU6xtUvmoKcsqGgBqoRTgDUqshp4CmgCHkUoJqYo + DTSlIBAaeKZjFPFAhaM0tJtoATfigSCgx5ppioAkDg04EVEIyKkAIoAdgUYpKM0ALilpM0ZoAdSU + maWgBc0UmaM0AOFLmm0tAE8P3xXC/Fw/Po6/7Ep/Va7iE/MK4X4tf67SP+uUn81pM0p/EjzF+DVu + zmBJjfoeKrMNwNRKxRwal7HWjf0wmLUI4m6M3BrP1RP9Mce9T29xhopf4kYGpdXi/wBLcgcE5rNM + uxjbK9f8OeM/D8vh/T9NnuzYXdnbrETOh8t9o5IYZ4+uK8o2U9YzsncA/JA54HTjH9auGrsZ1Ypx + uz07UvHXh60dI0u/tTucEQglF9ySOn0zWncRvFCs32RdrDcjwurow9iMZ/CvDpTDGIN8W/dG2QDj + kk4Oa3NDXVtItWu49W/s0E/LDMCVk+qgH9RVzhbZnNFnfpqUl4IhEkirMxWIdGkI64z0A7k/rTLW + XS7q5mtDtTUIQd6Owdh9D3/CuGuvF+tvdSXCXFrLdGLyvOhjbciDrgEAD64rFsNUbT9YjvcvKc5k + JPLEj5ufqTUcjsXzGt4rdxO0bEhWk2oMcYHJP54/KqeqWi2kEKqyktEWO0g9/wD65p3ijW7fWLiE + WsZWOMcswwWP0rItySso6/uz/SqhfQUmtQYkR7lOCCCD+J/xFRySyTSb5XZ2PdjmpgMxkeoYf1/p + VZeorSe9yIlqJeKtwDFQRjirMfAFcsmejFWRbj5FOdc02I1MRlalAzMuV5qiw5rXuo/lzWWy81pF + kSVyAihG2NnGR3HqKkZc1GVrVM5pwZOAOCPmRvX+RqKSPy2GOVPQ0RPsJBGUPUD+dWcLjY2Crc5H + f3H+f61tpNGOsWQpUyDmo2jMLgHlTyreoqeIZIrlmrbnfSaki9arU3AmpluMLTGlxMa5HqzrRoF9 + q4pUkCRlieaz3uOgpjzkr1qfZsrmI7ycyMaqwyiKdXPQGnSHNVnIFdcIq1jmqS6npfh/xTBBFma5 + jjjjBY5OMAdeOprMmm1Hx94thkgjIe5bybCJ+kEK/ekb2HJJ7nOOlcnpditwWu7sEWUJ+YA4Mjdk + H+eBX0B8PfDw0W2e+vkVNTvFG8Kv/HvGOViUdscZ98DtVKEaKdTqzknVlWagtjsLDRbPTPDcOgWo + ItUhMO8jliR8zn3JJNedQR7GIv7h0CsVMUHLnBwck9K9FknZWAyM5yMelcPrEaW3iO+Vdo8yQSj5 + ScbgGP6k1wYeo5VpJm9any000ei+DL2waw8iy09rNFP8bAtIfX1JqXxndRx2NvbnBeSTePYAf/XF + Zvg+fT7W08zLG5x+9nm+VUX0BNQ+Lr/T9RltZrG/t7lo90ciwyhwvQjOOnevSjscEjIDIRyBS7Yz + 2qqHpwemQWPKjPamm2jPpUYkpwkoAa1ih7Com01T2qyJKcJKAM59KU/w1A2kjsK2RJTg4p3A59tK + I6ZqI6bIOma6bKnqBSbYz2ouBzBsZB2pptJB2rqfKjPamm3jNFwOX+zOP4TR5LDqprpjaxn0ppsk + PYU7gc55R9KcI63jYr6Uw2A9BRcDFCU4IK1G0/0FRtYEetFwKIUUu0VZa0cVG0Mg7UARgClxQVYd + QaTNMB1HFN3UbqAHUcU3dRupAPozUeaM0wJM0ZqPNGaAH5ozTM0tADs0ZpuaXNIBaKTNGaYDqKbm + lzQAGkozSZoAWim5ozQAtJRmkzQAtJSZooAXNFJRQAZpKDSE0AOpabSikA4UtNzS5oGOopKWgAxR + ilooAaVppSpcUUAQFKidDVumkD0oAoMrds1EUkNae0elJtX0oAzPKc1IkTir+0elG0UAV1DCpVY1 + JtFG0UAKrmnhs00KKXFIB1LikFKKBC4pQKKWgBaWkpaACjFFFACYpMU6jFADcUU7FGKAG0U7FLig + BlLTsUYoASilxRigCSL7wrivismf7IbsVlH6rXaR8MK5P4ppu0nS5v7szp+a5/pSZdP4keTyKUao + zzVyVN8e4VRZtre9Sdhbgfj/ABrZuB9otLaYclk2n6jisBWyuR1rc0eT7TYTW5PzRNvH0PX9QKx6 + mz2KbR4PSqt0g2K24ggMAAcZ45z+H861pIuvH4Vj6j/rUjG4ybTtAH97IP6AfnWtP4jCq7QIkku/ + tcRsmlSVYwS0IO4d+3NaoltJxuuUv57s/wDLWC1EbA++D834jNZqSwreES38tqkJwnkIWZm6E9Rj + 65q+15azRMTdaveKB8xEn3fqM1tN3Zyx2Mq/a7gcwz/a1jblVuCy5Hrg1SmXZIV9AAfrjmrdxMs2 + 2JHZrcvnLFsrn1BJGfcVUl5mc+rH+dIBlWLQZm2/3lYfoagqe04uov8AeFK5SQqHG1j2OarsuyQr + 6HFWgvBHoahnXlX9eD9R/kVpPYhbl5F+Ue9SrxRAN1vG3tT9uBXC9z0lsPiPNXBygqghw1XozuQi + mgY2ZcoPpWVNHhzWxJnb7YqlPHmi9gSM4qcVGV9quGMdhTGiI5xVKQShcqFKmhYKPLf7mcg/3T/h + /n6u8ulEdWqlncylQ5kWhCroY2H4A85x1H+efyqFUaCXy3wcjKt2YeoqaBioAY8DgMegHofb+X8r + 0lussZjYEMOSB1Q+o/w7/ka3klWjdbnPGUqE9SGNsLxVKeTEmalbzIGMcgGcZBHRh6iqNw+WrijB + qVmd0qi5eZDjMWapQxIqkp5qwr8Vo4kQnfcdIeOtLZWLX0+CdkKcyP6D296WGB7k5zsiB5fH6D1N + bMJgt7bc+Y7WM8KpG6RvQep9T0A/AHWnCyvI5q9W75Y7nVeFtMSe4ivZIwtpZNi0iIyHk6lz67ev + +8R716fYX4aNc4OckZzx75FeG6f4ouBcoH2xwRkbI16RAHjHrjJ69cnPJzXfaZq52DJ4bGCvQ8df + 51yYqblK/Q6MNS5Y2e56F55lkxnOOcZ7/wCf515V8W0mXxTYypqpsY7ixXGWcKzKzDnbntiu7sro + TKNv0GOh9q4P4u2T315pMkckI8q1bcHkCnb5h5GevUdOea4sHL/abHRi42oGJoWnaRdyGLV/GViH + RslJFnZZF44EmAAeT2P49vUrTTE0e0gsI2idYokAkhOUkG0EOD3Ddc+9c/8ADK5sH0WWxurtrVNi + HYY4JosM5Qtkwts+8Plduck9MGulGlxaRJcQW8tu9q9zJLbC3cFEiYKQoUcLhi/A45zxnA9tnjMe + DS5popakQ7NLuptGaAJN1LuqPNKDQBJupwaos0ZoAmDU4PUGaXdSAn30b6hzRuoAn307fVfdS7qA + LG+l8yq+6l3UAWN4pcqe1Vw1LvoAn2oe1NMKGo99KJKAEa0U9KgaxB7Va8ylElAGa9h6CoWsmHTN + bO8e1B2nqBTuBgm2cdqYYnHUVvmNDUbWyH0ouBhbT6UmK2mswe1RNY+1O4GVS1fNlUZszRcCpRVk + 2je9NNs4oAhoqQwOO1N8ph2pgNopdjelJgigAzRRg0lABRRg0YNACUUpBpKACkpaKAEoooxQAlFL + SUCCkNL1pDQMWlpKUUhi0UUUCFpwpopwoAWlxQBS0DDFGKWigQ0imkVJTSKAGYoxTqSgYmKMUtFA + gopaKAFoo6UZoAWlpuaUGgB1KDTQaWkA7NLTaAaAH0UmaTeKAH0UzzV9aBIvrQBJijFJvX1o3CgB + aXFN3AUuRQAuKTFIZFHU00zIO4oAkxRikV1bvTiwHegBVHNYHxGg87wYJAMmG5RvwOV/qK31YZqn + 4m8ifwnqFvJIql4iUBPVh8wA9+KT2KjpJHiKHHHY1VuoQ+WXrVvb+7JHaoTluVrO53pFOByrbWHF + aenTixv0mb/UsNsn+6e/4daoMFZsEYPrV6CJmQgjIIrKcram0FdWOhubbax7jse2K5+4g83XJ4FD + SmJMOFHIwPmA9+q/U1r2epi2sJIrkM0kEZeFwuQcfdB/HArLFp9h0yKFrqG2lucSTzO3KLwVQAc5 + OdxA9VzW1HuclfS0RPtVz5rG8vbSyA4WLyVkZB6Ywcfic0EyTMDZarYzTD7oMAhcn2O0fzqFZNOj + QRi+tXA43HT85/E80jQ28wYxwWt4ACT9mLRyAeu0/wCBrUwKc8kk8rxywCO6HDqFxuI5Bx69vfNV + ba2ku3l2MgMcbSkMcFgOoHqe/wCBrTCpqNtKYZJDdWieZE7DDFB1U+pXqD/kR6Sok1KS72gRwRPO + 47fdOB/30QKTegGXipoPllRvQg1Go4qVBUNm8IliZPKupV7bj/PP9RUMqbklX0+cf5/z0q7cxvKs + VzHG0iuuxwgyQ4GP1GKbJY3lvEJbu0lt48EEyjaSCDjg88461spxcTCUWpMk00b7L/dJFTOuKi0P + 5reZfRgf8/lVicY4rjkveZ3U3eCKo+9V2A8fhVIctVyHpQUStziopF+WpgBgUyQcVm2XFFNk56U3 + ZUxUZ7Um360JmliHyvb8qdsAqTGP84pY03NRcEh8UQxk1Mp8raCcKPunsPY+38vp0ei4FR3EyQxk + sfoKVOrKMromrSjUjaRJcW6XEJRhgjnHdT6j/Dv+RHO3lvLbS7ZOQeVYdGFaNrqgMgjmO1f4H9PY + +38qluJAbWSe7QFWbCw+npz69a9J2mrnlawfL0MEGtOy055gJJgQvUIeMj1PoPbqfbrVzSrC12iZ + ld5D91WAIGemB3OP/wBVXZ7iMOQxV5B0QHIB9WPc+w/E9jNlFc0hpym+WJXZURQ7Z2AfIAMFvYdg + Pfp16nNUbh5J5Nz8ADCqOij0FXmzISzElj3NV5I65Z1+d26HdSwygrvcqIDHIrjqDXY6JerE3UkD + GBz/AIVyZSrNnM8MyAOVAbOTzis5+8jVKzPWtFm3SY/hyOP/AK1cz8VdSaHxHpttEsRMdkGLSLvE + bNI3OOmcDuD1rd8IhrmRdp3jHyn/AD71wXiy6bXfiZcJbLvH2pLWMDjITCfqQT+NcuCi/rEpdkGN + kvYpdzvfCWpTaPbvaXt9OyrdSJYXDapPbNc5JB2wor7hvycsOrkc4OPRNZ0eUQi6R3mkRd1x5qgT + 4wMMwUAMBwNwHbnoTXn3hvVZvEXjD7FpPmLpFhF5TXEMwgZ0UkvK8wBcKWLEKCOo9zXoV1YX97Yx + vp0U+p2DqGjeTVA+TnOVVuQOmGEocDvnIPrXueS1YwV5FPC+lQ3MU9jN5c6SLxuUyABiucc4wNwP + BxxnkcEURXKscZzQRYm2mjBqOa5SNTms+PWoWnMZcA0AaRYDqaeBxmmxRi7IK4IqzNb+RF1xQBXz + zignHNVBKS59qfJMiryaQ7FkGjcAetZkuoJGDhhmo4Jri6yY0Y+9MLGwGHrThz0rFF1JFMUdWH1q + 59tATrzSCxeyBSbgO9URdFjnpmmS3JUcGgLGh5q+tO3j1rNTdIN9V2uzFLsZufSmFjbDA0bgO9Zv + 2wrEHPSq8OqedcmNTQKxuKc9KQtzjNQvIYoctxx1FUYr4tMcgkdjSCxrZI9aYZgDyayb/Wo7YDc2 + DUVpqyXB3Ag/jTCxtmcAcmkFyvqKx765wgK9T2FTaeRPH83WgLGoLtfWni5X1rKmiKvx09ahknMS + kbvrSHY2XvUXqRUZ1KID7wrmri7aRSA+AKxyL6ebEDb1PvTsFjvBfxsM5FV5NUiVsZFYUMF3BGDI + Gz3zTTCZWyRyKAsdEl9Gw5xT1u4nOMisMREJTYy6vzmgLHQGWPGahkmjHcVlvOQMZqMl2U5WgLGk + txExxkGh3jGORzXK3189oxboB71Ti8RmSVVTk+9OwWO6ESeXu4IqEKCcdazoNUZ4OhBPapoJWc7i + OfrSCxaYgdCKVQMZJ49axtQumgfcVOPampqLvD8uWGKAsbW5GGARmgRhhxWHbXErNyGWrLaj9m5Y + ZHtQFjUaLZyeaPKLDIBIrDl8QRYHVfYmtmyv4ng3BgDjpTAYzLGfm6UsU0L55HHvWLqmoZLKjjNZ + lnLeCUsJMg9qAsdFd3kcL8Dj2qeKaORM4wcd6wZIpZ5BvJ/CnvJJbqF3k4oCxuK689AR1FJI4PIw + KyobouvLAH6808XGSQc/WgLGn2pM0pJK9KYoJNAEg5ooA44ppyaAHinA0RjimSe1AEm8U1nxUKht + 9XEjVhzQBHCS7YqeRCq5pRGIzmldw445pAV93NPwMUwphqR3K+1AEmzio+CTSGcbfeiJXY5I4oAj + kkCHmpolDrncKr3NrIzcURh4k5GcUAXhENvJ5qJsA4pkdwW4Ap/8YJoAQ47daYXAbFXGVTHwBms2 + 4JEgwaALWzK5HWm4IGadC58rjtUTzgZBFAxxlC96lWRemeapIrStgA+1TmJo+T+dAiVnAFJE4dsG + o2x5fqay3uZbef1FA7GvduIYywNZY1IPgBhzT5JTdxbQTVAaUybiM8+lAWN/SYxdu2eeauahY+Um + 5Rg+1YelXb2EuGBwK1rnVPtK/LigViiZSgqe2YydWqjcSZ6A5ot7jZnqc0h2L9wSnemrOdvJqPzP + NHI/WopTt+tFwsPmk4OWqnHcM823rikmaVlKhTRpduPN3EZOeaaA0BN5aZximfai54qa+MYjzgKQ + Kz7e2805kBEX9z+99f8ACkOwralcXJMGmRCRgcNcScRJ9P7x9h+dWE0u0s7aW81CU3dwEO6abovH + IVeiir8ccaRgKoUDoBwBXAfEfxH5cQ0i1b95Iv70jsPT8f5UhpX2OUZVjn4OYnGVPqD0qvcW7Qt5 + 0fKH7w9KfYMLnRE/v27GNv8AdPI/r+VOFwYhll3IeGH9ayejO6OquVZUWSPeo5qWwuhHIFc8dDmn + Mqqd0ZzG1Vnhw4x0PSsmk9Gbx01NTU5LezSJpG8yNzv8lf48Z2g/7OTz/Q81y0873EzyyHc7EsT7 + k5NXtWwJwuT8qhV+UjIHf8Tk1mcV2wp+zgonm1KntJuQUqMyOGVirDkEHBFJ+NFMg39NvfMni1Bg + PtNrIpnwP9dCTgk+4zjPfPtVi7tYtJ0O/topFeea+MD4YErEnK5x/eP/AKDWLpchS/Vc4WVWjb6M + CP8A6/4Vo3UI3ttXAkw78k7mIzn9TWM3Y2pQ52ZIWpUXmpTCQelAjxU8x1KNiWPcB8rMueu0kUlz + fF/3DlvKKqsh3liSvRuenXGKsWlvJczLBEpaSThB701b2C+kGn3EQhiC+XC7csjZzkn3P+e9VSV9 + TDES6C6Gpjmuom+8MH9cf1q1dLUGlo8WpvFKMSCMxuPUqRg/l/Krl0vBqKitMui7wMxR89XIeoqs + Fw1WouMGspM3iiyF4/lTJB9c1OgBSmuv+RWbZokVCppm3/OKsMtNK+1JMuxBtqeJMCkC56U2WYRo + R7Ub6BsLPcLEh5rEuJ3uHJ7elLcTmV8Z4pIoyxrohBQV2c85ub5VsV2Q7c1c1kp/a9yqFSqNsG3p + wAP6UkoClV9WFdBfW/gptbmgiv8AWZImds3YihCFs9QpI+Xr3B6cVvCVzirRUZWM++ma3tbaCJtr + tFmRh12nhVz9Bn3zWdDMUbFbfiSxsrTU1j0+8lvIjbxuZ5ABuLKDwB0ABAxk/WuecbWqZPmbRtTX + JBNGzFKGFOfms+3l6VfByOlcso2Z2xldDNop8EW+VVAGSacBntWnoVr5+rW6EZy2OcVLlZBY9H8M + RroXh+71aXBFrbPKBnjKrkD8TgV45Z3SWumXF35m/UbpmjU55jQj52+rZ2j23V638SZm0X4cJaqM + SajOsTeyL855+oUfnXkfhq2S78R6bbuMo9ygYeoyCavCRtBzfU5cRLnqKK6HVanev4O8PWXhyDIu + 7sLeapjqc/6uE+wHJHTJruPC3xBe6s0Oq6pd27A4EVoURAuOP4SMn04wAOT28r1q9i1DxnfXV6Q0 + ZuJCQxIDbcgKSOQDgDj1qjNqjT3b3FxM00rNkt0HpwOgAAAA7AADgV3U7W1RyVKbbumfST+J9G1e + 2+zXF3cXEDA8yRq0sbY4ZHGPxBBziuDb7ZbXBd42VCeuODXm1p4oS1YH7KZAP9vb/Q16N4H8a29z + fLFINsZ4MUjBgf8Ax2tOSL2Od80dzRIkmj5PBFYU+jTS3eYXKtnOa9I8W6LA2iNq+gKq7BmeBTwo + /vAdsd/bnjFcLoEt6t6TeRnB6HtWdmik7m5or3NhtS4OfetTUdRV4MDrUNzNEyDjmqjqJFqbhYzm + 1AR7s4rmtZ1+6UlYYS30rqm05GbJ71G+k25B3YOaaaKPPDrl4zrvjkC55Jr1zwfdW09gjEjOOTWE + NCtW5IX8qvWlstgP3RwPahsTRq6tYxTXAaPg+orMubNokznd61P9tfcCeaSe681NvY9aQGfE21ue + lOlXdyD1p+wqcmkYnHI4oAnhuFig2k+9ZMu6S73gZXNTzGTHy8exotSDgNww60wHMd0ewHrVeK3+ + zy+bsJOetaawDOcACpUtlmyq0gK8l/5kewHJ9TTYQAp+bmpX0wq/I4ps0AiiytAGLqWmm9kBJ4FR + WtlJZtwx/Ote1l8yTbtPXrWjPpokjDEkUwuU4UWaHk5aojcNZk7WqQxyWwxnj1qu6faDg54oAnfU + t0eWx9K4jX/EUqTFIVJPtXZJYb12nr6k1Wm8MQStvcBj9KFoM4m38RsqfvInPFdJ4V1+G61ARSJ5 + foT3q5L4Xt1XhB+VVofDggmEkYwQeKq6FY9CvTbzWeCFzjqK59YQCdp4ojaZIghcn60iuwOeoqAS + GSHaSPzpVUFck8UyVHc5UYFSxqQmMUAM2qeTio3ZV4DH8KsJA7k46UhtCpyQKAM2fTY7rlhn61XT + RIoXzsFb8dvI33eR7Co5rdgcMSDTuFyvDDEqbQmCKmQKhPHHfmoxbuDwxxTxE3IPBpAUb8JKwwef + Q1JDaqIQ2AKma0ZmB2inOnlpgkimBm3l19iQnj1rC/tlb648tG5B6Vt3Vh9r/hLZ681nReH1gkLI + u001YZJNDGkIZ0DH+9ir2mKLpCqnjpxWLf6bfSxmON9q9/erfh6yvLCX7556gjg0+gi5e+HikglV + yfY1atLMRx4OT+Na0ryMg3AA+1Vhkk9j9KkCOOJRJjAxUs9nEyZpUTc4wwzS3EgiX5nUge9AFI28 + Y7CleOLyvmIH41eisnvIyUbtWBqVreR71GePSgLnQbeKAuO1SDpSDGaBCbfalEfepQM9KkCYHNMC + ALgU0Ll8VOVpgX5uKAHmIBaYpINSk8YoC8ZpADMStMTrzTywPFRkEdKAHnGaaYd9ARzVlBheRQBS + NtjqOKsxBVGKc/NMCEUASHaetNcIR0pSDigITQBVMQ3cVIU4qwIuelKY6AK4J247VE0Ids4q2Y6Q + LtPSgCFLfAxSPaAnOKvIOOlKSA2CKBXKkUHl802cZGK1PLVk6c1WeDJ6UDuZRUjPao3t0YZOK05L + c4qAwEHpxSGZbbomwqjGa0bXEqcgc9eKf9iVhk05IREcKKAKdzZgklRio4owG28ZrTkTcvIqp5RE + mQtAXI5LYAcimRWfmnCtgCp72Qx2/HXFc1DrksN+YzG+AevahAdK1q8Q9qYsW4gtz9aVdVjkjGep + rTtIUmjziiwXKLW6CPOOaqJkzbYxg+uK2JrRsEZFUktWjm3daAFlsHdAzEk+hohgIOCK0vPXycEc + 1n3F3DawvJI6qqglieABQCMvxHrMWhaXJcyMN+NsSf3mrxi9FxM32u6Ja6vDuUHqFPf8e1dZqV4m + vX0usaju/sm0OyCHoZ37KP5k+lYVyJZba61i74eVvKhXGBnvgegHFTc3irFHQbhYdSa2c/urlfLO + f738P68fjWjc2xiYgjiuZYlZMg4IOQR2rtFmGoWMN33kX58f3hwaia6mtKW6MZfkyp+6e3pVq2tz + cMQoBKAvz3x0/XFRTptbNW9Om8iVvmVRIhj3t0Ukgg/mBn2zWcLc65tjepf2b5dzP1lob2ZrmPjf + yV7qfSsf7OScCtTVtPv7W8ZZbZ45DztA5x9OhHuOKy1laNsMWUj/AGf6V6EpJnmRVhDbSDtSC3c/ + wmrSXfHLI31ypqdbpCOVH/fQNKyKKtgBFqlt5vCiRd3sM10ckQIVgDggGs/SrVNT121toR5jsSWA + HXA6D/PeuhngwxDLg+hrjxDs0jswy3MSSD2qPycdq1Wh9qhaEVz8x1WK9pK9jdQ3USgyQyK6g9Dg + 9Ki8WaKLO6j1OyDPpV8N8EnXYe8bejAgj9auCL1FXra+vbSxubW3kzDMCTC8ayIzY4yrDHtnr09K + 2o1NeVnPiKV1zLoY1tN9pksb/Pzqwt7n6kEKx+oP6Vdul+XnjNc/a3CWNwxBaS3kXbKh4OP8R1B/ + lXSTnzLaKUEMGXO4dD71pW7mWGfQzAvzVPGKbjBp4YDkmuRs7ki1EeKeRkcVWSUZ61YRs1JViB1w + abt71LIME5ApmeP8ikUQSMFHqaybqcsdoq7eyYU4/Ss6OEyNmuilFJXZjUbfuoZHGWPStKC3wucV + Ja2fqK0PJCJ+FTUq9EVTp8qMKWPffwx9i4zj0zWlttZVHyR89mTFUoPm1N5B/wAs0OPqeK0TNI6s + rSMwPHzHP+e9d1P3ad2eZW96rZFZ18wlsYHAA9AOB+lUJ4TW2sOUxVee24PFcCqe9c9P2fu2MaMl + WrSgbI61TmgKnOKtWfOAa0nZq5ME46MuIAR0rs/AGnC78QRFvuxqZDg46D/HFcmigLmvU/h5ZLZa + dLfTkIs5IDnoI0BLH6cf+O1yTeljR6IyfiP41fR/FVrpP2eK806O0AvLSUAhy53fgQu0j+Vc1baD + Ywa1pfiHw9M1xo73KLJG3+stGJxtcemTwf1PBPJ+JNVbXvEmoao2cXEzMgPZOij8FAFWfCGtzaJ4 + ggdG3W87CG4iP3ZEY4wR7ZzXoKm4wsjzub3rmVqO46ndZ6+c+f8Avo1CkYP3jW/4w0gaf4rv4YpU + aGSTz4zuGdr/ADAdeozj8KyYtPmk+4rOc4/yBmtU9CVa5WkVV6U+wlmivEa33mTPAQEk/lWza+E9 + RuuWRo174hdj+WOPxrZs9IttJB8+6lLd4zeLAp+oTcx/SmppdSZpvZHofgfU/ELQgf2ZfTwlcP8A + uGwR3B4rQaye1uXieF4SDkI64YA9Mg1y+m/EiDQIBFa6fphVRgusM05x/vSOK6mz1u/8SQrdXWlN + ZMo+V2hWISA9MKCT+J9ac5qSOdQcdR/kZGR+VRkBDinzyGNcnNVra8ikuFQnv3qLFErIXHQ09YAV + 55FdZa6fDJbggKcis28slhkO0UhXMQxEdOlNWFmPHStJbcMeabIVhPJFMdzPeERKWNURdQ+btJ/K + ta5j+0R4XIzWZFoLCQuHJzQFyxvhYDB61ZNogi3E7h6VGmlyIwYtnFW3VliKbce9ArlMWsco6VF9 + h8tun5VfghKDI5FQTyMr9DQO4qWzbOQcdqdABA2T0zTo5iUxz0qKWUquTx7GgQl5egfd6VSkujLE + QpHSpYds7FSRViOzj8zGBkd6YGRZwvFcl+cH2rckvxFDkgGrD2CCPcDisq9tHZCEJ/CkApzfghBz + UQs3gbDZB9KTTFltCRIWxWn54mkGAfqRQMpIkq9vpxUyvg4Yc1o7EEfTms+Rk83bvA56UASlgw4A + NQ+WpyQtWGhAizj8RUChi205oAjABYZGfWm3CLGmQOPSpBEVkzu71ZkjzH83NAXM2zffJ8w/MVoS + LEqfLwaiigUMSnBFJMjP36elAhhuFhUtiufvvE0cUuznOa3zY+cmDn8az5PC0TuXKqSaaGafhfVL + e7Q5bn3rR1R4uDHgn0rnk0l7E74iV+hqeJ2kcB2JP1oEWRjqRj61HM4UZ71bVNy47+9RSWxbjFIZ + XhmUnkVBczIX29fwq8llsGVPP1qCTTt0mcd+xpgJDbhkDDinG3UDkipTHJHENoPFRxl2zkc+4oC5 + VkECnkZ/CoVKxy7kGBRd2czzBl65q1DEyR/vADQA+S6XywCBnHWq010kcRfIFWPs3mjCsMd6p3Wn + hlKONw9MUActdeLfs95tVdyg9Qao6l4oluoyIQwJ7ntXWJ4YtZWDNCv5Cr8PhmzVCDbofwp3QaDP + BWtw3FqEc/OBg5re1M20vO0ZrFi0ZLWQ+TEqe44q4YJWAVjmhiF2nHFNC881YVadtFADYwB1qVmB + HFIFpdtIBAMim7eakAxRxQBCwJ9aOQKmwvenFQR0oAq7STUypkU4RjtUoTAoAagA4pW5HFKE5p+3 + igRCE5pSyrUhFV5I2Y0AO3qelTRrxnNVhC461ZiBUYoAdxTwoNIE56VIq0AMaPIqAxnPAq3inCPN + AFZImxSiH5s1eSPjpTxEKLiK4XC00D1q2YuOlM8qgCnMBUATceOlX3hzUQQA4IoGQ7cL0qFwAC1X + JEOOKoXSuIyBnpSGUH1KKK42O4z6ZrYgjhu4gVx9a8+1LRb+6vTNGzLjpiun8Nm8tVEdzlgO9OwF + y/tRGCrjI9aox6fbvzhc/St/UFWeLjrWZb2ZXPNICodKRpAQMkVr2kT28eM5P8qhFwlq2GIJ+tXo + pklXKigCvK78/ITVJ5nB+4ce1ar7MZNZd1eIJDBawG5ucfcU8L7segFAIguL9YIC8p2KO5FcVqt1 + ca9ci13m2sFHmSH+IoOrH0H9fXtuahG4kd7iWK5vo1J29Le0Hqx7n26n2Fc9sk1ANZ2azNaGUG4n + b5ZbyXso9FH6CpZrFJFBbGbX9UtLGzjMVuo2W0WPuIPvSN/9fqayfGt5bjUUsLPAs7JfJiA74+83 + 4mvSLyKPwfoEoDIdXvVxI6dIk9F9AOg9+a8Wk36jqJVOhJ/BRyT+QosWn1KZz1PU10nhyb/QZImP + yiTj2yP/AK1c2xyxx0rb0T/jyuyOoZT/ADpy2HTfvGleREGqsZwcGrAu1f5JO/Q+lRSAo+DiuSaO + 6DNWy1m5t4FtpBHc2o6RTrvA+mc4/DFWxLol4MXGntET/wA823KP+Ak1hoy/3asR/N2I9y1Z+0nH + ZlOhCW6NGTwtoN2f9Gvo1Y/wyxmM/of6VRuPAjIpeBzIo7pIpH/j2DT9o24JDD0PIr0z4caWlto0 + +pSIBJdvtj/65r/i2fyFb0a05yscuIowpx5kcd4B8KS2niS1vWSR1hbzC+0BRgEgccE7tv5V3Xib + w3aX9tPfptgnjQu5/hYAZJPvjvXR+aok28YouYRPbyRMoaKRSrKe4IwRXQ4J7nGqrTutDxWS0IUM + pV425V1OQR7Gq7Q46iotVivfBniC4sV/eWhPmJHJyroeh9j2yO4rTsb3TtYAW3k8m5PWCU4P4H+L + +ftXFKDR6cZ3VzO8oZ6U5YwK05bB4zhkNQG3I6Vnc1TTMTU7GV91wg88H74KBmH07kUmluk+kyQo + 2TA5xx0Dc/zzW4FK9RilaCMLLIFUMwG445PPf866PbuceSRz+xUJc0Tlp5PLODVJ7sg1d1OMqx9R + xWHJnNVCCe451GloXBdnPU1pWd2HwCea54Eg1ZglKkEHmnOkraCp1m3ZnTSDK5FV2aktLtZotv8A + EOop6KWfHauRqz1OtaozpUM0m0Cr9rYYGSKntLdWYvxVtpFRSB1HFEqj2Q1FIakQHbpUV4wjgY+1 + WkGEyeprH1ufbEIgfmbipprmmkKcuWLZRsMCGaY/xvgfQf8A66txHdIi+uWP8v6GqwCxrHAcKife + 3EjLd+nHWrVmPNmZxnb0XPXAr08RJRp8p5eGjz1eY04kyvSlkhDDOKmVdqc0IwZQe3avJuevYybm + 04JxVWKMo2MVuMUkJUEHFUbkxwsFyAx9a1hNvQmSW5teF9GfW9SSH5khj+eWTONiivS7uCXWvD+o + 2ukERQNbCztyo4ClgHb/AL5Dfn71w1rp+ozWFtoOkFFkulWfUpllQMFb7kQ5zwOo9Tjtz63Y6ZH4 + f0Oztw2V243fQCiCvUV2ctaTVNtHiNl8PBI+DBqFwVJBwnlrkdeWAHX0JrXl8Ix6YyQQeF55pnTc + sisZF6kEEgHae/XuK9Z3o5yCKC6L/EK9Dl7s872r6I8ni8P6uUUQ+FZQQCAsspCx8g8Zlxzlj0q5 + D4W8SyfcsrS0AHBaVM9cEcBiOOf/AK9ekmZR0qNrgClyIPayOFT4dXtyQb/WuP7qBpMc9PmIHTHb + 1q9bfDnRbZQZ57y5YD+KQKPYjAyPwNdO0ze9G4sP6VSViXOT6mXbaPo2mMGtrCBGHRyN7D/gRye1 + WJLtX4zUs0G5cnj61DDaBs8gmnYm5QuHNwdiOBmsufSLmGYSbiO+RWwbV4r0EIcZ6rWxLCXgAC0w + KWnancwQLGxJxVt7t7g5OfoajW2OPSpFh29aQiCW4MQ4HNY93LNK/G7r2rce33d+KctvGBggE0DK + 2nBjENzZ+tWpG2KcYFSLCqj5Rimyx55PSgCFJSAflpVj845xinRLEDgnmrACR5IOaBEIgKggYxUM + yRINz4B+tSXF4FU7cZrl9TmvbhykK9f4s0DNL+0bYTeXuH51opaRXS46ZFclaaHIZBJMxZup5rqr + QGFFVSeOxpgPTQRA29WyTUn2TaRjg+1X0uSUAamGUd6QFdo2KYqH7Od3TmrodTUTXUSnbuGaBERt + FYfMB+VMNtHH0IqvqFzOifukLemDWdbT3sjZlG0fSnYDVmcCIhc59a4q6bURq6MsbGLPOa73TYI5 + ZcScitO70u1Ee9VUGjYZkWSmS2UNzx3qY26RqWIFPCJGODxWPrGu21lA25hkCkBXur+JboJkZ6Vq + w+XJCGBA9q8V1DVbifU3uU8wIDlcZr0LwjrH9pWyx7izjhhTaHax0rhcELUCQgzc5+tXvsrI3zDA + qrdPJEPkyfYUhFxYgoyG7U1lx9Ky45rpn5Qge9acBYp89AFK8iaUYG7FVFhS0i3Nxj1rRnuhHKF4 + pLiA3UGMjmmBVsr6GZtqkH3rR8rPII/CsNdNazJZO/XFS2mosJ/LIIGe4oA0ZkYdOlNjU91x71oK + VdB0NJ5QpAUbhgIjWXFOfPxsY1vPArD5gKh+xQqCcgGmBWUB+o/CntbLtJUc1i6zrUel5G7nsKpa + X4tjuZ/Lclf97igDaEUkcvIOPapZIvNGWBX3q3BNFcrkMPwpbkiFM9TQBTt4COFY/jVtiI0yx6e1 + QWU3mT4YEVbv7cyQkKR+FAFB5PMPymiKTaSSoz+NVorSWInHTPpViGEh8k5HvQBLilApdy5pwxQA + ClpQKXGKAI2qI7s1ZwKazIvpTEQEN1pVZulTB0YcYpm07+lAEsfvUtPWL5M0m3BpAROxXpTlYsvv + Tyit1pdgFAFc53VMi7hT9g9KRQQelACiKo2BBqfNKEyeaAIQSBUitUpjGKZ5XNAEirmplSkjTAqZ + RQAKtSBaFWpVWkBHspClThaXbRcCsYs1A0HOcVoFKYUouBnNGagkhz2FabpxVdlwaAKIhUdVFGxR + 0UVZbFQM6g9aAI3VmGKh2sgOKme5RR1pglDngZFAHOalbXEswYMQM9q19OzDbgHcTU90jEYSMn64 + FRQWczf62XYv92Pr+Z/pimAy9uY1ISadwzDKwwDdI/0A5/H9ajFrMtm0lwy6bZKNxijf943u8nb8 + OferrPaaWmVjw8n3URd0kp/mfqentWRcre6pMxnVNsJyYyd0Vv7t/wA9JMfw9B390Umc9dSy61dw + 6ZpUPlQA70QDGBn/AFj+gz0B69T2rrNN0i10C0EhxJMgwrnsT2HuTyT3qbQNITTrJpTua6um82aR + +WOegJ9h/Ws3xFehgY1fbGm5eO+PvHPoOn50bFXvojzzx7q7yO5L5kn4HqqD/H+tcrBH/Z2gTXrD + E15mCDP9wffb+Q/OrEqTeKvE6wQcLI+1T2VB1Y1V8R38V9qYitRiztUEFuuf4R3/ABOT+NJGnkY9 + bmhf8et4PZf61igVuaCP3F6PRV/nRLYqmtSKViGqaG7BUJKNw7H0qGcfOajVefesZpM64XRrR+Q2 + MOR9auRqgHDZ+lZEBIx0NaUbMV4/OuSaOmLLlrbSahqFtYW+fNuJBGp9Mnk/h1/CvZZQumW8Flbo + VhhQRr9BXnfw3s/P8XpMRuFtDJKSfUjaP/Qq9Ku1Lz8jjNdeGglG55mNqNyUSOOJ51DGr8YZFAan + 2yKkQ45qwm1uDXQzjOA+KWgi/wDD8WqRJmayOHx1MbH+hx+ZrxcR819S3FnFfWk9lIMx3EbRMPYj + FfMs9u0E8kTj5o3KMPQg4P8AKueqrO56GElePKzS0/xHqNoFjkdbqIcbZuSPo3Wugt9d0y6A+0Rv + bv8A7Q3D8x/hXGLt/iFTosR/jIrmkdqgjuY/7MlH7vULc+xkA/Q1MbG0dCpngIYEEiRe/wCNcMqW + 465b681YQxnAVR/3zWbY/Z+ZFrluYLySIsr7cfMpyDxnP61zM6bWNdHqI2soIx8tYdyveuyD2ZzS + XQzyKcpxQw5pF61ucyVmWoZmjcMpORXR2EiTIJF646Vzkahh71f02UwTbTwrcfjXLWjdXR30pPZl + 2yuxFNcRMeFcgVYiBeVc/wATlvwAxWOwxqM+O7VtRypbxGeU4CqAPc1jONnp1NIO61LE8yW6DzDg + YPXvXNmb7XfyXLf6qEZX3Pao7u6nvbjG0l5OEUdhVqK3REEO791GN8r+tdeGo8nvSOHFV+ZckRsK + SyqA5LSS+vO1c9vTPT8627S2WJBxVWzAwZTgFucf3R2FT3F6lsmXYL6Z6n8K569R1JWR04emqcLs + tSnzCIgeOrH2qle3wDeRBgv0J7LWbJqc1yPLgBjU/ec/eP8AhTrdNsZ8sZ9/U+tZqny6yNlPm2Hv + e/ZIyq/NK3c9q0PDUFsHk1zVwr2sEgSFJG2iebg7T/sqME49VHeueuSEJGcnuaqS3M0qxo0jlIhi + NCThBnJwO3PNdUKaaOWtVaZ9D+ENVN/IJ2MbM5zsW2G0ficE9feuv8Rsp8PrIqlfKbdgDGO3T8a8 + Q+G97vuFNxLI7ZxmYbwfTBI4/Ovb9WTzfDsyjBDQEghiR+Ga46kfZ1Ex3VSBwM2q3cSFoo3f6CsS + TxPqTXCoUdATjJBr0jQZNLu7RQdhJHepL7QbCTLoieteseSiho8T3lorM53EdakudOniJYtlR2qW + xIsX8tfujpitZ72KWDDDqKkDnk1O0hPlySAN0waiu9SRV3IC4/2azdS8NSXV61zHLgDkCtDQ4Ekk + a2mA3KMUwBNSNzalVHJHQ8VQs5LyKdsqSM8Guol0yC3b5QOaQW8S87aVwK9qS7AuMGr7MmOKi2qB + wKOaAF2imkDpSk4GSKrvdRhsHmgCYoT2qF42BzirEciuKc+COlAFYuUSqF1LLIp2Pg1dnRmXC5FR + 29vJyGGR70Acu+qXFndhZXwCeM11Nm4vLcNnqO1UL3QI7t9zoDTgr6XBhVIUCgZdaxVSWY8e9QKk + LzCNSAa5XVvFN4gZYreR+3ArnLDxDrEeoCZ4JCuehGKdgsenXmmzR4ZWyKSGNlXlwT6Gsg+LZZrY + DyHD9/lp1hqM8mXl6dcY6UAdCgZlHQ014mPSs6LWImuBHxn61tIyugPPNIRm3DPDCcZJxXGXM+qf + 2oJUGYgeleitbpIORmo2sLfugp3Aw7fUwyIroVPvW7GIZLYNtGaiNjAOdgp2UiGOAKAIlDRybkAG + O+asyXUjx7Sao3d2I0yMfWksL2OcckH60gJ3jkmjIxWBeeG/tUm6QbhnOMV0rXUEZwWAp4lRxkYN + AHJTeFrf7OQI1DfSjw9o39lXpZYwqk5rr/l9BTSsZ/hFO4XLE0iyRADrisW5HlnJJxV55o4+NwH4 + 1VuQjxklqSGZc+t2tvgE85rSsrmO6h3KeorKk0E3zB8gjPHFatlarZxhCwyOoNMBktmHk3E96s7A + kWOgqY7dpIOcVm3F5h/LAOfpSEODxO+0uKedNjZtwP6Vi3Fnfeb5sS4HXirMd1dwxgSISRTGbAiZ + OAPypHLKvSoLG5eZvnUj61eljUjgYoEUDK7dAartPKM5U1pqgFIYUPUUAcrcWC31xmSMn3NO/wCE + ft45FYIo/CumW2jU5GKJPJB+bbQO5BbwLDENijiq92zbd20mrV1eW0MBJI4qidQtbi2baR6UCEsZ + I2b5SNw65rS8zJwcGuSjt72GdnT5oycgZrXsGlLZlR19aANUFd33cVFd5MeF6+oqUKpIYEj6091R + hgtxQBiIzu+fercee9IkQWnAEN0pgSlwo5oDqRmoJldhxVd4rgL8poAvGRegPNRPC7njNVbeObzA + X5rfgVDGOOaNgMyKIoeRVoR5qxLGoNMGBSAehwuKRhSilxQBDtIpQpJ71IOtOAoAYBtFKCDTmGRT + VABoAeMUu4VE7c8U+GMscmgB+QakVaf5AApVXFIBQKkUUgFSqKAHKKkApoFSAUgACnYoApwFAxuK + aVqXFIRQBXdagePParpWoylMRmSRVSktC571tSRZFQNCQDTA5u4t3DcZqzbLsUVelgy2SKYLbPc/ + hxQBG0iAgEkn+6Bk/kKG87YW3Lax45dsM/4D7o/HNWI7YJwBgd8VKlspYFgOORQIzYLAysxUSRRt + 9+VmJmlH1P3R/kAdatz20awRWkSBIs/cXgBRyfz/AK1oBQKidB5u89lx+tAzN1bUF0vTXmJHmt8k + Q65Y9Py6/QV5H441o2tsmlxMftTqPOwcmNeyH3PU+5NdH4v8VRW04u4WE0u0pZRHlRzzKfXpx64+ + tcx4S0cSTP4k1VDcnzCLSFzzczdcn/ZHUn/Jlm0I2V2UXgPhLwywk+XV9SjBYZ+aCA9B7M38s1xo + Q+WZD3OBW5r93cavrEhMpnldyWk7O3c+yjGB6AVUubcJp32gf6rd5MJx97HLN/L8/ai5okZqDJFb + egnLXqesefyYVkwLnn0ya09AJF1J/tRsP6/0qZPQ1hHYJx85pijmppx85piisZM3iieEHjiryZOB + 1qnEtXE+Vc1zy3OhbHrPwp0rZpV/qjrzPIIIyf7q8n9T+ldhPbZbIpPCNkLDwNo8IGGa3ErfV/mP + 86vMuTXfBcsUjxK0uabZnrGwGKlRD6VY8v2pypV3Mx9tFlhXzd4pCReONdiT/V/bpse3zE19NWwC + nc3Cjk/SvlG7uzfazd3ZOTcTSSZ/3mJrKrsdWF+K48YHDD8alVIT/FUAYqfUehqVTF3BX6VxSR6s + WWEW3XksT+NTpKAcRLg+uKrL5XYH8anSQA/KBUWKI9WjKJET1K/1NYk68V23ijSWtPDWi3pH+vMy + MfcbSP51xzDcnvXTF6I5d2zMcc1GBzViVcGocV0JmUo6ksLbWHpWo0QVFYf3gRWUtbGc2UR7k4rG + pubQGRRb76U49P5VHqj3Yuvs5tmV0YjbINpXB53A9Pxr1L4Z+DzdXi+Ib+PFpE2baNh/rnHG4/7K + kfiR6A59F1/w9oniNcapaLLIBxKrFJB/wIckexyKulTXxSOWviLe7E+arKzcziOFWur2c7F2KTkn + so6mtfXPCPiDR7VGvtLuobU4d5imQT/tEZwPrivbdN0bQ/Cm5tItFjnfhpnYvJj0DHoPpiui066l + ukImAZSMEHkEV0Sd1ZHLGdnc+XreV1DEDJJ4HpxVCWKSS4ZpTufPPt7V6d8QPCCeHtWN5ZQ7NNu2 + ygUcRSdSnsO4/Edq4KaDy9zDk1wt8smepBqcUzOkYRYjTlj94+lXROttYh+Cx4UVnMPnOepPNRyy + mRwP4V4FXycw+flI5WLEknNQmpWqI1vE5Kp3Xw8cLeZG4Eck49PTv/OvoNSJNISM90I5rwbwEbeS + 2XLOGQ7XBGQOd24en4enTvXt8BMemxrjbswpU9Qf6dq8/F9zpw+qSPKtP0fVrST9zcsijoO1dfbX + OpWtp+9mLtjuK6JLJGjRlVQSo7U8WQ24YDHvXop3SPLlucba68wvAksZVt2PY12MUQntw6HBIqJt + CtpW3GNcg5zimX17Ho1oTnAUetMRKsEi5XrVeGw+z3BmUfMaydH8WLfXvl+W4TP3iK69kWSIOveg + DNlEsjcniq927wwEjritEjFROit1AIoEcS+v30dwUFtIy56gV0elaj9oUecu0nsavPb2kalmVc1y + Gu6sLViLONmP+yKYzptZu0tbNnVh0rgbfxfC15tkcD5sYqa31O41JfKuomQHs9aNj4Z0qeTmGEsT + noKaQHdaOttqNirxkHIzSTwmCQqefQ1BpsdvpEW2M7VHYHimz6rb3NwEEoDH3qRExAoA9KkFs5UM + pyKUwOoz1oAjFNltYpxh+aJZGRfes5tQljfAUke4oAsnQ7JuqD8qadDsVH3F/KobrVHjt9yoc47C + udk8Q35YkRMFpjOl+wWSniPpUN1YxvGfKUAkdqwoPELt99X/ABWtGHxFCIyHO0+/FAFCHRzb3PmB + WBz1rYFxMgVVVjXMXPit/wC0REnmOpPQLxXbaRdQ3FqC6gHHIPWhiFguXCjzAVPvTzPu6VX1LceI + h3p1pEfLBcc0gLBJK9Kzrq2klbgsBWqFFJxmgDJNgTCQRuPvWKljdx3vyEKueijFdZM6RxlmOBXD + 6z4sjtLkpAu5h2BpoaNqXS53dX3sfbNatrbmOMZHPrXAHx5NjBhIH1q/onjhJpjHOQhPTPegGmdu + W2jkGsfVNTkt0IRGZuwAqWHV452DbvlNa6WltdQiTCsDQI83kvNcnuhJ5arEDnBbmr02p3awgFMk + fnXX39pDb27OkGcDtWRZCK5lKyRAH/ap3A3fCt5HdWeHUg9Oao+KXa1G63ODV2zt4rY4iUDPpUeo + 2BuxlgSKQHNaTrMstwI58EeoroJ7aMlJEPPtVOLR44n3CMg+wrQiVlIBXj3oGW4SpiAKj8abJDC/ + UU87CgwMGomU54NIQ5LdF+7SNGSepoDMB3qJ5JB0BoAbcTR2ybpDgVSGtWx6Mv51k6/Z3+oRlIXK + isi20G8tYMP8x9TTA6mfU/MhJtwHOOlcvLdasbkmSBljzx3rQ0hJ7WbE8RKeq110UEFxFkJgkd6Y + HEXaTXNoVztyO3WuftrXUbCfEchdC3Ks3SvSZ9GWMM0aYz6GsuOyLTlZIsj1AouMpDWIre3VZFKt + 6kVqWV5HcxZV8cdqfcaPbzxABOfpTbPTWtSAo4pATus4H7ts/Wqrfa+ev0rYAwvzCmF06bf0oEVe + KazAdqUjilWMNzQAiyCpRtYVXkTB4pYwwNMC0sYqZDsqBGIqUNmkAshLU1UOaeBT1FAAop+KAKcB + QAm2lxTgKXFAEZXimiKp8UuKAK/k5qVF21JilAoAcCcUUAU4CkAqipVFMUVIKQDxTxTRTxSGOFPA + pop4FIYYoxTsUYoCwwrTdtS4oxTuIgKVG8dWSKYwpiKEsXtUQjq86ZqPy+adwIVjp4jzUoWs+bV4 + w7RWMRvJlODsOI0P+0/T8Bk+1AWLUpjghaWaRY4kGWd2wAPc1xniHW45NOluZXe30heN33ZLw/3V + HUIfzb2HJ1by0k8l9T1y5jSC3HmfOPkjx/cQ9/8AabLegFeaazPN4rvkvLoyW+mpuFtGTzsH3nP6 + D6kCky4RuYtpaHxHqkt9ejyNPhI83YOw+7Eg7n6eue4rq/FLTaLo0YljEOq30fk21qpwLG2HX6Nj + qfX6V1vhPwxFZ2sWqX8QtrS0UyW9u/G09fMf3747fWvONXuZfFWty3uWRbyRliLf8srWPqx9MkE/ + 8BPrS8zXmuzlvsckcUFrbrvvNQISIAciPOPw3H9B71Z8bQw6fdWekQHKWcIUkfxMeSfxJJ/Guo8C + Waat4mv/ABBKhWysExCp6KAMKPrtH5muC1u7bUtaurtznfIefqcn+dI0WrKkalLWRsdcKPx5/pWn + okf/AC09XAH5HNVruMQ6bZr/AByMzt9OMVv+GLPz57CEDmWQ5/EH/wCtWc3odCMu4H7w1Go9Knu1 + KzEHqOtRKKykzSKJ4hVhuIXP+ycVDEMVPKMW/Peseps9j6csECaDpqDotrEB/wB8Cm45p2ngroGm + q33haxA/98ClxXorY8J7jNtAHNPxSquTQIpeIbwaZ4Q1e9zgxWkhU+5UgfqRXytCNsi+1fQnxe1I + WPgdbEHEl/OseP8AZX5m/kPzr5+jHzZrOoztwsdLljnJqVfcVGozUygVySZ6MRyirthF5lwo6jOa + qAcV0vhDTzqGu2duFyJJVDeyjk/pmo30CTsrnafEvSvsvws0I7cSW1wu/wBvMRif1xXi3qK+kviZ + a/bfhzqyKMmFUnX22OpP6Zr5uPOGHRhXXUjbQ4cPLmTKk6VUI5rRlXcvvVFxzTgzaaEXrXWeEdBn + 8T6rZ6dEGEQJkuJAP9XGDyfr2HuRXJCva/gTcRnTtftjjzVeGTPfbhx/P+dXy3auY1JuMND0fZHa + 20dvbxiKCJAkaDoqgYAqAhpQcNmlv1lZW8vrWXaNdW0jNO3y1oecR3Gmyiffknn1rStdQFqgjbj6 + 1zGs+L4rScRLlj3xVKPxNDdkAnbnsTTsM724+wa1ZS2N6qywTLtZSfxyD2IOCDXiHi3wvceG9Ta3 + kYy27gtBPjAkX39CDwR/iK9NgkXyxJG/PXOaTxDaLrvhW6jYbri3QzwHvlRkj8Rkfl6VlVp3VzfD + 1XCVujPn26TaSR3qmBzmtK9Axx68fSs/GKiD0O6e416YkbzSiOJGd2OAqjJJqRhxTbZmW7jKR+Y2 + 7hP73tWqOeqdn4DaSG82NH1fadwxj8cZBr3rCro5dPu5HGMFeOn+fWvIPDOnyGRJFLEhVwufnx3U + nvjggH8K9aI8vRSmB5ZQbee3Xj25/CvPxesWdOH0kjEufEktrePAImIjwuR34Faul64l/GQVKsOx + rC1GaKG5l3Jk564qnbXbwlpYYyM+1ejD4EeZNe8zsZbto2+XmsTUmW4/1w+QdQaraNrYuNQMdwhA + 7Zror+2t7yLagG7FMg5/TlsvOHkjDD/ZrqoJX2BSOPauajsH0+fcoGCfSuos3DwglcGhjEdSexqu + 0Tk8GtFwCPeqzBweKBFN7MyDDNxVZtJtFyzgE1oyb/Sqk8MsgwB+tAHEeJYJPuWUW5vrWRpSazZ3 + AdrdmXOeDzXp8GlIPmdctTb6aw06ImVVU07jued654g1V1EUdrImf4iKybG41eK5SYAk9wwrvDPZ + 3s6t5J259OtdJD4cs7i1DRIASOhFPYLi6BqrTWCGZcPjkGrMl9udlCVBBp0ll8hU7R0p52A8LzUi + Kt/cFIWKrk4rmIZr6e8OYzsz3Fda+1uqA0wGNOiAfhQMoDaoUSpt/CrZsrNotxRc+tQ3Du5yFGBU + 0WWQAnFAikLSyV8GMYHPIqRtKsLzgRp+Qq6bVCM5Gfaolt5YpNysCKAI18L2MeG2jPsKuRWUcH3B + ViGTcuHFSkoKAK5RT2pu3HSnSzqvaqzThulAE4cev61G0oDetVmlKc1Rur8LjaDkelADtcFzNZOl + uMMRxXmX/CJazLcM8rqcnJOCa9Pi1eJkHmL+dObULZ22hBTGnY81XwfOeJZm/AVo2vhOC3IcoXb1 + avQPIaVcogGaRLZidrpn6UXC5yUsFxHalYEwwHBzxVvRdRvYYTHcoQR15zXT/YIsfMp/Ok/s+E/d + UfjRcRYspo7uAq3OR3rIv7GSKbdBtHPatWKE24+Wnu+/stIDnxa3gw6k5+tb2m3DPDslHI6g0sTH + OGUYqcGFOwFFwEYxhiBUZVD0pztD13ioRLCxwrjNADvlBxzTXdVGScVFM5j5GT9K5DxPq+pW0LfZ + 7aV/dRTA683cI/j/AFqOS+gVclxXkuneLbpZ9t0rqc/xDFdVa3suoqPL5yPTNOwWOsi1S1dtpZR+ + VSzBZVymMH0NcRcaXcidfLLJITwQeK6nS7e9tIAbl1bj0pAaUFqqpkgZ96njXy+FrHm8T2dszJLI + isPU4qKx8XWN3diFZFJ9jQBvPIcYOaiVEBzg5qzII3jDqQQaqlGB4pAS/L6UHYBms/U75NPtjI7Y + xXMjxFLfZW2w2f8Aap2A7BpITn5qRIopB8pBNczaJeEE3MhBboV6VqWDS2+4GQOvc9DTsAjKaRWZ + eKs4Bo8sGgCMAtUgSngY7UvNIBAuKB1pcGnBaAHLUgFNAqQUAKBThSCnCkAoFOxSCnCgAxS4paUU + AJilAp2KUCgBMUoFLikoAcKeKYKcDUsZKKeKiBp4akUTCnCog1PDUgsSCnYqMGng0hi0YpaKYhpF + MIqTFNIpiZEVqtJMAxSJDLIP4V4A+p6D+ftVpo93DEkeg4FJtwNqAKo9BTEZ72b3JIu5N6/88Ish + P+BHq36D2qyI4raHLbIoo1zgYVVA/kKsbQowBWFdQt4iu2swxXTIW/0l1OPOYf8ALMH09T+FMDkt + Wd/Geqotw72/hyzVrh2+6ZwvBb2GeB+Pfpp+E9CXUZBr17AEicAWdsRgRxr904/kPx6nh+p2/wDa + etvo0I8uK5mVJdnAS2hAJA9MuxFdsI0jVIY1CooCqo6ADtSKb0sjjfiLfTSWFp4csDi81WTYcfwx + Dlifbt+deYatJDp2g6nPAR+8I020z1KKfnP44Of96u2ub7ztU8R+K2+aOyha1ss9MIOSPq+PzriV + 0ttS1Lwr4fYElU+0XJPo53nP4DH40MuKsdNHaf8ACJ/CX5gUurpfOkz1ySNo/AAfka8bihMzwwrn + dI4A/ECvYvi7fYsLayjyAzZIHoOB+ufyrzvQLISeLbOBvuwjzGz6Kuf6VLZvT2uVPE0aJqqW0X3Y + Y1QY9ef8BXW+CraP+2dN64XzJD9ADXIXzC7124l6gzNjnsorvvB9vt1JHx/q7KUk+5H/ANespdEb + 7RbOT161e3vQ7LhbhPOQ+oJP9QazVHevSPFuiNd/DvRtZhTL2Y8mbA52Pgg/gT/49XnKVE1YujLm + iTxg56VbWFp5IoR1dlQfUnH9arwqSfSt/wAK2f8AaHi/R7UDIa7Rm9wp3H9BWUdZGs3aLZ9FSxrD + GkK/dRQo+gGKrkVZuDlzVeu88Qbip4Y9zCowuTUGva1b+F/DV9rNzjFvGSin+Nzwq/icUwseJ/GD + XRqXjoabE+YNLg8sgHjzG5b+g/CuAReTj1qCG7m1DU7q8uHLzzs0kjHuScmriJiuaq9T1KEbRSHI + pqZR26UiLUwHHQVzNnUgVckCvVvhTpWXu9VkX5Yh5MR9WPLH8sfnXmun2U1/ew2tvGZJpXCIo7k1 + 9D6TpUeg6Ha6bGQTEv7xh/E55J/OtqEbyv2OTGVOWHKt2Wrq0GqaZe6e/wB26t5IDn/aUr/Wvk2A + MVlhcESR9Qfbg19b2jbZQe4NfMnjeyGh/EfWbcLiIXTOB/sSfOP0YV01FdHJhZWdjC6rVOVcGtC4 + j8uQgdOoqpMMrmsYvU73qirXqHwOnKeI9Wg7SWO7Hurr/ia8uNei/BGTHj54+0ljKPyKn+lbo5a3 + wntpl+Yg1BcWf2pCOfwqzc2Z8w7TToY2jXGTVnCczL4StZHLOoJ9xTG8IW2MoAPwrqmTuTTdygYy + KAuc2mgSxptRyB7GtGy0uRBhmJHcHvWsBkUsYYScdKAPmbxJpzaTrd5pzD/j2naMe4B4P5YrCxl8 + HvXpPxj042njH7UFwl7bpLn/AGlGw/8AoI/OvNZDtYGsUrOx6SleCkIwIyD2p2nFF1a1LhiolUkL + 169vf86dL8yhx3qpuKyqwJGDnIq4mdXQ9u8LQoJIJEfA6MR0K5OPbg+nY9q7vWn+xWAjwBnBGB+d + cL4OfzI0cNuUnOQPvcZ/Akdvbv1ruvEqGbw3avjlJAuR2BH/AOqvNxXY6qO6ZabQrefEjqCWAJzT + W0O3VNoQY9q0XlKAD0GKSOXd1r046JHkN3ZgN4djjfenFWLezlgYcsaj8TeIE0e1LLhnPQVh+HPG + DXt8ILtVjJ6HPFUFjq2QP95Pzp6OYT/s1PdTRiMPGQfoabZSRXWVcY98UCIJrxQRtFSLNvUGpZbB + A/DBh2rJ1USQwMqOE9xQBHrGt2+nQl2YEgVmaR4vtb+TYfybis+PS7a8mJu5mfJ/jbj8q1G0DSIL + NnhWMSAZBpjOjbU7SODfuUDHrXlPi/xD/aOoiO3bMUZ5I6E1Q1W8n+0vbpO/ljsDWVIoVM0IpROx + 0/UHuLMBYmJA6qK9A8JaqlzEIHcl145615n4Q8R2lqRbXSAc8Ma695hBcC/slwOpA7imQ0ejPsBC + uuQaoajYxoplXio9F1y21WEAkeYOoNS63ua0aON8Ejg1AHPve26tt3AH605JklPBzXnOsaF4mtrp + riCUTQlsgKeQK1/CWpXRuDb3sbpIPUGmO2lzsZWREJ2gmucv9RvRJst4z+FdTNEHGQuc1B9lQc7F + BoEctBcasBmQqB9atpf3o67SPY1Z1SxuZkxbsoNQ2Gl3ajbPg98imM2NNlFyvzkg1dnhES535qlD + p7RMHUkfjVmThMO3FIRFhG6kVDMETpipFhDj5GH4Gj7Hu+919zQBEXhERZiOB61zk+v2S3/kOyjm + tXVtNupIDHA2M1xM3grUCzOZCzE5yRTGrHoEEFnfwgRFSSO1V59JNlmRE3DrkdawdDsNV0gDexkU + e3Suug1JpYv38ZH1oAg029lfhlZR7itJZVaQgioba7tXcqAB9ank2btyDHuKQhJgq8jFMjbntTz8 + /XBo2IoyMUAPypHagKh6gVAZVXv+tZWqa2tqm2LDOewoA2rho4IGkOMAV5T4g8WX1xqhttPx8p5b + sKdrfjK+ELwfZ5gzcD5TXGWeoSw3W9kyxbJJFUkUkd1YXGsBAbidSD2AxV0vdpIJBOBzyK4698S3 + McQ2JjHQhTVRPEOrTrhFU++2qCx6DJrElo6ySTjaOtdvpV5p2tWI2+XISvIrwGXVLudzHPkHvXo/ + gS6tERcTKrjqM4qWhNWLureF7camXjhABPpxU1tpq2bLtj2j6cV1j3UDOuSpJ7E025ijZQyKB+FI + Rzs0UolVl2kDtVyW5eS32bMGnzP5TAugK/TFWY/ssq5XGfrSA4y98KRX9wZZY+T7U2HwTBbyrLCM + MvII4rtyijoRUUjqgyzCncLlK3E8caxs2cVYmuBbwlmxxWVqHiWxsDtkkUH3NLY6tZ6vhVZWHsaA + OK8Z6vdXv7i2hkZc/MQKoeH7+SyKpNauv+0y9K9RfSbUcmEHNZeoaPC6/uoAGHtTuO46KKS/s98L + YbHTFU5LXVbcbVbIz1xkirGmG9sT5e35PatWOSaWUbvxyKQhFOTT8gCkGKdgGgBokFPDikEY9KeE + HYUAA5p4FIFApwFADgKcKQU4UgFFKKSnCgBRTxTRThQA4CnAUgpwoAUUtFLSAQ02lNRO20UDH7qU + NVffR5lQ2UkWg9OD1T82nCSkOxdD1IGqmr5qZWpXAtA09TUCmpQaYEwNLTAacDQAtJRmkJpiA03p + S0hNMRTvDLMwtIGKO4y8g6xp7e57fn2qzb28VtbxwQqEiQbVA7CiNBHuPVmOWb1NQ3zstlKEOHcb + FPoTx/Wi4GD4TT7Tqus6lIPnaQRx57IcyfruH5VqeI9S/snQr69Bw6RER+7nhf1NJpcC2mpX0CjC + OkUqfQKUP/oI/OsrxSxvr+y00corLM465YtsT+bH8BTuO2py/iKxOmeALDSQP3lxNDBKPV3be3/o + OKi8P26yfEfWbvBIsrWOBT6FgP6A1ueNIw1xoEJGRJfmQg+ykD8tw/Kqfg6INNr14cZudUMYPTIU + DH8zSuWtjlPiTvvPF9rYKQdsSpt9CRk/qaw9LhVfEmu3GPlhjZAc9AWx/LNbupL/AGj8T7tyflt9 + zf8AfK4/mBWRafutO8RXqjl7lYvoAST+n8qzbOiGyRzOmqZbl5Mdnb25Fem+F4isLtjLvZTKMeu6 + uF8O2w8u4kI3AQnn05A/rXp/h+BUtrFgOHtrhT+BFRvI1qO0bHVeH47Nfhqv9oqpszbM04bpsCc/ + oK+dgEK7kBCHlQeoHvXq3j7Wzovwl0zS422XGoRhSB1EY5b88qPxNeUW5zZQN3KZ/U1dVe6Z4Z2k + yeEgtXf/AAstln8e2rEZEME0v47do/8AQq88gf5/xrtvh5rcOi+ONMNxgRXu6zLE/dLgbT/30APx + rnpr30dVf+Gz3mcfMahxVudMMahVMmuw8gdBEWYDFeB/G/xmNV1lPDdjLustPbNwyniSfuP+Ajj6 + k16v8RvFyeCfCkk0Tj+07vMNovcNjl/oo5+uK+UZWZi0jsWdzksxyST3pmlOF9S/o67ppG7BcVse + Xis7TU8m2BP3nOfwrUSTPBrkrP3j06KtEVVFSBaeiq3PSvYPBnw2trS3t9W1tTJOwEkVowwqdwXH + c+3bvms4U3N2RVWtGmrsPht4ROmWo1y/i23Uy/6NGw5jQ/xH0J/l9a7aViTU00pdjUBFd8YqKsjx + 6k3OXMx0Bw4rwz462BtvGVpfhfkvbJcn1dCVP6ba9yThq87+OumG68JabqarlrO6MbH0WRf/AIpB + +dN7DpO0zxhj5+nRTDkr8jf0qk3KkVY0hvNWe0J/1i5X/eFVCSsrKa5ranpp6FV+Ca7X4P3Ig+Je + mqTgTJNF+JjYj+VcVNwTWr4Mvv7O8caHd5wI72Ld9CwB/QmuiJyVuqPqm6VhIcVErEdRV+7TbIRj + pVbywetUcRXc7uKjEQznNWvIHWlEI7GgCFWAGKehw2e1OMAp4jx2oGcD8ZNJ+3+ELfVI0zJYThXP + /TOTj9GC/nXgEo4zX19d6dBq+k3emXP+pu4mhY+mRwfwOD+FfJ2qadcaVql1p12my4tpGikX3BxW + bWtzroSvHlKUZ3RMvcc1Vk61YhO24APQ8VBMNshBqo7lVPhPZPhveRT21uCcgYU89PbP4ZGffpXq + d/bmXR5YX5bzoTn/AIEteF/DG5ZWkCsN0TA49vr2/l69q+gFC3OleYijDNEx9sED+lcOIjeoka05 + WhcjlYbjn1rPvr4WsLMilj6Crs0BbpUQs933wG+or0DzTyfxNNrOsXq+VaHy1OeT1rLTTdbicOls + VZeQQele3rYw/wDPFfyp32OL/niv5U7jTPNtL1PXY8Jc2xwBwa7vRr3z4cTIUfHORV37JGP+WK/l + Si2QcqmD7UrgBaSNsjBH1rkfF19qItWFnEhfHUmuw8o9M5+tQvZxucvGp/CgDwojxBLNua3uGfOQ + c4FW7i/8XR2hj+zfu8Y65Ne0/YLZRnyBQLO2YYMAx9KdwufOpubuJibmKZXJ5LIaFvGnOxFZj6AV + 9By6Dp84O6BfxFQx+GNPhbKQIPoKLofMeJx2VwIw4tpc+uw13Ph/WpUsRBdQOMDGSK7v+yrTGDGP + ypP7Ns0/5ZL+VFxXOe0ciG98+Pcu78q7S4zdWYMb/OBVBbGAD5FA+lTRI8Qwp4pMBmms7O0d0o9K + mnsrOKTzFRVao3Vt2QBmk8p5PvNSAlSeIcZFDmNuhqEWWDncaesQU5yeKBCSKEXIFMDEJuPQVNJy + MVXnjeaBo0fbnuKYHI+JfGH9kyrHGCxz2Naug6/a61a7t4zjkZ5FZ0/gO2vboz3TmVj/AHmrW07w + haaaD9nULnrigehXvdestIkPmSgegrHtPG0Wo66lrACY2/j7ZrevvCNpePumAJ9TVS38F2dndJPF + jchyMUBodYwAiViM8VRmk54B/Kr4mTyQhxwKgcxgZ/pSEQJIpGGWldIyuMcVUkusS4SMmodS1ZLC + 0M0pxgUwL/8AZ8RG8KBUMk8NucPL+Ga4jUPHNwtsTbxNgjgnisbR9Xm1S7827mIXPOG4FNIdj1aG + SO5wI5BmlngnjHBrl7RTbyh7W5OP7pORW7Fq8uQkq8evaiwjH1BNWm3x2mzPqTXKiw161vWluYfM + X/YP+Nd1d3YtpvtCMAD1HatCx1Ozu1Hmqh96YHmyaskd7tvbZlHq6dK7Kz0bS9TiWVVjZsdMc1F4 + tOkw6fLL8gIGc1xvgvxRv1L7MH/dg4Xce1Fwsz0eLwtplxmGW3XkYGRmuE8YeGYvCam8hjP2djyA + OB716Re3Qs4Uuw3ycZ9qZqa2nifRGt5drK4wQe9IEz51N4LiZpSOCeKkhneKUSQSsjjupr0FvhNC + jMY55gp7Bqrv8K51bMV1IB7gGmaKSOdh8R6pCyFrpmAPQ16b4b8VDULZI5CN+MHNckfhhdZG66cj + 2AFb2j+D00hg/mszf7RqROx1N9bpdwEF+o7GsqC3+xZAkz7E5NWyNp+/x7GporZJhnOaCCtaXUjz + 7WBVfrVjUrSSeDbC7KSOoqf7PCnJAH41XuNTt7VcM+SO2aYHKyeBI7iYy3G+Vz3ds1p6d4Vj0+dZ + Ik2kelX7nWYoLYzOQq4zyazdN8WLeuSsZEYON5OBQB0jltoFKgyORmore/tJyAZApPvVwwNjKYI9 + qAICi/3R+VVpLiKFvmKio9QnniiYRoS3sK871RPEtzcsY4wik4BJJNAHoapingUoFOxQAgFOAopR + QAU4UClpAFOFIKWgB1KKSlFADhTxTRThQA8U4U0U4UgFpaSloGI3Sqkx5q05wpNZs8nU5pMaEaSm + GX3qEyDHNRGTmoZaLYlqVH96oK9To1SM0EarKNVGNqso1Ai4rVIpqsrVKGpgWAaeDUAanBqBE2aT + NR7qN9MB+aTdUZeml/ei4WJS1QTfPJEO2/P5An/ClL0zcDID6Ci4WG3WYWS8QEmEHeoGS0Z+8PqM + A/hjvWPaKt5rkl6CGjfDxkcgqo2KfpneR+Fat7KTbGJDh5v3an0z1P4DJ/CqMUQsb9GjB+zSlYwg + H+qxkjHsf5/XguOxkeMiRr/h/A+WO4P4ZQ4/kfyqPwWhXRbMH+O8nlbPXjaP/ZqveJ1Wa1nueptr + iJlPoBjP6M1U/B7eXHdWpwPsk8wHHJ3sGB/ID8qTZSWhx/h0C78U+IrggE+W6g/Vif8A2WsVVA8M + apjOyW4dgT0ztUf+zmt/wQCz61cKoLyXQTn0y3+NY88fl+A5f+en2uXP/fSCpbN1uJ4Rs0fRr9tv + zGylb8nFegaUgTR9OlA/5Y3OOO+FNYfgaxWTRrlcZ3WVwP1yP5V0mkpu8H2EoPQzITj1H/1qmIVX + qeV/Ge7kHiu2045EdnYwoo/3huP8x+VcxC+2BYu8aqp/LJ/Umu2+OdiIvH9nPj5biyjJ+qllP8hX + nccpM0pzwzVtPVBQ7l+Fx5lO1Z3WxjmjYrJFKrqw6g+v8qrQPl+as3ZElnKjdCOK5VpNHbNc0Gj6 + k8L64nifwjpmsKRuuYAZQO0g+Vx/30DWlLcW9hZ3F9dyCO2t42llc/wqoyTXn3wOZm+GiKxJCXsw + HsPlP8ya6nxvYzaj8P8AXrW3z5z2blQOp2/Nj8QMV1N6nkWPmXxr4vuvGniWfVLjKQD93bQE8RRj + oPqepPqa52JDcXCoOFzz7CocnpWjZoIht/jIy3t7U5aK5001zWj0LJmAlCrwBxVyNwayx/rKvQZY + gCuaaO6J6F8MNETW/FMbzpvtrNfPdSOGI4UH8efwr3W4kLMa8/8Ag9p4tNDv7lh+9mdQfZRnAru5 + OWrWh8NzzsW26luwzrRilxS4rY5hoHNVfFGkDxB4L1bSwu6Sa3YxD/povzJ/48BVzFXLV9rA+lAL + RnxjZSmC9ifOMMM1c1OMLOsyD5ZMnjsehH51c8c6V/YfjrWbBF2xxXbmMeiMdy/+OkVTL+fFcRHq + As6fiBurKS1uejCWiMyf1qKCUwXMcy9Y3DD8DmpZulVu9ax2MK259qyyCeKKcciVFcfiM/1rA1rV + l063ZsjOKs+Frz+0/AuhXYOTJYxAn3Vdp/VTUF/o0V8/775gDnFM5Dj28Z3bKxSBz6d6z18aaqty + GeIhM9CDXfR6FaRJgRD8qzrrRk835LVD+FVdAaWia0upQKWGGI5zWxIY4wCxFYVnpjwAMo2ewq5K + juBuJ49KlgaaOBgjpXjvxx8M7Z7bxRap8swFvd4HRwPkY/UDH/AR616iLpYlCntT7qxtfE2hXukX + gxDdRFC2M7D/AAsPocH8KTRdOfLK58iSHlXHXNNvBi4JHRgGH4jNXNV0250jVbvTLxNlxbyNG49w + ap3fPkn1jWkjpqPQ6/4aMo1mZTncUHHHI7j/ADkfoR9E6BNvsJ4Sc4GR+Bz/ACr5r8BCePWhIkTl + HHlh8fLu6gH8cfTive/D9+qzI5Y7JBsJPHXjpXJiXaSka0FzQcTp+CelBVaAMgH1FIyjHLfrXYjz + hPkHengj1qo01tD/AKyUD8afDeWk33JlP40AWCPbNMKn0pwkQn5XBpTLGOC6g/WgCPkfw0Agn3qU + EEZGD7inLGr/AFoAh2+1G1fSpWgYdORTGR16igCMj0FNLetSFqaUDCgCGSMuPlNJHA38VTY2+tKZ + QB0oAURgCm4ANRSXOwZpkbed8wYYoAs/LnmgoO1J5XHNKFwOoxQAzHvTkjB70uF3feGfrUbllOQT + igCU24Peo3tD2NRedID3p4uG70wGm3dehNKN6e9P8+mGbJ60AG9m4Io8tm5xTd5z1pWudnWgBfs+ + eooNsp4xTRejFRy3rBCUHP0pAE0cNtG0rhQB615P418QC7vBbxEeUhy2O9bPi/U/EE0TQWNpIwPG + 4cCvPT4f8QOGeW1YsTkknmqSKR2+iy6fqNgInUZxg8VY/wCEMtInM0Uvlk+hxXJWd3Lo9hsliKS8 + 5yf5U4eK9S2YWU496Y7HeaZpQtpCPN3L/vVtmwkaImFs+4ryIa7qjvlbplPrXpHgzWzdW4iuJC0m + MEmkS1YbdwzxhhcKSvtWQZCAyREj0J4rutQtSFMhQOvWs6IWN5E0QVFboQaLiMDQore4mdL5ic8c + tkGtm8+HlhNCbzS8Q3AG4MgxzSP4GiuV820maJ8dUatPSo9U0iMwTy+ag43HrRcZwt9qniIQtps1 + kGZfl8wHgiuh8NSTxQJDcIygetdBMyXALNCpP0pqwLtBChcUgJryWVIQYRnHYVWi1aXbtkiZcdTV + 6PphmBpWgiYcAfgaBD4riOeLrzUb2kcucnGartF5ROeFrH/t60a+Nss43DqAwoA2W02PPBB/Cnx2 + 4iGFAx7Gn253R+Yrlh71E+o2sRO9wAOtACyQK6kHIzWTN4at7hzKxJIORmrz63p7KSso4964/XPi + La2G+G2zLJ0wOaaBHNeNri9inOn2aO4PB2jt9azvC+najFeBroNFERgjOagufFl7czNK1vHljn5j + XR+HPENsyBb5NjnqR0xVX0KtZHSSeF1YLcWM7q/X5W4rorGe4tDHFO2/tnGKNJvNMkjDQTpz71oP + Es7b42BPYZpEE0ot2G5sKTVWWKAoSNp965jXrzU0l8iKFtvTeMVkRz6pCMyPuA9ipFKwzsKWkzS5 + oAWlpKWgBwpRTaXNIB1LTadmgBwpRTc04UAPFOFMBpQaAJBThTBThSGPpabS0AVbyUouBWTLLmtO + +Qlc1kOpzUspEZf3pN3NKy4FR1DLRMpqxGaqpViM0hl2M1ZRqpRtVhWoEXFapQ1U1eniSgRbD0u+ + qnm+9J51MC4ZKaZapmb3pvm0XCxcMvvTTJVMzU0z0rjsXDLTTN71RaemGUnpSuOxa83zLgt2jG0f + U9f04/OnM+dvoDmqgkCrgUnm5I5pXHYW4iF3YXlvkfv/ADF/EjFY+iuU8u+GQtxGI5h6OucE/mR+ + VbELfu1+pP6mqOmRrHc6haEDHm+agP8Adfn9CDSuUjmPAYH2LU/lO1r3g/QVlTLjwUd2AGvJAQe2 + XH+FbngWIppt8jY4vcn9Af5VlX0WfBUqj/n+kGPq7j+ooNFudN8OoiunQo/V4WQ/Xkn+dbHh2JT4 + Y8k/8srtuP8Avn/69VvCQCAbQABO447ZXNafh5AHltiMqbqSQn6f/roiRN6nn/x6TPiLQ/UWbn6/ + PXkBQqCRXsf7QKsNQ8PygcmGZc+uCpx+teNmTKc1o73NaLXKSW7/ADYqzcSDYVB5NUEYjpViAeY5 + LDPGR71Ljrc359LH0R8EIynw2BPRr6Yj/wAdH9K9IhAJ2kZU8EHuK5j4f6LL4e8AaVYXClbgo00q + nqrOxbB9wCB+FdND98U29Tz5bnxx4l0xdG8U6tZKOLa7kjT6Bjj9MVStATuJre8YXC6p431y4UfK + 97Lj6BiP6VnJbbI+OtEpaWO6lGyTGrEvXvWnYwKFaRs56Ko7mqUS4OK27CFoI/tci/u4/mA7se36 + 1lLY1vdnt/w4haHw9c7hj96q/koz+prqG61neFLCfTPCdlBdLtuXUyyg9QzHOPw4H4VpEc1tSjyw + SZ5deXPUbQ3FLinYoxWhkNxU0Jw1R0qHDCgDwD49acbTx1BfKvyX1mjk+roSh/QL+dec28mJrZ89 + Q0Z/z+Ne9fH7SvtXg/TtVVcvZXRjY+iSD/4pV/Ovn2A5t2P9xwfzH/1qGjppS0SGymq/epHbJNRm + qirIVR3Z9L/BPVRqPw8NkzZk0+4ePHojfOv6lvyruHX5jXgfwK8QLpvi+XSZmxDqkXlrnoJVyy/m + Nw/EV9AzR7XNDOdrUr5IqldXwgHC5/CtLZmoZLdG+8gNAjKi1SWU/wCrOKmXUPmxJFxVvyETouKU + xoRhkH5UAR/uJ0yEqW2YQuNowKciRqOFxT12gikB478d/DHl3Fn4pto/knAt7rA6OB8rH6qMf8B9 + 68YuTlYf+uY/rX2F4n0eLxD4I1fS5ACZbZmjJ7SKNyH/AL6Ar47nYEqAchVAzTRspXielfDudH0p + opAoCsYyQcEqx689wfT1Hoa9I05RFLLFKCMDJ4xweCfbnnj1ry3wU0w8OT7VV1DFgvfjOf5rXW6N + 4iSWC2l384KSoRyMYBP05U1y1oc1zroy5bHp8WqxRWafaCFf7pJP8X+eaxNZvbyWP/QpPxqKz1Ky + u0WOZwYJ0G72HY/hWsujG1+UYK1dCd1yvdHPiKfLLmWzOYitJbm3Y3EzeZ7msphd205VJCF9jXoJ + 0uKRcAYP1qvJ4djYHIzW9zmOe0a5uhL80zMPc1c1NbmX54XZSOhBrQTQTACYxVm2sXVsSYFFwOes + NavLVfKuAWI4DV0dhq7SAFv1qabRI3G4AE1X/sp4jlQQBQBuQ3iP3qcujjtXPi3kTkEg0x9Xj085 + nlA+ppDNua3yCVNVIfMWXa3I+tcRr/xF2g22mIZ5jx8vQfWsTRtU8WPei5u5R5R5CYp2Cx64VB6i + mNAD2Fc3b+Irme4CNCw9TiugF6kUYaWRR9TSAbJaBh0NMW1WBclsD3qjq3i3TNLg8yaZeeAM9aZF + exa1ab4p8Iw/hPNOzESX1/BbQMwlGVHrXnl58TDFcyQRZYqcZwcV1Mmj6a4dJ23jvuJ5plv8OfDm + tWjvDCsc395TyKdrBdGDo3iG7vpfNkmOXb7oPSvTtLkiurYCZcnHevI774f694d1BJbKQ3FsHyVP + UCvRdHuJPJVZFKtjntQwZ0DaamSUPHbmq0lsYzyM0faJ4yCpyKnW6EoAYYNSBRl2opJHSuej1e6f + WPs4tT5A/jzXU3Fs8i5jx+IrKmjmRgBCufWgZoHytoNM3RNwVqsQUjDODn0pPtduqZPWgRYeCLqK + jWIBunFVodRheXYWIHbNaCeW/wBx1J+tAB5UWOUWqs9vuBEaL+VXShA603B6incDhNf8HXOrxlFZ + UHqE5rmx8LLxF4u2z9K9eDknBJoZWxkNRcd2ePD4e6vG+0Soy+64rqPD/gy404h2mfdnJGeK7Uz+ + XGzMc49BWGdZup5m+zRSMqnH3cUBdnQLFJ9l8p+SOhNcfeeF7w3rzRTlMnjbxXRQ3lyUUyRlT9Ku + C8VgNzAexoAzdGt7+yQLLMZPcitKcSvk8UrXcMalmdRiqya1ZyOUWQE0hCeXKBjApDDIR0qyLxG/ + hOPpTvPjIz0pgZxtZOu/H40qSJbg75hkdsipbq7jWJgrDd2ya5O10W+u9Sknupl8ljwooAyvGXjj + yFayspB5p4Leled297JFcicOWcnLFu9e2HwXo0nzPAjN6letRN4M0oHH2aMj/cplJpEXgXXYdQh8 + gudwGCpPSulu9Gtpt54xWJZeF7bTbgz2UYjY9dvFabG9znr260haHE+JtMmeJ4LE7HPVgelcdafD + /VrgsxmAOf4lzmvXJdOmn5xtPeq7aLdxDfDcEN9CKdwueeRfDXUzjfONvstaMXw9WOPE8shP+9iu + 3E2qQQbDGHYfxA5qe2vJpkKXUBX8KLhdnAf8IitmC1reTr6gSVvaNdXVioWSdpFH94V1At7Rwcxj + moJoraMHbED+FFxANSgniyUUmoJvKmhIEYJx61TdYXzwF+tKl1bwrt80UAXwaXNRbqXdQBLmlzUQ + al3UgJQaUGo80oagCTNOzUWaUGgCXNKDUe6nA0DJQacDUQNPBpASA08GogaeDQBIDS1HmlzSAjuD + uXGM1n+RuatMkd6rzPHGpPANDGjKuF28VUJ5qS5m3uTmq27JqGaIsoanQ1TRqsK1SMtq1SCSqm/i + gSe9AF8S+9L5vvVEScdaXzfegLFwyU0yGoUfNKzLigQrTYqM3GO9VZpxng1B5pJpFWNDzie9I0pF + UvOwKDNQBc3n1o31S8+mmc+tAy603akElUw+41KpqWMuxvhQKaPl1NJB/wAtIWU/gQR/M1ErYp4O + bmA+gf8AkKkZleFU8u71m26bLqRunqQRWZqNuU8Maog/5Y37MMf74b+tbOjL5PirV17SBHH4pz/K + m6lABp/iCLH8Kz4/AZ/9BplX1NXw2oBO3PJV/wAsr/QVr6DFtaaX1lf+f/1qzNCGxLVuMSRH+Q/w + ra0sGOA+8jn/AMeNCIkcf8dbLz/CGm6gFy1pebSfRXUg/qq188Sn0r618Y6M3iXwPqmlxjM7w74R + 6yIQyj8SMfjXyckDTPgDp1rWLLpaqyIkdhW54ZkEWv2ErqGRLiNmBGQRuFUhYFRzW34c0me+1qzs + 7ZC088yqgHbnk/QDn8KJSTWhtyNLU+s7g/OfrSQ/eFNlPzdaSJsGpOI+SLizkt9Yv45x+9SeRXz/ + AHtxzVeRiDxXefEzTBp/j7U9q4S623K/8CHP/jwauKMO5sVK1lqd6fuKxWR2DV6V4F0iLVNb0iOY + s6iQzyo3QhAWH6gVwaQhORXsfwh0wMlxqTbiY1MQyO564/AfrRJXasS3aMm+x6XO2WqGpJOtMxW5 + 5wlFLiigQ2gdaWimBj+PtOGr/DbXrXbuZbRp0H+1H84/9Br5IiO20mP94qB+tfa7RifTrqFgCskL + qQfQqRXxI3ECj1JP8qZpTZGTSUUVQixY3k+nX9ve2zlJ7eVZY2HZlOQfzFfY+k6tb+IfD1hrVvgR + 3cKyFf7rfxL+ByPwr4xr6I+A2qNe+DtR0p2ybG5DoPRJATj/AL6VvzoFJaHpXmID1pd6HuKrzWbH + oxzVdbaeM53k1JBpYU9qPKU9BVR53jXhc0gvGCZ2HNAFkwilWFc8VQiuLiSbLABK0lUYBBoAzPFu + p/2J4F1u/OMx2bquf7zDYv6sK+OjX1B8Z5HT4X3YU8PdQK2PTcT/ADAr5hIpo0itLm54b8RS6Jc8 + /NAeq+nr+f8Ah6V05kjmvGudPO1JcSbW+78wxgjsQ38/bNed4rqdIu0MEMStsO0xsQOvX+WVqZrq + bU3fQ1tP1qbTnMYLGBsSRhuuOOM/T+lfQXhS9/tnwtaXbHJwUJ+nT9CPyrweHTPP2KQDKACu3jPH + +Fez+ByNO8HQwHkrI/8ASueMl7W3U2rQfsb+Z0LWnPynFMaOVR96s288RwWalpWAHvUmna/a6jEJ + Eb5a6Tzy2fOAPSsu7s72ecOrlVHpW150eMhhg00zxjqwoGZcdzeQMsbqSPWrP21ywUrx61ZZ4mGf + MWhVibk4oAgJDA89a53WfDI1VgXzj0ya6sQRk5BNOPlxKSxAA7mgDhrTwZFZnKxg4/CprqwuwoWO + JVA9DVnUPHulWV99m3hiOCRzWrZ6xp+phFjmX5h1FPUDkNU1I6RaeZIoVwOMGvP9S8UajqMnN0yI + DwqnFer+J/AT67GVjvHRT6EVyTfBmVEwmpSg+4BpoaaPPbiWa9cebK0hHTcc4rb8PazqGjXkY8xm + iPBVj0rqLP4TXdpPva8Mg90rQufhg9woP2lkYd14p3G2jZtmi1WyeTgOVzwaxdA1q40TXngllHkM + e9aujeD7/SkKfbHkX3xV6XwlHdNvmQF/Ujmlcix0mo6nEmn/AGrhlAzgd6paPqGn65BvgK7u/qKp + toc4tjbhiY8YwaTRfDw0m4aWL5dxyRUjsbEzC1bDjIpFuIG9KtXMS3UWG4NZEmnxq+wyBT7mgDWS + eP8AvcU5ljcZ4zWSLCdR8rEgdKkT7THwRxQBbkiVhgqMVUk0yCQcr1qws3ZiAawPEviyz8P2293D + Sn7qA0agXH0CInIJB9jTo9Mmt3BWU4HrXlr/ABT1IXDSeXhB0XOKSb4o6hJbbtqh2+6o61XKw1PX + BtLbGmUN6U5YC67o5OBXz0nibWm1UX8l64OfuDoB9K9K8D+K7y73rKFliPVjwRRyiasdz5E+eWWn + PZXhTejZX0FYWqX81liaJiYXOCDyFq/perTWuVluEkVuVGecUWFc57XtdudNkVRaySrn5to6Vlf8 + JwjOkVuqpIRyHyK9Rkj03UowZI08w+oxWLeeEdHuM+fZoT/exRcZzGm+IZbi9W3uWVd3TB61p6hE + tvNHOJfkByRmoz8P7RJluLKVw6HKqxyK47xxJrVhOsDxy+SeC6KTRcdjpdX1rSp7Ir5u1unDYNTe + GtH01bUXCJhjyWJya8WmnTPzlgf9oHNdh4Y8TiKyNtI2QvTPpTBxPZrJLfcRkHmpbyzgaInAA/lX + nmneMbe2uFD52nv6V1w8T2VxD8jbhipYiEWlmJ8NI2fQ1fW1VBx0rOju4Z5w4X9a6GDyp4Rg4OKA + KWwD2owoHSrE1qR0b8qgMToPWgCJp1TrzUMt/HGmStStsH+sFQsLXPOKAMmbxVZQNtkBB9gaLbxP + ZXMwjRiCfU1dlsrBju8lTUZsbFSGWBQaAL6yMV3LhxTgyyD7oDVBEBGMofwqbzkxl8D60ARtbOeQ + xpvkuvUAinNJG33JB+dKl1GjANIufrQBA9tHIOY6oy6LbPkmEZ+lbTTx+1Y2qeKdO0mRUuW+Zuij + rTAi30b6r76A9AFnfTg1Vg9KHpDLQelDVWD08PQBY3UoaoN9ODUgJw1ODVAGp4NAE4NPU1Cpp4NA + EwNOBqIGnBqAJc0hao91MZ80DHSS4U/Ssa4mLMeeKuzOcYrNmGATmpY0Vneow1NduaYG5qWaItK1 + Tq9UVepRJjvUjLe6m+ZjvUBnGKiaagC55vvSiWqBmpPO96AsaouAF61WlvDjGaoPc4HWqj3HvQFi + +1zk5pv2iswze9HnH1pFWNMT+9O80etZqzU7zs96AsXjLTkfPU1RV81ZjakBeVlxUoIPSq0TLU+Q + OhoAmBINPRv3pb0GB+P+RVffT0apGMtwY/ExlHSS3GfwJH9RVu8jD/2iO0lkR/6F/jUKLnUoG9Y2 + X9RV24X9zPjqYtv55H9aAuO0LP8AZ1sTw0W5Dn2JH+FbcBCRhfSsq1jFvPJEOFbDj69D/IVfV8UI + lmzaTYcEHpXzF8RdH/4R/wCIOqW0Q2wSSfaIQOmx/mwPoSR+FfR0EuGHNeRfHeyA1TRtSUczQPAx + 90bI/R6uPYcHZnmMcr465zXuvwb8NpZWlzrV0mbx8RRbv+WakZOPc8V494StIrzWoVmGVX5guOCR + 619G+DPk0FzjG6d/6Cpk7TUUbzu6fMdE7ZNCHmoC+TTkbmmcp5d8arIC90fUAP8AWRyQMfoQw/ma + 8tCc17d8Xrbz/CNpOBzBeLz6BlYfzxXjPlnOMUJanTCXuBBbvczRwxJvkchVHvX0l4b0mLQvDNlY + xAbhGHkbH33IyTXhPhWH/ia72HKrxmvohRiCIeiL/KmvisZ1XeKZC45puKlIphFaHMMopcUYpiEp + tOxSY5piKuvXp03wjrN6DgwWMzr9Qhx+uK+M26AelfZXiW3S68Ea9BIcK+nT5Pp8hOf0r43K5NM1 + pq6ZHijFThBgUhQAUcxq6TIcV6l8CdXNh47bTmb93qVs8eP9tBvX9Aw/GvMgldv8I7aSf4o6KYwc + RPJKxHZRG1FyJU2ots+n5FyaiKipZWwahMi+lBzibVPUUhiT0FL8rcjilx70AM8tR0FKAAetOwKT + YCeaBnM/FPyT8KdbEoU/LFsyOjeamK+Vdma+rfiTp7X/AMMddhj5aOFZx9I3Vz+gNfKyHb1pNnRR + Sa1ItmKkimkgcNG2CDkU4nNJgY6UXNeS2xt6X4huxe2sZJOJFHrx0/lj8q+jNHSSPwxaNtJaRWf8 + yf6Yr5k0tVS8hmYj5ZQMf5+lfXumRKug6cjj5haxZz67RmsuRe15l2FVk1R5fM4m8s2nkzJGSPQi + pLWNoI/Lii2iuze2jb+EVSn012BMZA9q2ucZylydVJ/d5VagWXU1H7zd9c100ljfMhUMAfXFSpYn + ygJyCw74p3A45m1XzgysdorWtLu7CDzRx64rUmEdvC7bc46V51rHiPWbi4kt7G2aGMEgSFev0oA9 + Iga4mTdE1cv40bxItiUsYWZW4YqeRS+GNS1BNMdZ5i9wo43DrXR+HNcudQVo7+22MO5HWgDwY215 + C58+znEmcklCcmtCx1PU7W6iYRTMinoUIr6BmsbCVtzQIT9KhbS9OP8Ay7R/lRcrmMvw34jGowpG + 4dHx0Yc1t3M7qcqagWytYnDRwhT7VOw8zjaaRIW9y0iYcDdTmdxnIGPrUPkunJWnCQYwQfxoAf52 + 0E7hTBfR8/OM1BIuT6fjVRbFTNuLH86ANdJt49KfuYe9UGEgUBD096CbrcMdO/NAF4s2Ohqnc2Ed + y4ds5HIqdPNK8gVGzThx8oK96AHLdLEgU8445qZbiJoy5wABkmo98RHzxisXxdqcel+G7maMbWKE + L9TQB5p4o8a358Qzppk4W3T5RkZ571yV1JPqFwZ7uVpZT3Y9PpUaFZHznLE5NW0Axinc1UUUZ7ZP + LyQCaZbWYX73Jq5MuHHHFSKBtyKOYdijcW+BgelavhXWf7Dv2LKWicfMB1FUpQcdam0po1vFkmUM + nRhTTJkj13RNS07xBDLaowO4H5T2Nee6vHqXh7W5LdZWYod0Qc5DL6VObq00O4g1LTpCj7sSJ7Hv + TfH+qLqY0yaJx5xP3lpmdtTsfC/ihdYgFvNG0Nyo6E9fpXodjKJIBG/LY6mvnWy1CTRdRtbmR8gH + 5sV7Zb6ot7oiXti6s23I5pNCasdFG0UE+CcBqW5t7S8Xy7mJHX+EkVg6J4istZ32k4CXMfDKeua0 + TObJ2SQ7o+oNIRiX3hTTXkYSWqMjdyM1Si8FaRbOXgt0Qn2rqrTVNP1ZJIYHzInBB6g1XeJ1bDZ6 + 0DMmPQtPj6xIT71bj020QYEIA7HFOubYyphHKt61Fb/aoV2O28DvQBMdOg6oADUkVs0P3W4pRISO + cg0F3HfIpATeY4xu5pS4cDiq5lboRSea5OAP1pgLLaRy/eNVjpEIOc1M8rgcg003LAYx+tADBp8S + HINPMCgY61HJfKgy2PzqnJqcjA+SAfxoAnupbe0jLTSqg9zWRJrFjFP+/c+Ued3as/UtJfWSGu5X + 2A/cDVONFha2WEQYQDHPWmBFH4q0D7d5Kze2c8V0kUNnMglj+ZTzkGuWTwbYK4cwqOcngV0FlbpZ + RCOI/KvQZoAufZof4W5+tVJ9DsZ5A8oBb1Jq6ssbD5htPuaq3X2dgQ04X6UAc55lHmVQN2o6U37W + T0oKNLzKUSVnCc+tPWagDRElPElZ6y+9TLJ70hF0PTw9VFf3qRWoAthqkU1WVqlVqQFkGng1ArU4 + vgZoAn3+9G+qTS88UefgUDLbSYqJpsd6rNP71XknpDsWZJhjiqE8uRimPPVSWXPekykhrvzUe+o3 + eoWlqWWi15oFIZ6pGb3qIzUh2NAzn1pDce9Zpn96aZ/ekOxpGcU03HvWcZ/emmf3oCxdecnvUDS1 + WMvvTfM96BlkyUB6rb6UPSGWxJUivmqYepUbmgC6hq3GrN0GapRHkVrQN8oAxQkSxFJXrU6vxzTX + UMeByakjgLYHfvRYVx8as5GBV6OzymT1qezt1CdOa0EhFNRJcjLFsy3MDehI/T/61X5IQ21AP4gT + +Bz/AEqYxjfH7En9Kl2jOafKLmIXToe4NJuINWCuRTCg9KloaY6FzkVwvxrh83wnplxjJivdufZk + b/4kV3aLzXJ/FqLzfh87Y5iuom/mP604rULnkvgkga0gPoe9fQnhoiPQUA7yOf1r538Hts16346n + H519BaI+NJQf7b/zrOp/G+R0v+D8zZD5qeM5qmhzVuKmcxj+PrcXPga+UjOxo3H4OK8WS1zzivd/ + Ekfm+FdRQjP7nP5EGvIfsoXJrSCHzWVg8OwFNR6fwmveB/qk/wBwfyrxjSECXgYDnaRXs0RzbRH/ + AGB/Kk1745O8ENIppFSEUwiqMiPFJinmkxVEjabTzTTQBU1+xuNU8Jazp9p/x8XNlNFEPVihAH49 + Pxr42wQSCCCK+27Z9jg+hr5R+JXh9/Dvj3VLXyysE0pubc9jG53DH0OV/Cma0XrY5ME0vWjFFB0o + X+E17t8CfC5trW98TXKfPKDbWoPZQfnb8SAPwPrXhGeK+svh9pU2hfDvRrG5UrceSZpFPVTIxfB9 + wCB+FCMq8vdsbkgJam7fUVIXGaYXC80zkGNjp0qrKbjd8jDFXDLGRk0m6HPDUAV45JgMMKY/nlsq + TirjMAvy4Jpu9+oSgB8EK3ltLa3I3QzI0Ui+qsMH9DXyLrOkTaPrV9pko/e2c7wt77TjP49fxr7A + tZDuyy4r5g+JciyfEzxBJH0+1FfxCgH9Qame1zpwr95o47y2z0NOETHoKspcYOCAfep4le6mSCCM + vLI4REUcsxOAPzrPmZ3cqL3hDw1feJtet9OtIyV3CSaQ/djjyAWP+eTX1VKwTasfCKAq/QVz/hTw + 5p3gfQI7IFPt8yq95Pnl3x0B/ujkAfj1NbBljkQssny+oNaJW1POrVOd2Ww/zj02mlWR2J2ioITH + McpOGI9DUsiSRfOqZPqKoxJkZ26pzTJEOcGItn0rNm15raUJLC3PGcVpW+oRzICDg+hoGMMMHRwB + nsaY9haAZKLz6CrhMcp3EAkVBdXdraRhp2VR2yetAFNbW2Zztj2Y74qxHaxwnKYNV7vxBpNlatLd + TJGgGRz1rhpviraQzyLa2EskeflJOM0Alc9FdlXqvNQSSuEJjXca5TSfiPY6nPDFNavAJCFLt0Fd + zJbpHEJUIKEZosBix31+z4+yDGe9Q61rlxpVk00dm0suOFWtpHjbHzAH61k6zruj6PGXvbmPd2Xd + kn8KAIPCviG/1m0lbUdPa2dThcqeR+NaDPP53+qyueteb6v8WXRhDpNjnn78gwMV02g+O9M1OzjF + xI0dzj94oB+WnZgzqdgI5FNMK9mxU9t5c8XmxXKyo3KkVMIkf5ZFx7ikIwdSv00uIykO59FGabp/ + ia2u41JRo2PZhita409N4UgHPTdVVtICncbdTzxigZP9uikHyvg+lQy35QEbC30qOTTiRmNCDVSX + T9QT5ogGb3zQBK91MfmCHHtXKfEGHUdT8PeXZQGRlYMyg4JAq1dJ40jdhDBZunbk5rnr2b4kRufJ + sbbb7YP86aQI8zikaOYrIjJIvBVhgg1oRXS96TVvDvjK8vnurjSnMrHJ8vGP51RHh3xUTt/si4H4 + VXKac6Lsl2gbqKhW9DOI48sxOAF5NX9P+HfiK8YPcxmBO/rXbaT4HGm7THZhpR1kkpWQc5xsGha1 + eDdHZMqnvIwX9OtW08Ha8OVSEH0L/wD1q9BOnXULgvKRjsppbqVfLAaRwcdRxSJ5med3/hnxFDBi + W3SRRzmJ8msSSHVWmiU6fduYzwBETXqcmqTQ2oW3eSV/9oZq7YavNDAJLu14HVtopi5meVX9nql0 + iM+lXiKOcmE10vgjxENJ3WVyzIhPCPkEfga9g0e+tb+1EyKjKexUcVNc6DourIfOs4XPqVFK4c1z + xvxDqaW/iGK+02QrIPvY6EV3v/CR2+q+FZJUlC3SRkkE96t3Xw60FiQbXZnoV4/lVVfh1pUEbBJb + hUbqBIaLsNDhvCfiKe110Su+RK2GH1r2Ca4eeNXQYOM8iuFj+GdvaahFdWl5J5asDsfmu2ZZYI1B + BPb5aQSsRrOTw6YIp6zRMcA4NPSKNwSSR9TUclovVW+poJKzagom2eUWHqBmrJYMoZTgGqAs7hb1 + THdRmLumOa1XSJVIbjFAyk0oDfN296UTJu4GKmMMLjhx+dVbjTTIpEbnkdjTESO6t0IFR/Z94yWG + PY1Rj01ogQ7OcdB1qa3mCxMHR12+tADWsIZmILE/jTRp0duc7iFHvRBq0Es5iVHDDue9W4J1uJGR + o2AHGTQBCFgJ4ApJmRsBG2mrpt4gcqmaR7aJuqkH2oAyLq0umQGFwfWo/Klt4vNdyGAzg1rPbMq/ + JJgj2rMltpppXS4kGwjC4BpgefXfjm/stakVgJIlOAorrND8Z6PrGIblDHMRgA9q8x8V6dcaXrcg + ETyxScqVUmqNpa6vcOr2unXe4dG8sqB+JoL5U0dpPf2du4SRyzZwdvar0UcFxGskEmVPINcIrNIx + 4JrV02a6tj8vMZPQ0wsdMY3Q4Jz700Meh4qJLl3AIIB7inG47Fc+9ILE6lu1ToxqpHMuKlE6j0oA + vIanU1VhbdirGcUEk6tUytVVTTxJikBbD015OKreePWmNMPWkMfJLjvUBmOetQTTj1qq8/vQNF5r + j3qB5896ptP71G01IpIsvL71XeSoWm96ieX3pFIkeTmoHk96jeSq7y1I0SvL71C0vvULyVA0nvQW + iyZfem+bVQy00y+9IZcM3vSebVPzaTzfegC55vvS+ZVMSU4SUAWw9OD1UElSB6QFoPUyPVJXqVXo + A0o5elaNvKX9QBWJG5rUsmYmgTN60RZRzzWnBbgHGKzbHK1sRN0qrGTZbgQKKscVWR6mDZpkjs85 + pQabxSgigB4pcU3dSF8UgJVwK5j4kr5nw+1Ef3Wib/yIK3zMBXPePn3eAtU/3E/9DWjqUjxjwwSu + swlTgjn8jXv2iNnTB/vk/wAq+e9ElEGrwuemcH8a998ONnS8Zzgj+VZ1l+8TOmOtFm9GauRGqEZ5 + q3EaZzkmqKJNDvl9YG/lXl7QcYr1G850q6HrC38q8+eIVcCWU7GLZdDjqDXrNo26xtz6xr/KvMrZ + MXA4r0jTW3aZbH/pmBSl8RX2CyaaaWkNMgaaQ040hpiG00040hpiBDhq434t+F7fxF4IuL5Ywb/S + 0NxE4HJjHMin225P1Ue9dh3qYQrdW01tIMpNG0bD1DAg/wA6aBOzufFTqFPByOxoUBqdMhjOw9VJ + X8jTEPI+tSegmd78JfCqeI/GkT3UQex09ftMysOHIPyKfq3OPQGvo+e5/fFWbknvXCfBTS49O8Dv + fsAJtQuGYk/3E+VR+e7867i5gjmYEEZzVLY4q0ryHAq+AaHgBTGTUSwPGeeRTL7U7XS7Rp7yUJGP + XqfYUzMbJDsXjOfWmKpdfnXA9a5698aiSxaSyjjQkfIZW5P4VnWOrvqEInu5HlIG4orlcEHpgUBY + 7iFk4Rhz2IqaSAnBiYg1i2EpuFE8UDRFWyytk5FaF7evZGOQJut36N6H0oA1rRDlfM7dTXyBrl9/ + aWualfk5+03UswP+85Ir6f1/xDFaeAtY1aBzmK1dUzwRIw2qPzYV8oMNsYH4VEzqwy1bIs816H8H + 9JOpeNo7lo98enQvckHpvHyp+pz+FeeDr7V778BtM+z+H9V1Vl5up1hQn+6gyf1f9KSWptVlaDOm + v45rxn3qwYdq568XWIHEVpGxU8HORXpbxQu2Sgz61G0EZ6YrS5555poVnq+nPP5rN87ZBOeK7DS9 + Uvj+6uk4BxnHWthraNv4VpPIVTwAKAILqKGVN7YB96zHlto5FUyYb2rZaMMMDBrmdVi1wXiiztrb + yM/M75JxQM0b7V4NJ097qWY7EXPqTXi/iLxbe+IL7zXEkFuh/doMj8TXrV9Y6m8cQtooDkgv5oyK + uXlkht4gtjbuAPnUoP0oBOx4C97JK2WaWYgd8tSC9w2HidM/3lxXuNxo1m1qzW+lwLPjgBAOayn0 + xE0uQappUEj9P3aZwKCuc4Tw9rNraFra5VAjnIY44r1Xw74jaS0aC5dHgxiNwe1edWFh4YuNat7R + NCv5dzYeTY21fr7V6C/hC1sLSQaeHUFflj3nAoE7HN+OPEv9mRx2emShZpc5fP3RXnDNJcyNNcSN + LIerucmjW9A8VR6k8s9jcXHJAaNS2B6VFb6J4muMCPRbznuybR+tOxUWkS+Uh9MmrNtctps3nQhS + 2MEHvVq28BeMJU3/AGGNP9lpRmpB4F8VltrWKD3MlKzQ3KLOu8EeLoWuvstz+4aTgDPyk11tr4qi + tdYn0y6cEr8yuehU15fafD3xVvDLBAhByCXP+FbY+HXiR5RNc3sEbEYLDJOKbb6kOMeh62kkGoRp + 5UgPoQahSK7WCSKWQFxna2K5fQfC+qaSi7NSEwXnBrrTLL5Y3gFsVNybGDpslxa3E0d1eCUs3APG + 2tTe0anEnmE9jUTWsbyNI1su71pxtgSSuVI70APW4YLlkwaa12o5Ix9aie3mL/JLUbW8wOHdce9M + CYajEOqnihr+2cYABPuKrmA5B35/Cjyht3HH0xQBajMLx5YqD7U3y4JAdshB6CogFKkDAApyKFwV + K+9ADTpwB3HDUjadA4O+IHIqc3CgYIU0keoWrOUSZC46qDyKAMDWIPsVm7WenG4mA+VeBz9a4Bn8 + U3nmLe2VzEhPEcS5AFew/bYF7kfhTZtTigtnmI3BQTgDmi4HA+ELi9i1J7aSyuoIWHWReCa7CT7f + BKDCpK5qrpHiaPWEkkWCSEqxAVkwTV3+3Y4Z/JkV84znHFMDWtrxpowk8ZU461FOHUYHzrVAeILd + 2ZRGwK8HIp8eu27NjY//AHzSAJ2nEX7uLJz0pFlugi705PUGp01Czd8iTax7GrSbXBYgN9KAKgkb + PEZxUV3btd2rwb3jLjG5Tgir+MjP3TSlWGDigRyWneDhp92J31K7mCnIV3zmuheJZV2uDj61DrR1 + VLQPpSQvNnkSelWLG4nktI2vIhHOR8yjkA0DKxEUTCMK2Pep0IAyhP41aO08kA00hOwoEM3Aj5l5 + 9aYyA9Fz+FOYovUkfWgOQflYGgCubZV58pQfXFBGB90D6VZ81h94CkMi9dtMCkZVAIDYY9OKrWjX + zbxO8b8/KVGMVpMkL9UFNEEajK5GfSgCABgvz8mmSKrHAQZqz5RUZXJ+pqNy4HCkUAVjYJI254VL + epFAtvKJxGNvcBajury7h2+XE5OefYUkept5RZ2IK9QaeoHj6WFwmcRYz3NXYVnQDdGGHsa0Jbq3 + B5Icj+7UKX9t08s/iaCxFdkOPK4qb73OzrULXq7TtFQfa3ONhoAvf8AxT49u4dM1mGeZvX8+lTQS + NvyxoA3oSABVgtxWdHNhQc083QA5NAi6ZABUTT+9Zkt+B3qu18CetAWNdrjHeoJLr3rMa796he6z + 3pFWL73Oe9QNP71Qa496jM/vSGkaBn96YZveqBnpDN70ii6Zveo2lqoZvemGX3pDLDS1A8lRNLUD + y0DRK8lQtJUTSVC0lKxRMZPemmSoDJTDJRYZY8z3o8z3qtvo8z3osBaEnvThJVQPTg9KwF0Se9SL + JVIPUivRYC6r1Ij81SD1Kj8jmlYDYt0LDPb1rTtSEOFrMs5PlwavxZLCixLOgtZdwGMVrQucc1hW + Z2gGtOOXAqjNmor1KHrMW496kFwPWgVjR8z3pfNrNNyPWm/afelcLGmZgO9V5Lk9M1Qe696ga456 + 0hpGkJ+etYvjufb4E1EE/e8tf/H1qws3PWuf+Id4E8JrAD809wgx7DJP8hQtx2PLrJGe7QL15Ne6 + +DLnztMKHqFB/wA/nXjWg2TXN/wcbVz9e1epeFphZqvGPL+Rh7GpxD2fY6KSvFrud4lWo+KrR4IB + BBBHBHerMdBzPQkvH26Zc5/55muLdPaup1aXbZeUOshx+ArnmjNaRJZWgTbMDiu50Z9+mRjuhKmu + OjiPmA10+huULwtxuGR9ame6LWsWjYopTSUECU2nUhpiY00004001QhtWbT/AFqfUVXNWLX/AFi/ + UU0I+LtQ4vbkDtO4/wDHjVeEZkX61LfNuu7lvWZz+pqO2/1wpdDvj0PqbwfbS23gDQ4kAANorn/g + RLf1qzcNcRjIDZ7EGregLND4c0eMJlBYwg/98CrNzaFyHifAPUVSOGWrZkQ608MZNxKoVeu6vOPE + uuPrWqPJuIt04jXPAHrXba34Xn1OQFLqOIdwRWVb/DeKVg0upFxnkRqAKYLQ4+CJLqOONY8ybv8A + WO2FFb0XhXWSyfYbpOeqb66y3+HekRSAvLLLt5AZ/wDCt6PQbCFo5FhaN4xhWRiDRcLnHaZeav4e + 1VbPU2JRvuluhHse9egrNa3VmEfBi/jBGRio7q00+/gFveReaF5UsPmX3BptnpC2SMtu5kjPRXPS + pYHnnxrnttH8FWum2IEa6hdglc5yqDcf12V4BPxgV6H8ZNf/ALX8crp8TZg0qPyMDp5h+Z//AGUf + 8BrzqU5eoe520FaAxRyPrX1V8N7EaX8ONFhK4eWE3DfV2LfyIr5Zt4WnuIoUGXdgoHuTgV9dux0u + 0gtI0/d28SRAD/ZUD+lNEYh6JF8vkkZ5pFznleKxl1iMklY23D1GKryeKbeEhJY/3h7A1RyWOjKY + JGKaUB4Irkr/AMd6fpsBlk3nn7q8mo4vFh1WKOSwnA3jO04H6daAsdj5Q9KUwgj/AOvXG3l3q4VZ + oLobgBlMfL9avaNez3G5ppAJx95Oxp2A6Bom7YpnlhRl1/LmoxcqRkbuvOexppvrcEI9wiMemWAN + IB7vCvV9tM+zRu+4fNn34p4mibGdrA8BsinyLIv+rxnFADPs0cbZB2+wFVpzLu8uJiM9WNLPHqRX + dGqOMc461Skku1lAmt5VOOuODTAsALCcyTrJ7Yqk89yL8SCUC3A5iCcmrayHbhEAc8dKq3EWpOf9 + HlgU55JXNAFKC9aPUprySeSC2GOZnwPyPStnUNcitdHbUEnjaMLkEHrXHa/4Y1PWIGja4YOzZLRn + A/Ks608Ma1ZWos3vFMAPWUbivsKBnX2/iRrq2hnEFyUYZLBcY/DrXRxagl3a58vI6FW61wlrqENt + exWVzfNK4/5ZpHwPqRWxL4l0uynjgmvo4mfhVGOlGojcjS2im4MkbeiscVZncGHdHISR2GMmvONb + +ImmWF7JBYFbraMyuXOCfQetUtD+JUV3eQ2n2PDyvj5fWnYdmdXPr+uzXUUdlo/lwq2JJJ25I9gK + 6KKWW4twSFibPODkVUhnE7Y+1eW3HyqQRV4QwiDb8jKvOB0pWFcZMZYipMIaPuVPP5UrbJwGJAA9 + TUCzqreaoYoDgkHIq5Bd2VyHVCpdThh3FAEMQjcHy3DbeCPSo2ijeYIS+7HbpV5VVQdiLgmlUJ12 + 4NICBItoIPIpht03Z2kfTvVoo2chuO1HOPmGaAM97PncqjPoaz1022huGuFthHIfvFe9bpkjA5XF + DeU4xtyPamBxl7riQ3sNnBZTNIzjMjqdgropkiW13HZhhkkdKln0m0uRyefftUH9iBc7ZiyEfdJy + KAMn7Zp9s2HuQG7BcDNZ2p+KLW3gZo4POYHHy4Jrbk8MQnDLCm7scVFF4YsoC37mPzHPOTTA87uv + iY1sytHo5IVvmJ+XA/Wu18P67Brtss32ZoCedrVHqngaxvAVkgYDOSU70tp4PSxdJbaW4QoMBS3G + KB6G5JDGrAmMg9j2qxBc4AAO0iqNulx5vkuZCvZiv6U+aCZXKjDNjvSEbKTbhzhj7U8cciuZikvo + bjDREoepzzVpRcJceelw4z/A/IFAG3vQdeKUlTyDVOO78wbZY/mHcUks0aI0nmbAOuaALL7VBYVX + YiQgrJt9aijuRNCJUYPGRncKgMnzb0R8e/SgRfwh43KfrSeUd3AGPUVmvOu4Iyld3QnvUgRokO3f + +dMCO/0MXs0cgupoihyArYFXUtpolwW3+9MErhMqeO4JpY5pzKdy4jx60AEkUpUFcKRWddxaxJcR + NaTRxxqfnDck1soWfJK4/Gl29yBQBVV5VHzKffFJ05BIOatZG70pp+9jaCKAK/2gg4IB+opDLARh + owQamxEScx4pnlQMOMY9KAPJ00jfwjbj+VPXSJD/AMu7j3BFbL31ohP+jzkY6EY/D+VNi1a3fdtt + HBUc+ZxQWZ8ehTMMkYHualGhxpkMwH41cGpKG2tDtXJAwc0yS4gfoI/qzYpgZ81paQHmb26is6e6 + tYT8rkkd60Jo7PqVHPXDACsu5udKjcq+CfZgaAIX1UKDsDGqkuqXDnCjAp817paLlY2Y/wC8azpd + YiXIito1HqSSaY7EzTXDckmpI53X72azl1ZgcskbL7Lg0Nqdu55jI+hoHY1Tc8daja596xpLpW5R + 3HsaiN5j+LI9aLAbZnz3pPPrGW5ZjnPFOa7CjluKVhmsZ/emmf3rDk1NV75/GnQ33mjg0WGbPnZ7 + 0nm+9UFlJ5p/mUrAWWlqFpahaWomk96VikTNJUTSVE0lRmT3osMmMnvTS9QmSmmSlYZY30m/3qvv + o30WC5a304PVQPTg9FgLiyVKr1SWT3qVHyaVhlwPVuEA455rORvmFaEZAPFKwrmtaMAuO9aULYrE + ik281cS496CTfiuMDGatLc+9c/HcY71Otz70hWNwXXvTvtXvWILn3p4ufekFjY+0+9H2j3rJ+0+9 + H2mgLGm1x703zves77R70omoHY00l5ri/Ht99ov7WzU5WBCzD/ab/wCsB+ddPFLkivPNVnN1rF3K + xyTKwH0BwP5VUVqA/Rrs6fqMcoxjoc9PX+leh22oWoVLiPIDD5uc8dvyry8Hmt3Sbjcnl5Pbv/nt + SqQUkXCXKezaDerdWrIGDeX0Psa20Ncd4NQpbzyE8HCj69f8K62N8ms4JpWZFVpyuilqBMl2Qeig + AfzqvsHpV69iO9Zh0IwfrVbFaoyZHGgDg4q9C4XaQcMvequMGjJ9aUlcqMrHT204uIQ38Q4apKzd + F3eXMT0yK0zSQmIaaaWkNMQ00hp1IaZLGVYhO0Fj2Gagou5hbaTe3B6RW8j/AJIT/SqQHxdK27c3 + qxNLaDM61Ef9UtT2A3XSipezO6O6Pr/TRjQdMIJ/484f/QFptxI4U/MaXRm83wvo8g/isYT/AOOC + iZCw4qlscMtzjdXvNXjJ8iMupPXANVdHub7ISa0li75GQDXYvZow35b39KYtpGyszScL74p3AqxM + 45TcoJ44z+tXILu4B+cuce3FRs9pbQ7mmOwHI2ndV37NG8SyxyuwI6qRzSFYkju5C+ShJ7KOprC8 + ffEG18E6KSu2TVrlSLS3Pb/pow/ug/mePUjo4migjkklcrHEheQsOgAyT+hr5I8Ua7c+J/EN5q10 + xLTOSik8RoOFUewGKC4Q5mUjcyXFxLcTu0ksjNI7t1Zickn8ajLZY1CGwMU5TSt1OyMtLHTeBLP+ + 0PHeiWxGQ15EW+gYE/oDX1je2sc5LN1PPFfMnwhjEnxH0xj/AMsy7fjsbFfTM5Ltjbx60luY4ndH + P3+jOx/czou7s1c7J4K1Mz5W6QxN1yDxXZy2kUjBnRXCnK7hnBqvqdtd3VusUUgjhJxIUJDFfQHt + VXOc5I/D1Zpw81wk7JwVB7+9Sv4TkhkUraOGTptIxWnofhyz0G+lurW5vG84cwySblz680atquuW + zGSzsmn+b7u4dKAIEsLpGVDbP93r/SkNjJABKzurA9AvI9q27DUbu4tElktijgfMhHINTyTSgE7C + pIz93OaAOYm1+0iUh7hwx+Ug5FY0unaFfXiyfZ7lpZBu3mZsV3MlnbXJV5bNGL8FgOR71SvNE8sK + LVeB0HAFAHBzXem2lsVktb6G2jfGJJyBn2GcmotY+IN9I9vbaVKbeNCN8pHOPTmn+JPBHiXVb4SR + eUyL90GTp+FY7eA/E9uCZLASerRuDTKSj1PXfDOsC+sBi4SSVf4h0YV0UV0kpKSLg9xXhmjaL4x0 + e6ZtPsGQNjcJWAXj8a76x1bXY9h1HR5ElPBeBwymi5LjZnW3VkJkZ7ZgG9DWDKL6F+QVweeOtbUV + 8hjDhXV8cqRzVa8vJSDshBYf3uAR9aVwMh5rplcw4BIwCw71lJYahIzte3Jk3chF4H4d66+CSCSM + 7rURZ985qN4Lc/xZ9OaAOGv9OM9qyWyujnqwGGrl4PCwkug19bPcknBdjivSdRNvaYZznn5fmxXI + aprDNceU0dx0yFgU8/8AAqpAUJ/A1ldyLJbwG3x1OcA1p6ToOk6XI+y6s0nbgMXyQawpYvEGsR7T + IbK0xjaTucirVr4JsI4htvJpHY7l3noaBmofDt5ZztJd+Kp1ilO4C3hA/U1oW2iG4kD6b4svUkAw + VnUMGI9RxU+n6QjQCG4BaP7p3HoPaifw9PYKLnT3ySeV9qLiK8Ol+L9EF1HGttqdvcKSAsuxgT3A + NcvpWv6j4Y1ZzqaTRyTcOkykA4969Ht7uXyEEpyyjlTwR9Kn1CVLzTd32SO6QD5kmHT86QE+l6xD + qcAnhDDP4Aj2q8TFIQwJRgc7T0Nc1Zi1tLQSWwWBevl5+UVrPqCRwh2XPAxjnNAjTTaPmHU9s08N + nlenfHNZLakE8sOhMbjmTGAvsadptvbWKubYylZWLNucsCfbNIDUJRhhgDUbW4zujbFAkVicfKe4 + IpQSB8uDQAzZKp5Ab3FNYOCcZx6U/wA7H8P604TRk4YFfc0AVmkI5JYDFQvDaTSK8qAuvIJNaPlo + wzuDCoXt0PAwDQBVS/hErxBZFZR6HBp/7uYrJ5jgU427p0IpjJJ/Dj6UwJVQLjbMePWpdwOC20+5 + qiZXRdzxEjOM1BdIJ4yiyyRkjqhoA03KA/MqmqU95aIp81WXHQdz9MVXgW6ghSJJRKF/ik5NR3F3 + JFIokeFQDwdvNAGoIomHA4x1oZYfugj3Bqml45AbKFe7KuaU6hbO4RpY857HBoAuKyJ8qsg56YqO + 4jSVQHYgA5G04qjBrGl3l9JZwXCSzxjLAHOPxq3JBFI/+tww7hqAHNLbsAjAErjGafkEfKAQaY1k + +0Y2uP1qlemewtmnWCWQqM7IxkmgC0yjJ6g1CxC85YewrJ8Na9N4gt5pJLCWzeNiu1xWpItwXBQg + p3yO9MQx2HBErr9Kb5wClDcNj1amyH94q8iQjoKa8EjcGMsc9aAJop5BLzMjR4wARzVzzwPmJUD2 + NYT2+HCsjAdcelNWOcN8gIAPOTQBv+YThhtIpfk9AKxPMdCdxbPTI/wpFuZAwKu//AhwaAMKP7NN + EpSRJPVWbnHFU7qSKNmVIimARwcg8f8A1q4INoNopNveTygngMcY5HP+f1pZfE7xfLExbAI2fe5H + +R+tOxZuXc1wZGWKKQqfSsuSS9xhYnwDgg5rAu/F+qPlI5yiewAJ/IVJY61qHmFn86Q8Hg4x26U7 + DL0n2jpKrIv+yKrykAcKSSODtzWrFqEiRCRmLA9GZOvHcVYXVbdxslt4fUc9aQHKtHK/TOPRgKiN + u6ndt4PpXU3Etq4Ywww567XNZE17DGMG2hz0I2jg/nTGZZU46fpUZhJBwTUk1/GHICBT2AFQNqDD + oAPamMUxMDkt0p2RjI6VH9uUjDqKaZ1Yblxj070AK8nHBI/Cq8hLD5mzUzSg9fzzTCV/GgCrhOg5 + q7AdqjtUeUHOBTTKAQf0xTA00l4p/mGqEU4IqQyj1pWAnaSozJUDS+9RtL70rDuTmT3ppk96rNKP + WozOPWiw7lsyU0yVTNwKQz56UWC5c8yjzKo+cTR5p9KOUdy+JKcr1niU1YjfilYLlxXqZHxVJX96 + sxkEUrDuW0k5BrRikyorKjGTxVtGwOtJoDRWWpln96zfMpRLU2A11n96mW496x1mqVZ/elYDXFx7 + 04XHvWSJ/el+0e9IDW+0+9H2j3rK+0e9KJ/egLGsLj3qRZ/eshZ6kW4osFjbjucEVxesQNa6pOcf + JIxkQ+oJz+nSt0XHvVXVik+myFvvR/Mp9KpaAc8CzuFUZZjgCvR/C/hi2+zmS7jEshRk6nAJHDV5 + tb3TWtwkqjJU9xXpXhfXEmj2Z4IGDjkVFZyUdC6STep3VmkNlbrBAgSNe1aEUw9axkm3wCXoV+Vs + foamiuPeppyU1dGdSDhKzNie5/c7B1PWqobmqrT5fBpwkB71ojItZoHNRITVmJNzDPSmCN6wiENl + GO7fMfxqxmo4n3RJj0xT81AC0UUtMBMU00+mmmIj71keOL0ab8PNfuWOMWMkan/acbB+rVshctXl + fx918WXh3T9Aib97fS+fMAekadAfqx/8dqkCV2fPch4Aq1pXOoRj1NUmNdD4QghuL2VZIw77QFz2 + 9D+YFKekWdcZe+j6g8ITC58C6NJnO22EZ+qkr/Sr0gxnjNc58OLxH0CXTy4LQSb0H+y3X9R+tdTJ + GOtTSkpQTRz14clRopMNpJ3YFZ1/psF6CZHk4/uvwfwrWcIvLOAKgMlrk/eY99vNWZGJBp0NssUa + Wu9VPBZsY96uxz3MYCxxRhAeVznAq+JLU4bynOemeMZqVbi3JwItpXrlulAGVr8jt4M10RgrKLCc + AA5/5ZmvlHy9ynHcV9mQz6fco8Ukkb7gVaPIOQRyPyr5K1zTF0fxDqOmo2+O1upYUbPUKxA/TFTL + Q6sNZ3RhFCDSgYq4yI5yBg0jW+M+1LnOj2VtjrvhZMLXxpZTt0EqJ1/vNt/rX0xKHE4DAbAM5U8/ + lXzN8NLCe+8c6bbwBiBMssjD+FEO4k/lj8RX028rRttfqfWlHds58TbRDVdJH+Vxnp0prIyHaSME + 5BAp/wAv3hH+IpV2lehx7itDmOe1zVpYoZrSzglS8ddsU7xfu0b1JPaptCivRpMSapPBPeoTvkh6 + EZ4PbtW2w2Llc/Uc01iCO30NAFdo8fdJGfSm7pF75NSfvs8xKUJ6hxwPWkYSB+E3KaAK5llG5Tjj + nNM+2oCEMyDHY81PJECSvlEE++Kb9lTqyKG9Tz+tADRcICRtb34p5nhIGZSB6ZqM27tyJFJxUL2p + DYHPtmgC0JIsZEvb1qMugYfOQG9DVJ45guFjAOMEZxVJ4rpclX/4DycUAbQuYY1AMikDuzc08XcZ + TcfLK9fmfNcdcWV++SjqhOc8Z/HFUorDUIgztcOQcgZIAA+gpgd8ZC+DDHGwP/TTGKULMTzEo9QD + muAe21hJBwJBjh0Y5H4YqdZdWi2kyNkdfmPegDt2tVkzvgRs9cimvpUEifNbA/QCuQk1KZk3TGRH + UA5CkZqcalqUBWW2nZ/9lycflQBp3Ph/TkLmWJo8/MTg0z+ybKJVXzj1+QMe/an2PimaXYl1b4Zj + tPpmto3VqU3TQAj1K8UAY8WmyxDKFyM5xu4/KriFgAJImUYxVyKSzlOUfYWPTcKmMAC8OCCcc96Q + jMYRIxJAKHv0qOR7aBcOxjRj+FW2srpr5xNJC9iU4i2fOG9c55p76ejoFD/JjhWGRQBkvZ280bRb + VMbE8E/eBqBreW1jQW+8IoCgN8wxWw+nyfwMuB0GKhRJQhSQdPUYFAzPFy4A3RIYuh9qtxS7lyjM + uc9+KGghMR+TG4nIHy/pUEYlndkETAL90q2c+3tTEWRcTDCmN2Y8bu351YWRmI3BlPQgjiqTw6hH + ImyLKfxbj/hVjZdHna68dOKALGZCTsYEY5BqOOOSJ3czuwb+BsYH0qpcTz26GXO8gf6tcEn6UxdT + uQUV0SN2G4Rynn9PegDUs1ndN0i+U5/unIq0pZFxMQR/eHFeTa78QNYi1W4tJri30yC2fYwQb5Je + Oo9B0p+kfEKOS6kU3vmW4jBYXTYLN0wOKfKwPTNQvodPsnuPMmlVf4YEMjfgBVfTL+41RHlNrcWk + QO1Bcph5PfHYfWuPv/iJ4fmljgEssJYgb0IZR0znritWLxFJEktxaeTPasGZEVGyxA6ZGev0osB0 + nlSvJh4wBjJGeab5ILhVI/PmqvhnxNpXie3ka1lkguosLPa3Aw8R/qPcVfvIPsmXeMlTz5iClawF + aWLZz859qrBYpHbMcgZBnlcZ+nrVm3uPtFv5trNvTnr2qF5t7BZEAP5GgDPihh1JWilW7tVbkq77 + S/5E09fDtrES0M02fXdn+dSTwxykeYu5kOQTyVp8BeBSqy5UkkA0AN0zSrHT2dre3Tc5y5xy1TRa + VY211cXdtEYpZuX+Y4zT/P2n5lYHHUdKcJYyjMsoH16UANe8e0iM1wyCJRyyk5z9KLDV1u9ON5Lm + KEk/fPQeprEutPsdSnWeee9ZwQUCysqAjuADip10+JLeRRIzq+N4lOQ34dP0oA24JoZ4hLayI8bc + ho2BB/Kpdx6ZH5Vzlqg00bY7VCh6BRtHX2q//aNuU38RP/tHgUAW2umSYqbclR0eozdxh9zHGe47 + VFBc+anzOrndw0fA+lNure9LHyniCHoSuSDTEW0ltpP9XMHYdRnmneSJMOuNvvWNNZXbbCT8yj5j + H8ppm29hnjwsrIuc4b+dAF+d5omOLNpEHXDDn6VG0sYGRDKgI5BQ8U1bjUlk4aMx/wB0jmrCXdwH + KvGGFAHz6NEuTGQLYoy84xz+H5Go30WRo/nJTjPI7c13xMPlblRwSQcxuCPwyPpUbyowYGDdsHRh + n+vvTuzQ4M6LHu3t8zA5z6gnr1+tOEZtlLAYYcYJIIJHHv1x7V1k5tZDhrIrjkbT07+vNZUtvYBT + kMcnbh+uMdKdwOaubuRTjorclPQ+4/Oqou5OOchfu88rW/LZWfDeQCM5BYmqMzKnyxBUHqqc/nTA + gjd8AtlQT1IxikfypOswYH0pvySsMnJOeuTV6OOKMBHCgkZAHUfh/SgZWFjEcZmYg46AU86dagjN + xPk9goxj65q4YkMfCgoSDuI/pQIoFKjyZCh5+nvSuBCuh2jqGWaVvwFTP4egCZS52knjenH6VIYF + QFoQOeqgnI/Dv07VTlu5d/lCKTvjg80XAo3Nk1q3OwjsQ1VWHpxz3NWZHmctyWUduelRrDcSHCwS + N9FJpjKxVunFRsjf3fritEabckZNq4HupBpTp23O/ah9CeaYGSVZTkFqTzZe5rRa2Ve64+tQkYGF + Maj2oEVdz/7WaQ+YexAqxt778j60w7T7+2aBlcq2fmPFN2k9Bj3NWC7jogH0FHmPnlRigRCIz3NG + 32J+tSlgwyFGD6U0K5Pyg/lQMbsGeSBRt/2l/OpRE5xuwPxo8pF/iFAEOxh2p67h2OaeVjHQ5NJk + D1/A0AODsOtXLZyetUwvHanLIVPyjFIdzXVgKkElZYuSB0JNSxXAYc0rDuaHmUeZ71U84etIZx61 + Nh3Lwl96cJ/es37QOgNL9oxSsFzT8/3pfPrKFzk0/wA73osM0vP96cJ/esvz6cJ/elYZqif3p6zH + 1rLWb3qVZaLCNRZ6q6ndEWvljq5x+FQrLVW8mRpOXUbRjJOAO9CQFvTNDuNQZXPyxE9T1Ndrovh6 + e2kie3DMATuyP8K4Gy13+z32QyNcA9ADsGe45yT+VdxoXjPVZZIkisrIDoDK7seueSMVE6dWWxca + tOG53FgZImVJ4mwy4KsOop8ymzvGhJOBgjPoelU7jxTrtnCJZNNsCo6bXfg/jxVKLVX1RvtrvuaT + gjbt2kcbcdsVjSw9SlJt7DrYiFWKSWpvOwZAw6ipIJA31rINyVA9KuWc+7HNdKRys24lNW4hyPaq + tu+4DgVoRRFuQRSEX7WTgr261aBqpCgQVOGqRkwNOFRqwp4NIB1NNLTTTQh8S7nAr5T+K+utr3xG + 1WUNugtZPscI7BY+Dj6tuP419YW3Eq9+a+JL5nkv7l5M+Y0rs2fUk5q0XTV2VDW54aWWDUY515BG + MKRk8jj2rFIIORWrNqqtdLcQReVIyFZNp4J7Efp+IolqrGsVZ3Z7X4N1JLfVYzCcxSEqMdsgnB/E + fyr0W51OGOLe7qFx1JrwLwbqznV4hnJklQ4H97PP869Nl0+SOZvMLkZ5/eAjOeDj2rlw6cXKLNcY + lLll5F2XxBHl3hG/HXmqf9u6jI6iOACNvuE8Ak4xz09ariK4gCrHGWJ5OR976YHBqC/1gaTpN5qV + 7ZPFDAowfMBLueAoHuT+WfSuo4rC+IvHlv4c0uO5uZXluZgwhtF+Uyc4yeuEHTPU9u5HEaZ8QNT1 + Sdnmtku5mbcLRLholxj0VcAAd2Y9Oprzy/v7rxBrRuLl8yzMFAH3UXoFA7ACpbmXyFNtASkX8QB5 + b6+tVzKHqaQo+0PVNa+Ka2sUltpFpH9tK7WuBMZI4m77Mgb/AK8DPqK80DG5L+c5aRmLl2OSSepP + 1qpbgFfpVqNTurnqSbO6jSjBaCNZSqeBn0Ip9rpt5f3cVpa28k00rbUjRcljVrzSoVB1NenaFYNo + ekRNG0UN/coGkkYEuM8hQAPccdzn2qIXk7FVqihG513w+8L6d4G0oNfzRDWLsDz5CeEHURqfbue5 + 9sVr3vi/RLK9WC61SKFnYhfMjZQcYzhiMHk4zXmC3EsDPML5mnSQ7QEAI+vPA6dc9fpVeDXNQubs + J5jTEnEEv2ffsOOdvOc5A4610LQ85pyd2eyxatZzN+7nU8kY+6T+dTPeK4+d1jAA4Y8j8uv0zXli + 3OpSwRwXUE7MxV1fytoiAGRlmX1B4zUeoeIZtLt5hHNFJLGu7yPOAKqRkAtnBPPQZJxQTynqv2ry + 35kjkBOMJngepGT/AEp4uYj92Q78Z2McYrzb7Nc31oJb7Ubm0Qnf5Lyjdx83UHCrjjHJ9a1hJqBa + 1k0+/sJrdhsk/e5b6AgYJ59O/OelMVjq7m+ntxut4bd2LAbXmK5ycddpqCxtr9NVn1C6urmVJEC/ + ZFAEcWO698+/vXEW1xe6dLGupeIra2uJizhY1Uhl9M5z1zycfiasP4pW04udctwYyHDfZynmqcfK + MnLdT0+poA9FykqgEurZBw6dPal8jd0Y/wC7jn8K87HxLsTlTdMXTO4lkA7kYIPt27kVUk+L1mYm + ZWvA5AxCY9p69jyD279j7ZLBY9FntGcYYeYoKnDoRiiSQW8BecoqjqeMAe/avL/+FwJCdnk3Moy2 + 5lmyRjGMAgdfr05x2rq/D3j6z1uNzF55ZcGSKVOUyfUDGOR+tFhWZ0Nvc213C0kcpKKSp3IVz9M9 + R71k6pZTPcpdNfrDYQjc0cZZWc+/Jz06Y5zW1FqVndKHV1JHQDAI7d6neOFmwyNgj746f4igDnrS + TS2WcxSmRUKktJkBSRwBmrRuYGDgQLvX7ykrx75z9K0xY2Eg6cjoN3I/X3qBdKtowPKdVXoCGz/O + gDB0exW1kuGGu3l0u7PlSlW8r2Bx/nit7FrOhUPEWOPlbH6037BcoWCquCOSeM/kcGq8mnRTKIp2 + lSVcNkPjJ9sdaAJnsGJAVU65BUcf/WrPe1vGbdElqQpG9Wc59+2K0dNtE06FkhkndHbOyeTcV9hn + tVySCO4U7okY45IOCKAObn0wwrnyvkbsM5z9e1R+abBwJbqNIZP+Wc7AEE+h781vPbWzRG3lRpU/ + uz8j9ax77Q9K1CZHuba1meL5UMkYO0emfT2ouBlapZatKvnWckSyAAhQ3ytnuKzZdX8V6bLDttkk + jZsOdpIA9q7Yi0e1WNggCrgGLoMe3tTBBC0JAfPH8JxwemaYDrHWBcW6ySoVzyNw4/8ArVoG4BCl + cgN3HSskWsafd3cnJ2nK/l2qXy2hYqrbV9eo/KkBp+dn765PTK0pKsDk8dM1SWWby1ztJ71IDHjL + HYfyxQA6eFW67WU9BmsTVrjVLW222lskoJ5WPCkD15rYVlycEkA8jtTCke8sWaMdDzw1AHLWviLV + 4ZUS4hVBtziXHI+tb1rqlveRFiyxylfmBPGR2B9KluNNiuM+YqMTyeKxk8MrBNK9teyKkrfNE3IH + HQcZFAC6hAkymNkjkhK4dTyT9MfjXIeI/ElnoFnGzwyzZ+WJHJ3Z+p56d+a64aRfxSkJOgiJyg27 + ivqDyPzrM1/wbb+I7cW9/O/ytujljXBT+YNNAeH/AGz+0tRmvrtstIxbBPT0H9KleWJ84VVB6AV3 + EvwSuRIPsviCLYT0kgOf0Nalh8ErBdv9oa9cSuf4IlEefzzVOxakjzNFjzxgZ9a6W08W6vZ6jFdQ + shjjUKsAGFxjFdVqPwY04xbtM1ieCYfwz/Oh/LBH61x974H8XadP5C6cbkAZWWBwVYfjgj8RSC6Z + 1vhbx5cSeJES8s4le4bZGVTLAE8ru64/+vXeweKnsdUudOu7hdud0TMc4B52mvH9I8M+JrK6j1Cf + S5A0DhlVnReffJr1C5tbPXIYp7qyNvehe/B47EjrQQ0r6HWWt1ZXkAmt9gVjhinQmieAoxPleYo7 + iuc0QQaflEVFWVjuThc+/wBa6OCRotwMm+PPy55K/WkIrSRwzLmM4f8Auk4NVjFGQVaQow7kVoSJ + FJLuKlHx1B4amSwqybsZA7g0AZpUqhDOJFA49xWebeGeGSO403MforZDVrlAdwRskdMioS7o2WXt + 2WgCjZvLIoRtPW1RH2KpYfdx1GP5U6WcRtgvEVH3lJ5qyHWQkiTG0+hpWS3kG0qhc8EgCgCtFMuS + rDHGAFkBx+dWEWKRSDGGOecEU06fBEoYZwTgd/pUD6Xtl3rdTI+MYHQ0ATNaRABiDGA2falj24Ki + 4JOflXOCTUkIeOILJIWUDBYjn61G9hZTuWkgjLEZMmMH2PrTEPnS52ZZS3GcKeT7CqsjfJ+8eRCO + cMCMfjVl4WHlpEjNF3dZeR+dWASBguSMfxYyKAM/zJcZSUMOwNVri51BEEkKxk/3Sa1W8pSqsAd3 + AOKhxGwOwqTnsKAOOfS7FT5tvHsBHAif5Dn0weOfSqN7Ztjy47e5JbgrtJUn2PsfeoU1W7e6eIRX + KIqZ2PFkq2DnJB6Hg7unUZ7VDdanqbIDZT21vKAjCR2UEArnBRshSeepHSgsryaexkMKKI3wGCsD + zn+X596q/wBiXgA/0VmYjoRtBH5//W/Sty31HXXvHgvbSKTdLshkSSMF4wPvFQTggDJx69MZq9ci + SPzfIc+XywVMgjgNgFSOvHT1zRcZws2k3/CLEgB5A8xcEdzkH+dOHhHUZMmWa2t/aRzkj8ARXTGX + aQC8sDA53SuzIxI4Jz6j19PenysY7cIFZZAuFKxls7jj3HJGcDP4U7gYUXhO3iZPNuZJWc4ICBBw + ffPr2q1/Z2jxxhmDnac5Em3PuOB2H40aZd3NyrR6hGro8m0Oj5HQ9cH5ef5c0zUdOe3uJp47aNh1 + JC/vCh4K47kevsaALUdto1/L5dtKyTg42l/w7565obwol1krKY39ZF+XPu2ePxwKoCytdQSOXzfI + dCjK6S4K+/8ATBrb0+G8trcrLI8w+6uTnj8AOenbvSAwrnwxe2y5A3oBlWjO4Y/An2rHe6ls3IIZ + iCex/rXaX0E5fMeCDwFLHDdenp6d6xbzS7poy6x7VOPmYlck5GDnkUDMQa1cFh5cBX+6e/8AhSXG + szhNsty8f+yG/wAKmHhy/kJC3NuD12q5JI+gH4fWhPBkhYeb9oZGx9wqOD9Nx/lT0C5iXN+JF3tc + OwJwNzVX8q4lTzFtbh1xncImI/PFelaP4cWwt8xwQ2k/Y/xEY4yxJ5zkYz68VbvUv4YP7Qtr6SJE + 5kCoXCHGO3JHAPT3ouFzyB3ZTh/kPowxUeC3OVb6HNe1LNLcYzfWswACPvQP83r3A49+9WV0fwze + QRtJplvJkHcwjVsHjOdvfp096OYLnhfIHTinKhYZ2nHoB1r2W68A+HJ5MrAYCT/y7TsuPT5X3DpW + ZL8P9GR+bu/Ze6uyAg8dfl4/lT5gueXlgjYGCcc89Kljh81Qu8A9+lekSeD/AA9a7f8AQ2ccHMkz + t7ngEDpVS4n8I6S4SW3tg7bvlEJfb6Z/L1o5gucQNNcYZJU/A5/lS+QVJV3DHrzxXZQeO9GtJNsM + WIQcbUj2gj2xgj86vf8ACZ+D7tR9p02HzG6uwY8nqf8AP/61dhc4BdOeXjzIzn0kAqWPQJZMeXLG + c9Np3fyNduuu+BzJk4Ve6iNh27Ht602bxT4LjUxx27yKcE8kc98ccf8A1qLsdzkT4Y1DtFuwAcdK + SPw8+TvmiUj+EHJrfuvG3hiCMGx0aR5F+6rSFQDkHr+ArGu/H73CbY9Iso8ZwcEn86PeC5MmhWZg + Dfa5d4GSgt8jP1z+tVH0G83fJGFQ9MjFZ8XizVom3Jckc5xjioJtavLmUSySv5gOQwY5H5nNOzC5 + qHRp1yHC5+tVZbVYzhmC4688fzqtJrV5L/rpzIMYwwqMXwcj5ACfSizC5I3ljo276VG5wf4v6U1r + nccMQPqKaGXHBzTHccfXNMYn1oKj/JppBHt70CuKCV+bNK1wQKiKknlsn2o2dyMCmFxTcOTxT0uW + B+fIqPzMfdwPrSFiep/TiiwXNGOfI61Ks1Y4ZkOVP4VIlzzzxS5R8xtJL71kXs5e5lXsGNSpcY71 + SGJZiWbaC2SaErCk7jUcpIGHUHNddoeqiGRCSAKwoxp6Lho2kOCNz5z04IC9MH3Natnq+nW4gB06 + JjHGUJ8o/MdpAY/N1yc5459qpSsZtXPXotSstS0Mxs2ZGQqcg/5NZGkbo5JYnGMgOPr0P9KyNG8T + NMjrHom8BU5Wzz90565HXofWtCyupX1Z7p7N4kl3EqEVFXPQAA8AcUpNNCUWjf2B+9X7OFgQ1Z8U + oxnBq0upLF8pXisijobdgBnpWhFcgd65QatGOjD6Urayij7w+lQxpHYfbB604Xi561wj+IkXOGzi + q7+JGUKSQob7u5sbvoOpqSrHpMd2p71bSYEV53p+q3Ny2AJAM9TEwHfuceldJBNdLj5kIPTnr+Wa + VmFjpA4NG4VjpdyqfmQsO5U5qcXyYBLAfWmiWa0TYYEdq+b/AIzeDE8N+Jl1OzXGn6oXlVf+eco5 + dfocgj6kdq+hYLhXwVOQehBrmvipoS+IvhzqCAf6RYj7bCf9wHcPxQt+OKtDhLlkfKTYBpmeRSE8 + 1qeHtHl1rVY4EQmNSDI2cADOOv8AnvT2Vzdu7sjsPhVpJ1PxMJ5HCW9ovnOW6E5AUfmR+Rr2l4t7 + sxmjLcglX46fhUejeHLDSbKX7HaxRJcRxhtgxkjIP81/KrjWpjZmdRJjnAHQ/wAqyhZ3l3Jrv3lH + sYkiT2zNgo65JVdx556+1eY/FjWnIsNHV/lA+0yqBgZPypn6Dcf+BV7tY20LMECspdskM/GT9a+W + fG2rf27401S+UBYnnKQqOgjX5V/QCto6sxKOhx+ZqS+oRyPyNOvUKzMfeoNPuvseoRTgEqh5A7r0 + P6Zre1Sx/wCWsZDIw3Kw7g96zrPlmmztwy5otGLBLtIFakQUgHPXr9KyWjZGqSOVx0JqJRvqjeLa + 0Z0WhWg1LxFaWnUSTKp+hNek6usx1GcyRZQkgMH6rngADPGDnrXCfD+3kbxLZuPviVefTmvWNS02 + 0Vd8jRlsHaWfLbvZc859Kml8TMMV9k8s1GR4buNFs0WPd5cLSB89enJGeTnnoK1rbRNQC/bblpI4 + M8JtdJG6kKB/CvHc9s1Y12+tbXWLazs0aXVIyzxyOCfLyDj5eQT07nHt1rOjm0/S7ya71i6uNQu3 + JKWyNyxz1cA+mOCfwNbnKNuNa1NJYo4bo+WDtkUFmGTjd1JyAMd/8ainvZL7VyJJGjFvKxjhfcAS + Acct90/XHYZB5ra0PUYtVgkv2kjsB5uyGC32hieBkkjGPm9u55zVDWrbSNN3zEubxc7XuXZzKwbH + zLjHPY9O/PYGjJu9Tu4yscOyDYTtkg43DaAfmJJIOM9e9Pu9d1XULcCa4O0JtbYoQyZIxuI+90HX + 0+tYj3pYlmIJzuOOKSOea6lWK3jkmkPRUUkn8qLMrQsRgwuJI5THMrZDpwQaHjRmLnk45JPU+taF + r4U1u+U+WsKOCB5RfdJz/srkjjnnHApv/CF+KWid/sUZAbAUzoGbjOQCfp+dPlYc6RnhYxIMYA9c + UyYoIwScADtVqx8NeJdRvharps0ByA0twpjjQeu49fwz7V1lj4Rg0xYZEmXUtQZuDHIqiPGfmjUn + J56MfqAOtHKHOjBtdKi0iEah4gi8uN1/dW7SAM2RxlQd3ccYA7k9j2mk+IdOt40toGe0VuotoM7s + ErknnOBzu+vvjPfw+sjD7XcXaecY1eKIecRnGSWdFEe1sdORz611GlWekaVbqftaLHJuY7pSxdeT + 8xB5/wD1dDTMm7mhBqsWmoss2pIis2GM0XU4xjKgDPf6Vr2+vWwnWKe32pJ9xgwwTkchOGAJyc4I + 96x01nw7JHHFPewSt8wBK5CjABwfxxn61FHp3hh5v9HkQPJuwAoZT67d2VAz6YoIOq/tfTUI3XUZ + U8j5xkcjt26irEd7azf6qeNiTxtPXtzz1+tc+nl2g/dxzMrDlGxtBHHODwenOOh9qRr4pF5X9nOr + DkRrKo7HjGfqPw70gOjX7QMssiSEY4ViD78E4p6yzqqsbdnJ4O35iM9+K5X/AISKKE4ljkgUEbtz + b9pJB+6QDjnng9K2INRSSFGleMpKB80eD/I8f/XFAGkJ4gxWQMnGcH5f0p67CcxSf8BU1UF8ohJn + ClUHJAJKepI6g9e1SHy5I2eNSwXkgMGIPp+RoAssfMQgsD6FjjmoZIYwjKsCNkAbsds0wSSROQDu + H93Jzx6UyZEuYXg864hBXlopCjD8uR+FAFeDybyDzI5/LiY5RoJY2yQcY447YxzRBpa28jmG6D+Z + kv5iDJ+pBHbimwaNZWaqIkQRjG7FsrHP+9jJ55JOff1qzJZR+SxgtBKeDhiFPccDt+nbmgBI4mad + YlktpAyZJR8EdBnHII696UpLHA0pMcaoSXaQhVUe5ya5dvDujWjSXy6cdLuMEz3VyMMQRyfMU8H3 + yataJqml60tzptuBqluTm43z+Yv1G7gjI7UAbcUyOEKyxNvwEO84J9PSnCW3UKsmwM2MYYHORkYr + Cg1aWzv20S18M6pbWDMFFxsJUMfvYGc7PcN3rp5SkSkyCMKBnPQe/wBKAIfLw2NoKgcc5PWgwHGV + Xbz1VsDFOEEcWXQvGp5xvyOfanDPXAb3BwR+dAiskM0bHc0rcdm4pxjyfmdyQf4l4/LpVgo20srB + 2A7molW5aYiQIqbBmRHzuPpt7euc0AR+UzFcFcA8ADmopbaXbnL9eCF+7+FWjvzlTvz9PxoPmx7i + +3B569KAMv7LdYKG8ViQWH7kjI7Dr1H60otL1V2mRGU4wrof8eK0vMYryu8ezUjTAgqQw5x1xTAz + YhcoMK+VJOQwIx7U1Y545jKBDllwW2EN9Dya0nCKCxknBwMhW3Yx3xzT8/KTvLYHIxzQBmF2VlaS + JJFPyspI59Dzz/8Arp7PbSRhXR4jnjngEVa8xWUtvLdP4ASPyNIZEULvUMnOSARj/P1oAq+Vb7/m + kjJP3dwAz7e9WVaeKNthVzjgNwKa1rb3S7VYLkDGcNkk0k+mXLWjeRcfPxiRuQo4zgd+M498UASi + fa6KyZJ7p0qZJEVTtR8HsQBiqv2ORwC5lXYQTsP+ciqur3lloelz6nqV3NFbQjnbjc7Hoqjux6Y/ + oDQBr4jfjLAdht5phgGPkbkdjXlFl8YUnupPtWneTbBsp++LkL23fKec46Y/SrqfGLRzdrDJZTpD + lT5jk5UY5yOSTnPTAxg+1OzCzPRGtxkElz9BwKp3emxSxnLygnJ/dMQ34Yrn9H+J/h3WNRNlG08L + CMvulxt46gckk49ucGuplvrOJwrXESMSBtZgpJPHQ0rMCrFGWhUGKbGBnzGwT9alUumAIiM9t4xU + 5njdh/eHzBVcE4/r9KcXRXJwR9R0FAFZYGII2KQeMZ4NRm3k3uyxlSBlMtgE+nrirqy/KCsY59aY + 8kYbDkHHIBwcfyxTEU9PS8+woL0Qm6H32hJK5z6HmpQJwvIUsexJx/Kp2CyJlZIzkYORn/69MKMi + DzTtx/zxLH+lAEYBByOG/wB/ikaIlizKpPs1c9H4t8OMUaae9gSd3CS3MTqp2nBIz90fl9K1Le5g + vrZLnT5Jp7cg7biLEinHGOM8+1AzirbUNMmlWKN1idyUO1NpXHJ+g5A59fcVFcW1lrFq0Lak2xeo + jbDMB0zg59+MZzxWXd+G22x4aORCCrAgo3YjJ7cqD161Rn0G6YGO1lkjbzN6RzYyRgZBOMHIwc88 + rggDFBZrf8IdZRTQzxB5plGUPUKCRyNzHp156c9Sc1tMsywiNYXXClQpTI6dCMn0ZePf6VyVrH4g + 0pEAjkIfDAkgrGQRwf4SMYGeMc+9bcGuSWEOL65+yOMkKzqwB9OnTsMYPAOecAAmYs522rlsEmeA + sAUXcM8tkY6D8uaqsl3BIQzvPGzZZAArHA5PHbgc/TtVW++JWlWkihFF0QcqUjA24PAyfx596wp/ + irIu/wCw6YkbORuZ5CQcDHQdOg6GiwG3PaMjLmO4RdoV2IB2A7e2SM8j8s9+NSK3vZIhGiGFFUjz + otuVwBgt/wDW9a4I/FHW/wCCG1UEYI2E55z0J/zmpLX4o6hHMrXFhaSgADKbkOOnHPpxTswO3jup + o5lN3Akse7aZUUPjuD6gEEeuMVdc7VJlRZJgeBH8245wPlPt7nBHqcVxJ+KNuoXbowcqu3Mkucj0 + /l+VKPipb5UnQYiMEMjSEqec9D70rMDdh1l0ujCu1EaTIeSNkjII2lRycEHHXALA+2b9slteR/aQ + rJG8e5kclXQNg/N82eGH6nHvRt/iH4buihazaAOMSFWAEZOOvQsM+mce1bP/AAkHh94hIl/tI5+R + EJwew5NAGa5giWS1gRYyc5ESNgAgN2H5HPb61Wu1uYwUT7UC5JIZvlOeD1zt4wavXus6KieY2oy7 + DjA80Lx34XHT/PHFcbq3jXT4EaPTIDJNkfvZGJwQCMjPXr7daAOiGtzaYvmXdxDak91KscHHU9W6 + ccd/rWRd+N9E37vNvpWIIkEJ2B+AP4s5HHQjvXnN3eTXsxkmcsx7dhUFVYDsI/GGnaWjDRdHEMpw + VlnYMVwfYc+nWsXUPE+s6oxNzqExU/wI21R7YFZPNFOwEiyyKflkcH2Yir9t4h1mzjWODVLuONei + CU7R+HSsylzQBsP4s8QOAG1W5wDkYbH8qznvJJnLT/vWJJLN1JPfNMhgmuG2QQySN/dRS38q6Cz8 + B+Jr9Q0WkyIp/ilIT+ZzRogMEGF+mV+poaEgZyCOxrsovhP4mkxn7ChPAD3A5/Sobj4Z+L7NGdNP + SdR1EE6P/wCO5z+lF0ByJjpuz/Oa030TWUlMT6PfCRTgr9mfI/StCx8D+JdQdAmlywq54a4/d/oe + T+AougOb20+KJpnEcSNJIeiouSa7+z+GlzbSq+okT4PMKEop4zyxwceuAK6Cx0+4tYzDEkdnCCXP + 2KMMwGcjcMgkYBB79PelzAeaL4W8QyJ5iaJqLLjORav/AIVn3NndWT7Lu1ngb0ljKH9a95tI2gih + l+0Ezbfm8sFcsPm3YUZJAA4I7c1qHVXCsJpnlhLb9r5bHA4I/u4yeeBj2xS5gPmzeO9PjWSVwkKu + zngBRk/pX0VJ4Y0C8uFmm0XTlmTjesAUMc4wygYzj1yQfWqkfhhdNjYWt1fNExLpFEsfyY54YbeD + noO2aOYDxeHwnrUxQvZm3VxkPcsIuPX5jn9Kvw+CDLxJr2mRtkKQPNfBzjkhMfrXpV94VS6kUXcj + PKeE3mRDt+8QMHb/AHR07c80tt4N0+ylJgmnthJuTdDOwJPYlW4PUjnjP6HMBxH/AAqnVAyFdZ0x + o2Gd6yP0zjptretPhVZQQI9xO105wGYvtTr6Agjv3Ndrp63MEUST3ksr4ADtFtHPOGCjb7fjV+RY + JFUSySxENlpImClT6Z5wOP0PSldgeen4feHbmINE7wHIUyQ3JZASB03AnqSMH0HrVR/hfp6IGk1a + 7jYjj90jqx9myOPqB9K9DlWwkeWMykPtAY8g7T78nuOfamW+nz2jGMubiOToS2dgPHTgeveldgeb + ReAtHSVlN5d3LR/6wABNo9wASPWqt54L0+WPdZ3T20zEbFkJdGzjHJAI6j1616l/ZsMsiOoKHaCV + UA7vY9c9f/rVF/ZF1BbxCOxjkcFgoEghGzBxjGcnn07E9aLsDxWfwhqkIYk2bqpwWW4UAf8AfWKf + b+CL+5SOQXNmqPnkSFyMf7qnPf8AKvVG0DSPElxcaRNJGuo2yRyyRfI7hd2CNytwSfXBAccVOPCO + laTbNbeT+6XG+PdIQxJxz2zzj19afMwPM7bwZZLeNDc6nNKsbBZfIgCbCcYBZzxnPp2NbtloXhm3 + uzAulNMivs+03EzPnnk7RgevbHFdabWyR4Ybfb5SsSJYlbhM8jAJ5wMc9AeAc4q3FYQX8EltbXQk + uQo3290Nu3OMg5BB7Dn0OOlHMwMjQovDlwwU6NpxQMQWS2B24PBLZHXqBkdcda6xdE0N4sxW6RKT + hTb7gR6AoSfXtWGmgWiTxObaeKUBUMkbjk5PY/LjjPHJz0xnGw1sI4JIpbhmdY/veWQQCMYK8jPT + gHtx61LAZL4cnEscsSxXloxBZ4chwpPpnB798jPtUT6fZW7bPKdZQfuyLyTjOPerMV0ljOmbsr5z + bRDJGcHJ7HOOen5dOa10vka3PnRbRt3bJgFOOAWxnpk++KQHLTQuMgJuPoO3OOlZV0ZEPMeBz1ru + J9SsQh8xYwMf6xH6ZGe34Hp+dJJa2l0rCe3hkbHzDbk9eucc/pRcZ5nLeOhIAz7A1TN0CSxLTv8A + wxRHgntlhXo83h3SJHG6CEOc/LtwdxGQMHOPXpUsdlbWSAW9lKWIbCYXnABGCTgfz/nSuO55xbwa + leyqTaylXwURYmRO/TpnqOp5rctdP1WMqCkUKsP4U2/rnA5xjnHX0NdOmoW00UwuLWexGMN9oQhS + D2DKe5I5z2PtVc2Vmh3x3Xlsy7mRJN25cZyM8ngjnHTHWmFyiNLm2PJPcMjKVKFuM/UA4x1/wq3Z + o1pEoiuGMcW12WWUkoDt5BIGeM/masJpzm4EiTtIygNgQtkHAIORgdud3Oce1AtYWjDm6HHDKXUl + c9mGdwyDjp3+lAjZsdUQIiTwSNg/MUcEqd3Xtxk9s/0rJ17ULtt/9l63NEiMySs0akQ4GPnUjeBn + +LGPnB6VHaac+kqjtKvlzkYT5gAR2AP3eOOoxjHvVm41rQ7F0FxPBvf5EjJLvjOCoxk9eKQiNda1 + i2WIahbWltDvxLcx7l38grtQvyee4IzwR2rrHvbfUPCmpTRyh4msZSckbtuw5JH0xXMBrdgyeY9o + ryB0DSKQxx91c9FyBxn8s1yPxQ8XR6VoX9mWFxBLeajGUlmhXa3k/dJb3bBX6A+1PqFtTwpzzxXT + eCtQ+xXd0rMdrx52+/TP1Ga5jkmu50Lww1oi3jSxTy9kicMMFfmGe/B/Oifws2p6zR7xoN+uoaHC + Y2zJGSGGccHof5/lVmNnjJTcDhs5yeT+VcX4W1RdOMKhD5T/ACNn+X65rtfLjJKADB+ZGQ/eHY1y + 4eergaYum01PuWrCVZJInGCiyAlg2efT2r5N1azeHWdStWGJ7e5kQj1AYg/lj+fpX1NaloLoxsWY + sCQCOw5+vevnf4lWkmlfEjVZEGPMnFyhxwQ4DfzJH4GuyByo5KNeeO1dLo2oReULG6YBP+WLsfu/ + 7J/pWNNCqyLLGP3Mo3J7eo/A0qqrKMnDd/erqU1UjZmlOcoS5kdFd6MCcqO/pUMWilTvcYUGs63v + Ly2ULFM+0dFJyB9Aa2NGm1jU9VtrW0HmXMjYjURrgH1Oc9Oua5Pq1Rac2h2/XIW1jqeh/DzQ1gM1 + 5cRyLIUIiAGPLB43n6849gT6V12oWDG3mV23ybQxA+QNjj74/Dn6Ve0LRhpGmLZLNLcXGfMnnkOT + NIcZZs9u3PYd6sNA+0NGzYHJXcfl45zkfKefbrVxgo6I4alSVSXNI4jUtMe4gCyWskiqu3fHc+W5 + BwSN+SdvByMVQj0bTbQxTQ6VLbzrtO4IHZdp5z6cA/NkdfauzlNmLT7QYDHDllMrfLtOec7Qe64J + HHGQaSaGSPznjLO/Cv8ANtU8dRkD5ucZBqybnHxWkzLNAYZWhdAPOVBCzZJGPlOcjOe3TvnBydU8 + L3Ooaf8AZoJp38vb5fnZ+XHHBxjGOw9K67UJyr/NGIbjOIBJKqb2xyu4Z4J7Ac46Vkte2s2mSPJc + QWr5k2slzvHyLtLKxGcbs547fjTC5z1n8PY7Z8XryXMoONgOyPPuRyQMHofwqbUbF9LuBvaCz07/ + AJ5W5AGcKRuPUknsMnHp1rqf7PubmeK4toUk8+JFlaVyQwIJBjznOck9ASMHsa5nxD4cnZGvYrn7 + NPtCM9w5MJUgZ2nLbTnGB9fancEZ0+rW2hXzWVnZxSQRgPnec78EHJPUexHGDxVO+8R393NLOWWI + NJ5jwQExqSAAMkEE9B3rPsNB1XVbp1t0UQByDcNlYup+6ep78AE+1djpfhqOFohaOj3UgBhu7sZB + PHzRxrknGewY+4pF3SMLT4NYur4PcTvbW8gBwkgWRgF+XqcgHHU8V139veH9LszAEguJfLKhrRdz + NwcAswOeBjI4BI6d+G1C5MlzPCLuS5hWQkyOR+8YdWwOAOuBzgHr1qo6xoGAABPfr2pXHyX3O6bx + zLPKtpbJ9mAQk/ISwHcbTjJ6nqT9atQakbtZ7TUtP84DCOzokSsQVyFAYnjDHAyD0wM15yyRn74D + EevrmoXeMnlQAOOv+fSncTgemxaloNrMk09zbWk7qshXd5hHPO1gAMYPGSc1r2ZSWWMWiWE0DANj + e28nqCAMA52549B6c+MCcqNscrpHyNu/15PH5Vrab4kaz09Y5p3EMR8sRpKQ5+U4I9MZAHIHHPU0 + yHGx6/bwtFMyLPJDuU4iJ3bePu5I5ALEdSRx1BFXy4MEJW6jdRyrMmd2CDg9uh7dzmvNLDxXbak3 + 2qOyWN9x/eRy4mTAON5C5Yf/AFj2rrLTU9NuvNhS4eSaNSwTaA+CTyNxySpBB56YOKCbGmbu1jKm + 4bawGGYMp25yfU8YGTjHY9apCO3t7hGtrqe2ZwykMWKY4G1lPsF5BH6mriJezvKLOORZIwpMckJV + SPx+U+2DjGB2zUVr/a9rcPDPpk9uMgebGI5FJz2IIZh97rnj8qANBb6aFU2Mk4GSTCc4GcHgZ3Y+ + UnHr7jN1Lxd22Tz0kxwdwcZx246eo9BWIiKr+bHHdKiBWUy2pfORxz1Gcjk85AJ4qG+1GGOEwy3+ + 2M5J8+GThv4SDwR249c/ihHQTa/aW9qbgyyyJuUboNxxzgjHJ656AcA1eDfaVR4Jgy8oFbhh0PXr + +vQVw1wNRlWK5066gZt53FSSpjJOQMnnt0IyGGKl/tJ7d1F0irdqyoWkHBHZgBnbnd9BTA7Ka3uE + l5u3jGSuFOTntnj2A696QvqC7d7LOSQxIwST3IwPUccHrWXa6jOEVbjzCoAXByrkDuCeGXj9BWP4 + u8R3Xhe1jmitWlgnYbpFH7tWyMfLn5SQDyP50gOpfVZolljuLXdEPvAkspBGSfm/H1p0Gpadcllj + jaKVOSiDBGMZ4/LtWHp3jJrlLUSRq32iAywoxG/bnA5IHcbSDzyOD0raeCwvFNxCqpMVAbHyEDHf + t3HXp2oAtvPFMFzIrHcBtcEHPH9DUscoZAEkLKVyFOQQOmcGsIxXdvtE0ysQpKtFkKcfw4PAPPr2 + qJ51cOUKq+7cpHzcjkfNnIPH6CgDoo2IIKshBbaRkjB9cYz7flXKWuleNV8WRareeItKn045R7OJ + XWNYzzuQEff4BBJz15xxViTVNRRQtvhicguhJwM5x0PbuRj1xVGLXdZRZPtTRjawxtX5XHUHJ6d/ + Xt1OaAOqe8gF/FagebLIhfMcbbQBjq4BUE5HBIJqx2G7dtJxgHBx+n+Nc/ZahO0zKbdITGSBGhG0 + nHORjI6nGOvXvWvFdCVSHV9uMYdcjH+fX3oAskJI4O4qy46Ng/j6ilaGRgdmPY5z/OoWZiAMk+g7 + ZH/66zzqDJM0CvEk25/KgDKHmAGSFUsDnr2HTPQ0CJ4ILoBhfSQzEs2HVChCntweuO+astEu3YMR + DOMo2T6dxUVvqkMpZWYrIjFZFYkMvuVbBweo9e1TiXK7kmUgH5xIcFfyoAiMDD7kvJ4Hy8jjnp17 + Uqebj95H8xAHB/l7fWneZby5jjZklGBsVhlT64PFPIlDuDkpgBQy4J/z9KAIGt43lWVo1DjOH28j + PUUxo0UEx7FQHJIY9T14/KrbcqeMgj7p4P4A1H+6cE7gy4wT1GKAKjStxgqMdwdxU5z0pjQ+ZtJW + JjuXJ24Jwc/nkA/hU7WFpdZ2p5jEHgEc+57dqa2kSIhMLxbyMY8vBHp0PbP86YEZmlVcMhwhBMhP + TnqRnp/ntXiPxB8ZHxLqogtn26XaErbgDAkboZCPfoPQe5Ndp8QvED6dZyaE98oeePNx9nTdJHEf + 4PQMw45/hye4rzu28R6HYSQix0d4WDDfdPIJZlHOSNwIBxg8Aeme9NFJdTMsvDWsXsXmx2pit258 + 65YQxn8WIB/DNacXw4v3ci51KzRvvMsKyTOARnOAuMY96uw+MoBMfPnum+cssrKc8ZC5+cY7ZHPX + jpSDxnZWqeXDBdXEKnKxyynBbKlWB6xkYPC9SBye9D1JYPDFlosUmpQXQuru3RJDG0LRNFkj5x82 + VIPqhAP0re1m91HT9Ikn1CRZ7iJWCPAZN0Dcgt5owe4PQdOnFctqvinS9R8lf7PJgkdmuI5CWMZO + PmVuo78Djjp3N6KOJ/D18LOSIWxt5XlVDnB2tkhhkEfdyML0piLEPxNvtPhmtbma0vbc27NBcAOX + L7fl3BmPJYDIIA711Hgz4h/2vp2/XraO2bPF1FFiJxngHnAOffnI6GvBHlUwrEqjruZu7H/D2rqP + Dll4kukAs9Kaewdl3F0ITAOQcjnH0pWBpH0RcX9jbOBcXkMLSNtIMbKik9MsCR14B71OIxJHm3li + ljP3HjfIYDg8/nXnSaYtlqVm+stFbag/NrKmoShd2QQSCHUHcemSPrXYWTSRwCC5uWnkiYsXSMEr + 83QhcDoeoHpSaILjQygHYyuCCxVWzj14qtdanDakiSRIjgsodypZR1IzweKRo7xLwu9/I0T8xRmM + Dy84ACyD3HRs5z7VbWTzR5kjRyggZkC4ZST0ZfpzuHr070rAZdvrkEhn2yExwkeZK7rhflB6ZBI5 + 64FPt5Esbm6mgewYXDLJMp3DJACg8HHQDnFX5NKtnwY1UMRncVUjB54J7dKgfT1BGETc3dwVJ/mC + fY+lAzy+48faFaOTCsjtg8rnr2yCcHjA5zwBz1rEvfiYrZFlp5jyc5Mm3kHOcD35rz2imWbmp+Lt + Y1R2Mlz5Ssc7Yhjn69f1rEdnkYs7sxPUk5pKKYCYooooAWikpaBBRRRTAKASOhoooGBJPekpcUuK + AEopeKcEJ5xgepoAaOfUml2+pA9qU5AwM/lTdrehpgO2ju4/I1r6HbaPLcD+0bl1AI4IwCP8/Ssf + B+tGxuw/OgD3rw/eeGrGBRavbrDjnpknv045B/l610sN3ZTR+XFOu9urYKhz0PHTH+Br5kgRzMoD + bcnrmvVvCIjtLZWmvUwOdskq47HGG6Vm0I9FmhvYbkKk0AjUjcJEJYrznDdv4eeelWImt8giBBuO + GCjbk9znpjn2rN/4SfRrdQLjWbRexUzjgYA9c8gVD/wlHhS6HknXLXzG4+WTgkfpnmpA32WPeFEb + LICFx5mRz0PPr0/KoZLZNvlsgUEYIwQp9xg8446etZ8bBkH2C881VPKooYY+g69uOvXHar0csW0x + fLkcMclST3+nbr7cUAU5bRolULFIsZ/itZ+gBBHysMY6+vAqVnOCX3uU+XDKOc479jgemM+lXNxj + cAq6luhJwvUcHHTPt61TuADLsckuq/I6/e6Z7YPUDvzz6UAKI7STYJIiu/DAHG1sEc57HnH4VHLY + CSHcWLIRyrAEYBPUHj1A/wAmmrFMt3KpVXgmOW6IyZx1P8QJJPrmoojKkweHzFUDlG+8Bg5GO4+X + jv1GKAGxyNbsweZhJtC7zuwccHvg/d9RVqKW6EDAupYEqQM88d/bpzjofrTLa7hkkkBCtIzBW28K + DnjIxweR6imC1MPMD7UBBygwVI7kd/Tp0oASS/WMiOZZYjtGHQkoMYz1yOD684qMi2mttglS5t2G + GjkAkUg9OSTkZA9vpVqVpxGzyGPzGClmRSQccde+DjtVW4tre5KiWFomA4kiOMn0BHPXOM9SPagZ + Gv2O52Iqou5lby84bAwQcEZ6A/ryKspp4mYPFcuAxG9A4O3BHGAOPqc9Qeazzp8sWBI5kRBkCRQw + 4PBJIyDz6/zFRS31taXAgdmkYxmT/j4wVXO3PBzjkdM9vUZAJjo01teIytdtgjcyOPKOeCSp7jjs + RzxzVs2twwCqoXdkq+8EZGMYDfQ+n86oyavLHIVYHYWIMhfcuQSvOcbcnp0ycD6ZF54mjtnQedDI + jp5ixhAhVFwDnDck9AOOhpgdVNBcuyvE0bSjnc0TMuM8jPODjpk+lKsEjwNG808e6RsmGVh1/wBp + eV69B04xmuI03VL288RxajaXOow2IJ8pMqsTkAl9w9MnIyM8jkYr0a2u1vLUfaHUSOwCyRnHUZAP + JG7g9z0pMDktM8G2Oiah/aGk3d/BcOGV1M6ujN1w2VyQeDznpUl/p86zmVJbmaLG7cLkkgH5SmCQ + COR7/UV1TI4cq2DxtDAllI9fbjtUE0ikGUswUrvZeCSD1Oc+uM5ouBwF1o5ltZ4GlmkVzviIiK7A + CzfOwySOgPOcCpVsJL2ztLjULSFruAlMRMx8ttwLMOnzc98/71djJbK25i0TAAbmCKDyOoIJ74/z + ioXjtd3yPGqkEZjBBIGe2RkYzx7D2ouByKpLbsskN9JJbSD5Y3Jl3nAVhuLDglhnOM+wqxpqeU0M + M4uELD9yXlK7iFJbhOh3AgnJ6E5ODWneaTOttNJZySxKuZAi5YOS3TOOMjAyT79MmsgaQlrMBJHE + kpYsqyJGfmYEH5uAQCVGT3GPqwJ7z7Fq9uU8wG0n+aQTcZBI2kNkMoLIR37Ej1do+jrauGnS2aWO + MwRSRv8AOseDxv4K8Mc9/TjgaFlaSQwqkUeWZASqKUA5JI4YAjqSMnp05GBI7tDdSajJFHZRoTJN + G7xeWoBLdCRx8ozz/MUgN1DESAsbmQjCELlmx97jOD647iss+IbCK6kgee1naHBmKELFAfXzC20f + MOgyc9jXmmt+PG1DUI4rWO4XS1cmaLzmV7rP3gzDkKf7v4nnpah1nQ9TgtbWHT47SKIu/wBndseY + wVeN6jdg8/eJ6cnoQ+QD0y21S3v2SCz1jS2uGlETW8sxRiwIG2Nscn72Bj07VakW+s0+yixn3NIM + M2SqAgs3O45544OPbtXL6HoWiRyr51rM8hkSMs8hwrZIG11PJ3ElSeoPWu/TUbO4vJ7JpmkuBGvm + 2dySrDgAMvQflxnuCaTiK5kLdXMDRi90yRYwu2RopAQGzjjAzx7HjBxRElvexJIkojmKhSrjD9em + TznnA/Cte5tvswLKWaIbR5jsflyMDJ5OOgORxjrjmqFzDeWasRBlRuJWRlA46dD3I6j19AMSMzbu + xEzNFcxATEZBK8nJBwCeOuOhzjnOao/2ff27LJHc3MayAkrJLIQc/i23HAzjjnkitczFJI9ytHKB + 8izANlQPTqxGeORz2qrBqF8b/wAm6j8yElslcgR5yfuuMgdACG6nA70DMhtO1RtWmulvQsEsfltb + SSGSPcdx4zwMemckE9qtywWE5mlIjaSP9zdhJBlFPILqDjdyTnrycZNakst0Z0f7UvkSZDwS2mCT + js+cce+c80/y0FxhAn3MM8Ujxn5SQcduB2zkc9QaYEOjW6PCsaXZnQcqV+4oPYcYxnt1ArwTxbfy + av4mvrx2LAylI89kX5VH5AV9EebpcUTrJcpFMsBlWKR8OeCwOM9Qc/rXy+980jEuiknuKaTexUJJ + PUiZcV0Hhm11h38yzDiA5yW+6SOCeepGfrWAv71uSqL3ZjwK6HQ/FVxosQtreJblA5YKygDPscZ7 + D8qcoS5bIuM4qVz0jTbTUIYGlkjZlVwTtbOByPxrtNDuJp4ntyGfy1Lr1yuB0/GuJ8P+ONTvcKPD + JlAXB23BXOMnkHA7mtO58bajoU8brokViskixST3FyXCqSMjCgkHGeprheDre0U1odLxlN03Bo7z + 7SsN2YTIrMzYIAPBwu4Z5BPzAgV5h8b/AA8ZYLHxBbLujjX7LcbRwoySh+mSw/75r1CexiW4k8gY + ib5kSNsoQTweD79vY9RmoLmIXFrLbXaRXFnNH5bxSfxqeMHn9R3x9a7E7M4D5bsrlUjME6l4GOeO + qH1H9RVoWm87raVJlPocH8Qea7rxB8Hr+3le48PzJdWzEkW07hJY/bcflb65B9qq6J8JvEN9dKNS + SHTrYH55HlWR8f7KqTk/UgVopIdznLHRdQvriOCC1dpJDhQcDOOTya9q8F+FLPw/p7ASxz6lcja9 + zGN8aj/nmp5wPUkDP4CtbRvDfh/w5ZCLTYFEpG1rpuZZOgJ8wcr9BgVduLSBzIXVDMqFi5G104Oc + gfUVEpNgMhv1d1jhnEiHhRgMQf4V7HqCMYOcjpRNiURkEyRE8nfgqOuCc9OmQc9OlRtYRy/L8rgt + iQSjO/nPbnvWWLPVNOvrm8hUXcLxlVtWkEQBHcHGATzz16YNSIsT6NZXkyXF1ai4liGFe4dy2AeD + kFs898ccYxgVIyQuHeY3iBjudd2SinrnaScHB4HHp6VNHPiFnlja2csCYi4dVPQ4K/h1HbpUwDsz + bSJlU/Om4HORg88cZxx060AZa2MSSzSqZPMePBeViuw5G3hQN+frnjHfFcpY2eraZqQ2agmriASi + S0S2jijLuM8uTwSSDgAkZx0auve3u2WQfaTHITxNGNwP3uAvTIBHY/jzVV7X7NAUuGZoWZmd7iZU + G4/LtOFXKnPcHH4YDQFa0h8uU3Utp9luN48+3NwHQALgBQjbVznP3Qcjkc06fypwkSWSpKWDgspY + A5yDwykcg8A9fyM1tNJuYl7eZSVT/R1+eMYAw3LZ5HtgDvVNprSe1M3mx3USgrmEBW3jIPIOV449 + uegoAw9WnvbS2NxDG96zMFs7W3jLqi8jc4VcHkdu/GWzxyd7r/iK0d7S/eS2mnj3SQMgX5W+7uA6 + 8DofxHWtTXfGFlpBlTS7gSXBbcqxbfLXIxknGSfbcemOma86n1KW4uJLieYyTSHLOx5NUkUn3NpH + VF2544zjvTHlVck8Nj8qp6fZ6xqco+w6fc3Oe6RkqPq3QV2um+BYbJEvPFV/Hbp1EK/MgPYOwIz/ + ALqeh+YUrWL50crbQSXIErTR2tpnmaXuM4O1erY9vxIrr9M8N+F7uFXF5e3kvYeYsYcgZxtxuA4I + 4z071rJ4J0jWZor6fVJ5gAIvLiiUxqR8p2hTwuegxj9RXWwaTZ6ZbrFb4MYIJVIAM54yu0cEHkcD + tnrmmQ5XOQuPB/h0WwKWo4wS6XUh3AZztznIwRx1GMeuM288M+HljAttJnmlU42faX3E5zg4B4I6 + cDp2zXo4vdLizFcXEyGMZYzqR/CTzuGP1/mRUJuPD9ywt2v8SomFLYVWA4BHBAHUZGPz5ouScANP + 07T1lJ8PRQqxyssxZyqkBgfn9ACpx61rJqUGnZlX7IdhLhViVWJJH3dpyDtOOnXtngdJZ6XoCv51 + pdeaZMDzIZEZQpGw8/ePp36+9W/7EsrVpIOqRxjOEY/L04Izk9+/P4UAcXBqmqx60jojRWrxnYro + +UZTyAwU4O09CSDxycCtDVNV+w2Ut0sbPEBiSHcyuSAenzfLlGzj2+mNKXRyJSvmhspwXT5V3Ach + h82eOST3FUNQ06K1s5HMrfY2Xdt3DEKqSSOPmAGeoA43delAjCb4jG2WMtAGaOSPCecyk5yWIyOA + Bkck9evHOnZ/Eqe6lS0aK4t7xwpXzcYxkYPOMgj5ucdcdcE49/o7FJYt9tfRurFd7jcEyGABPovI + zx7EcVhtZX+nRpttblotoMirjOSSOPvA8sGGepbPYYYz0rSPGX2y2t3mjjMGdzSPabFHUYzjHXOC + MjjHBroPM0y6t/KvLNZFPysSeUJyfkJ59R7YxXjukaj9mv8Ac63VnvQlXmXLTkdiDwec8KVzkDrX + ZWurGwvHhgmWRi43QFQu5eMbT1PdQTyflz0yVYRtnQHtpC+n3LzLBKkn2aXh4wCMjavbGCGUZyOO + praQpfWsttd26TwFMMJODj+79QcjHUY7VTstTs761NxsRPK4lIchol5+bdjJUnJzwMfTjdiDcyQX + SOW+ZwQMMCOx/X/9ZygOI1LwqlvLJ5GfLkcny9uVUHAJXbgo33encc57rpr6jpkvmB5JkAO0Ajds + B3GNwSPXGeSP0rspY4HBWaEBOuZBtIHfnnp7H/GoJrMowlCmUcsHGGYd8A9Tnn8GpgJZapDcQIkx + COTlWH3H6EdvccY9ePVLqCE5LxgsV58xNwPAxhuowOeo4rPdbSwV3dkgRyXJH7vc3csD1OMdu1D6 + vErBCuzfnKspGFH3iDgqQD+HakBOI2PzQTMYjkkbvMO7PJ9cZyOD3GRUrGd0KqRk8DKbtvOeVGD9 + en9KonUrJmDAsCQGRg2dxAHIwRn7o5PI2nB4xUNxdXRz9muIvk7z5XCgnGe6jnGSeDjuaBGnDAz2 + 6RyQRL8oIxkrkDPAxnH8sd+9xIyAMrIqKQVPbPpn07Yribm81KGeKSS/R2LhkjXJfcTkADdk56YP + 65+VLi/1e5EKs8xMLAttkaEnOSBk+46hj15z2Y7HSXPifTtIvWt7u+hQg7Sk5aMn5c8EjB7dOOvN + X4/FmhXES/6XEyZyC5DqCO+c8Y65Pp7GuNePUruA2121tf2YYlLa7t98iqRhcMcknJ5OQcDrzUNr + omnaXM720F/CrBR5cVwVi3ZxjD4I5IPzZGKA0PRoUtGiLQp8pyBsbIGecg9QO+PfpTjAokzG+Sv8 + BHODj8h9axNFvNKeyRYc2kmwB0ZuRx39SMHk9x+Na3mQTIGSWOVFwS2/+opCB7dMsSApPVXwARjk + ZH1HrVO90kXd3a3Elzdxy2r74o1mbyy2P4k/i79atvchAoeRVR8gtIQV6cnr6UpkLqrGRMdVyNwG + OfbHFAEqy3C9XKuOP72e/T8x0o+0En7qOOQpU7Tk4x9f/wBVRCN9uHZuoHJJAx0659v1o2TYBCtI + p7j+h/P06UATsVuNoXO7IOCCj/n0NY/ijWm8O+GbjUEklNyCsEKTYOJW4Un1AGWPriqfiHxC3h3T + HvZ9H1G6gXh3twGCcH73zcAEdea8l8X/ABOj8VW1naQae9nb28xlbfMHZ2K4HYcDLevWnYEtTIuT + JNM8ssjyvIxeSV2+Z2PJJPcnNUHgGQEwF9/1pRqMRAcEU4zK67srkA4Io1N9CskTKWVh8w/Wq8qj + PIHTOAOKvl0JO8LnOM0QWou5wittUcvJj7g/x64//XVJk2M+20+71G8NvY28txL/AHY1zx6n0Hua + 6CDw9Y6Ym7XNeS3baVNpp/76XBHKswO1c/UiiHUo4YHtLWArbFNpQSHazkYMhxgse4ByAenHFU44 + IjwDu46n/PtQ5C5WalrfeFtIZZbHRJrll58y7dZGxkcj+AHr/C3IrtrXVNN8TRxxpe3bzIdxtbi5 + VNy5zlRyvAwcLyMHOMg15iYsDIwD2C8UwK0cgaOV0kByGzgjHQg0cwnA9f8AsdnApt7pzCjgo7SR + nCMOoJHy4OQQeM9qs2ti2l37zRIqQuxxJG53BWAx8xyeozg+/wBK4fRPH1zABBq9uLyHZ5Zn/wCW + gTkkEdGHPsfeu5sJLO4iW90mbzoH4lt1XDBSeowcHGccdvU1SZm00af9tSxeV9oQvE5KttZWwOxB + zkjrx161dmAhlaSMj7O4Gxh0iHr1zjoPbiucleEanc6XcMStxD5wilHHHB2YGMjGe/19LemTzPaT + QXMZ+0WwKTbUwWTs4xwTgcjB6D8QR0kE7GJ9+PkYH523D5vfqOf5+lG+1nfy9wjlIGFc4/EEGsDQ + NXQ3UcTXCzI6hYLhW++pI4z2IAzg85571olY7nzLcHbKkxCbRjY4wynnqpz/AOPVLA+VaKACe1Lj + 1NBoJRg+lLnHSkpiDBo2n0pKWgAwaMGjJoyfWgBcH0oxjqRSUUALke9G4f3f1pKKLjF3f7Ip2/8A + 2RTKKLgSCbHRBS+YGPzL+RqKincCUbOxIo2Z5Dj86Z19/pRgZ68+9MB5XHdfzpNo7uPwFA3AcgkU + Hj+HP4UAJwOhpPxx9aXqOlJj0HftQAmxj/8AWrrPD3hRr4iWYkrn7oPX8f61T0Lw7NfTRySLhCeA + e3ua9Q0qDTNMlS2JkDyA4DE4GOpyOnfHPpUtiOg0nTV0+BFETnaBnnnGRzjOOMeoxj3rZ8+ORzHc + rtJChiWwOe5B/Lv2rIlODuLuFKk7xHk5OBwSTg8jOeOtVZTcK64GRggsuPcFDg49Bnv044NQA3V4 + /F6uJtDuLBrbHzQOxR+mMbs49xgj6VrabqmpXcskOt6EtggUeXNFL9q+bcQQcDjH8h3zWKqvKC9t + qEhZziQLyUIOckYx2HPA6+uasx6rdCNS8yXA/wBW4VSHB/hBGeCARyOc4xnsAbKxadBICkrRllJE + UgIVAQM7eMjoPpUktruiz8ssBwVKsOM557AYycH39ayW16OLbG7JIHA2pI218fKpAzweWGfXt61c + sJbR3aWJmSRwFcltvQnAPOPUYHfNIBJ9JdSGELPG2OUYMw9cYPv9cAdelVYb6386KAXeyVmKOk7F + G4A3YU4IPT2+tb6Suq+ZuQIcghh0P06Hv370ye0guVEUy7ZcAbsFS3sG9Oehz2oAzQCylkRhmMbn + 25U5H1wenr3qrcFGYMnyBoycPCykN/vAcH73Xqc9auyWDQMjqLhXKYG1M45/2eP06emabifzGaO6 + hmc5wkqmNicc9ce3UH9KAKIsrkug85Zt/wAhWSRXL8cAEAdh3H58mpJtOvTIguRKpWMhUEeVAOAS + Mjr1HU8dulPnbXFvFSOzto7IptbzB5uMn7oUFfU9/wAulW7KJllRJLSSN3bcjxg8fKAQxyee2c/4 + kGYw0Yh1cx7dse1jEnl5G3tzledvA4OBUD2KkjzAFKYZyqkHd3PHo3OMfkRXRW00V/DcXFjIl1Da + SmGd4WBMTdxtHbnsMce1VryNLghmt0kn4RMqrGIEjLMTjA45GR9aAOcudMneOC9s7qImBw2zJXKn + llzjIBDcZwOADnituxuFt7ZklthFBhZGYrkJgjk/h19MEH0qV0DImJY1uyD5Ua8NgABsAsPUdPai + XTmntgLuSYq6KpUFmUE84wc+v5EA5zmgC8s8EkbpDcIY42O8dQox0P69fSlkZSf3cu0kkAEZxk8c + j/HHNZ487dE5RcZb5nGATkcLnHPLfjn1pNu4+Y8RBMeGBRmKg87doOCeBng/WgCaa6NvA0ipHLtI + jdUIZ0ZsE7wOODyf5062uI5phEEeKVBxjBj3AhflKE89Tg4PbGRULrFJOJikIYcKzN83PQYYZwcH + jNMmhimIiZMSO37xXkKkAg5PQfMBnGD6fWkA28s7C+QC6shcwxMWccsyEgD7pUDdgk4PPHFPGmwk + pcQzSQxLypSFczFgCTkgt7kcdOvesy3aSC1QkPcTBAsS7yQyrymS7PtOMc56k9xgY+t+M4NDu5Gm + uUuiWO23W48x0yBkYxxz6nv7AU15AddLDBZWrzTzRQ26KfNmkiUdR8xLHIOSBke/BHSvLPG/jy31 + m0fTNGEy2e8GaeTAM2MAAd9vAPPPA4GK5rxP4y1HxPIBcbYYF58qMnDHOQW55I/CsmSa1+yxJHE6 + TqMO4bKtyTnHryB+FWo9wJYlJ5wR7jitbQjCt+4ugq2pT94RgELkdO/BweOeO+cVlJcIq4BHpzSG + 7AUrhSD3Ipu5Ru2uuXlhezhXWa1aRi1u7boyC2flI6c8gjH9K9F0jxJB4v1dW8sw3Wxjt2r5kYwT + 8rcAqCAfz4AryewttQ1SYw6dZy3LE/wIcD6noB9a6G08OX+lsLm585rtkYw29qMZ45+c9eG/gB69 + akTseyR+JrXTZDBqerWeYhmJlO6Q7sEAjOSD0xjrjHOM52m/EDSdXlNmEu1lA3J5zBcjjoTnOCc9 + AeD6mvP4NNlmCQS2j2YkwA6Ao4bDHGQGbkEc46446iqEGgR6NfzxpNdoPMKqUwJSQMgEDHB3Z4PI + we3CshWPSLzxfptta/aHtLjyXcyTTRwtgZwuTgg5DZ9s/Sq9z8QtG02C3mmjniJQKuYlMoU45+Zi + TnBJzg561yihtRWSKyv4DIgzunZ2BUE/KysMPknrnr04GKwZPhtrUssubm283fzu3BW3HghsY5Of + yo5V1GdlefGDRLi2NuNN1FScq00U/lEAjBKgE4PcdgeetdBofiHQfFE9smna9d21xFuf7PM2xmzy + Q3GGAxxg9+vJrxHWfCmpaEsbXRt3WQZBimBP5HB/IVihyOhxT5UI+pPEWn22n+F9W1GSBZbiKxmZ + bp8M6koQAGx/tYr5ZxzWvD4n1u30m40qPVLgWFyMS25fKt09enQdPSorTQtSvrbz7e1/c9QzuqBu + QONxGeSBx61UfdEZxP5VJbTeTKGp1zZ3FpcNb3MMkMyHDRyKVYfUGrVvY2QlBu77EeMkQJvboTjn + AHOBn3zzinfqB6L4P1I70KyYzgEV13ivTFvPD01xLgLNEeTzkjofqCB/k15zpEejQSxNZajfZJII + mtvlJyMA7ckfKTk4PI9DXehdBW3ikm8VR+UEbeJIiiq5K/KVJ3LuU4zj+E+1a86MnFnV+B9Tj1Xw + JpUkkjFo4hbySBiCrIQozn22/gfethcxABmDAkKxztcEjbyACM59MCuN8A3UOiWd5aXEkIaW7c27 + LOuJBtXcVI4I+n9K7eSaFN0xJwMA5fg/z9K5Zq0mjVbEQ4BU7nboCvYd89Oe/wBPWq32kzLOsf7u + QDa3mQuF6kcHIycZJx7VZdgw2/ZWOMDqrBfoT71We4ht4i8/mqqDczFOPQkkHAHOTyPWpGMt0DSs + wkZwGwY8MxznkEv0HJ54GMfUoY7+OyjSERK6MQZEVSwTp06bhxntx0plrqa3DK0azbNwRJJJAA45 + HA3E9u4BP61NNJGoWJrYneC21fyPt6evWgCPUU1CdgLaK2AV2SV2G5jFjkqBjDZAPIOPSp/tOYla + RJ2YcbETeflGckDGMj1x6VC+pwSFtnntIBkBEDHrzlWwfX8BRFdIjSEM8iswzhNpTjpjPPPXk9e1 + ADmlOMxpKJDjaHhYdfU55AGe/GPbFE3mrHuEUrOEOECZPGMDB4z1yAckdKka4t5mfayyNnYW2/cP + Bx6jIOf8iq41C1iG6BkeI4CskhIzkKBgdB7+lADozfBpEkUsM8uIwq8gerZPP0/HBpXs1DFcKCVC + spdhtAx2z9OmOgpn9omNMEoI+CMliGwcHnnjjvj6Vgf8JRdWwu5b+EWcELERtvRww6HJ4w2T90j+ + VNAbv2SRnC+Yyo5I3Ig+bBJ5yDj68fiTVW50RZ4dqmUZG0DylwMjHKtwfy4zWLL4qS4jzHcRmIME + LKcqpOMNuQ4x7EjuDio18QahKmJHvkb5QPJg5ztJGeCNvA56DJ570wGxfDjRbWZr6XTl3PIxxcEO + owP7gAUc9sEY/IaH9kaZanEcFpBIqq4jt7UI6gkbclFO0++DnuKzLQX1+7QypqRj3HzJLhwuOQAw + Bzjofun170+0Bs9PAYXMFsjsZp5pMSOerMMc8g9flORTA07nXNOsrU3F3dmIoxRmZ8ncMZwhJIwc + Dpkc8VTFxp96En0yyS8WMhknkR3beDhCGYcAHPfvkY741ne6foYSLSbC2aaVQNzbgzgHnONzHkAn + PvwMVuaV4imu7dJfsjxJ8vHlMFHGSd3KuOcZI+uOtAFk2msPkRqfIAxgMo2jBBThuMZA684xxgYI + tLeCN0v7glmO0yN90AgL0LEEE+3c+9bGmNcX9uTDqMbysT5iGPHbBBAY8/4Y9KNU+wWGnvdaheWk + VqqKZH2DnPB4U8g4AwOecUCMd47KODehiELIBho+Mdz8oPfdz049ga5XV/FGkaYZT5azzbRsG8x5 + yAQSEAB5C85xxkHjA6y2g0a8WWWOe3ukMauXEUikKQGy3UglcY6bifyx9Y8P6FcXtrHfaQ32SVmB + kN9JFsYKWVVQjnIzkDnOeM0JBcz9A8Qw6kWt7WwWCBWDLuAZSpBYjDAfXAI6cZya3pL1XCSpGEuV + TAkgVn3eqnHUYwR2PX1q7ovg/wAK61Zpd6HeXMTRqAkiXZkCD+EYbPT09/Wi/wDDmo6WGjnxNbFm + ImUnaoPTI5K9Sc84ODu5IoC5DZ6pNdwCeC7fBXcuX3Ddn7p3AehGDyTnnJxVn7Uk0bxy24BckMu0 + BePvEocdRjkduuawwjx3CyRbwkmR8p27gTyc8jB46Hr24qe3klEkDs6udnl73jwQ2MHOMkdMHkDn + 2oGPv7Syt4BbtFvgByDcOwxgkYJIJAwRz6H05HLahDYQp5kr/Z7ZjseQOQRkkH5gCuQxJ+UZHbK9 + OuKPsEau5duGUvn5dvTpkjLDn5up5xxXMatpoWN2aNDazYLb22huDuDFV9BnnGMDHBNAGVEkU1nB + MjruI3EW8pbEoOAeCV68g8D5h1Brn7+21O/WO90y2mkAjPmkRbWwT93aMbsYHOOSfbjRsdG1Gzh+ + zyLE8kczRNG/IUNwvJDDaWz2Bzt59Lc/h557VLoGeIxhuU+U54IIGfvdW25Gc/L3p3AoaD4ncq9r + fSOhuEkR2CrkknPJIOASCD/vE13eiTi1twqzO6bA6qXXcwzyGXPynC4yOhUdzXlUlrf2V8Yp0nFx + E7OZCCwlJYcjg9Qe/Bz+ffWV4626bHijmcqJTDGxjcMSpJGDgkjBGMcUMR6Rp+rRXsQhafE5YBXP + HOB1B9eOPf1qe4kERJlWSJcEZiOBjrnB6c5GT6dwa4E2cd04uLPOl3ir5ZiJzFnAIK85UZAx1X5T + xXQx6lIsBE+XkiQeYkbZHoSpPHfOQRxikFjYNz5pOLhJUAA3r0A9T1I4z61CyQCD7RFPHyQpJKqw + z/CT37deufeuZv1vHcNZXLRRqQpieMPuGPmV1xkYUEDbmpbu2hntmhvkhuLRvl2zYZQc4XOTxyRg + gjHSgDROlRSMzSyT5b70ZchVc+oHf2yR8xqJ7OZvJBj4KKilWLbeB2III4PJx0x1NU7dbuC1Tyrj + 5UGTvZpUdcYGCSCDtwdueM/jUV3dNAT5tpdiVH8zyreMybxvAyMcEc5xnpnINAEk1vJHbPFJOJFl + OGAkILMQBkg5289g3Hbmkm1ZLS3WUwpbRBNolkfI5OMYJJwcFQSOv4iue1G81O3QNZwKXc7Csjnb + g7sscA4wO2Rj3rGn09riVlO2eVTg2cU2Vtht9Dnd+IAHf0pgddL4scQCaO4tJYiuMvOEx82VHL55 + GT68YI9M+18SztLDZnVIJom/1Qt1YvIu30O4Zz6sOmfukmuYfRbuxaTUddiWC3Yl/scKbVbIGThT + 8pG72+uKZaXMty6sk7x6esbyLbW6eSM7SdobIJIAyduepA6nBYZ2mo6hqiaU8un6fLc3PyZldhAI + +pDMDheOM9AM84BGcrRdY8YWipdXFgLtpJhGGhuY1RwAw5C5U4JY59cjnpVnRLjUL6SJrrQD9lPy + tcXFz5cgG7+6eozgBQPbmulFxpgjlYt5yKB5hEudmOx54OO+RzQLYfHrGq3W+OKzC7wYpBOrMykH + b8o+XcAB69OhrJvI9b1BQ0uqXFtI7E/8S6JYgx65Zid4z3yep74NNudU0TeYblposGSUS7HYOQCG + YlQfz/H0zo6Co1KzmudN1OVoyx81JGWRW7cAcrnrgjJ9OtAGeg1+zbbBe35YBlw8xkV1yOcsx5AP + QHpmrdpq/iGK4jFxcyKpfBVYweSeSxwFI4HTnk+ua0Luwv8AaBZ3LW8xI2pN91sDAGcd8g8deK5u + 7e4sn8zVY7WOcR4WWO4ILEYJ+UHjOwEcE5wPU0Ad/p+syzCJp8mWQ48yJiFIx3znH4Z7Vl614C8L + 6+7S3WnLDKwy09sPLcE9Tx8rfiKy4JDHK6KUa3ZkZSSDjJJ5zg4/2vfPrWvFdpFDC0l3HFalwomD + 4AfJA74IPHGQOT6UhHn2qfBJjvfQ9bSXukF0m1iMZ+8OD+QqpH8GNSNm9ydeskSP/WhopV2HGecq + PUfhzXq8dxexlCsSYZQZogdxBwRhecdjxnrj1NTC+uEcSmDbtXbtRlxgD8x39uR607sdz528S+Gp + PD8hW31RNTjjJWeS2jbZE2ehboevY1RtbpY7GOGN/mdi0h756fy/nX0PrHhvw/4jtwuqWyylRtSc + fu5Qc9Ny5B59eK429+CWly5/snX54mzgxzxCTHPH3SD+lO66jTPLmuVAC7hxxk9qQXnBywBPORwa + 6+7+CviKJd1pf6bdr22ysh64/iUD9axbj4YeNIM/8SaWUD/njKkn6Bs09B8xnfbEI+Y5PrStNGVP + AznOCetU7jQddsf+PnSb+ID+/buB/KqW+dTtMbbs9MEGiw+Y29ySksF2se2OKv6Lrd54fvfPszug + Y5kt2OFbpkY7fX2rl1unQ7XGCDggirMd+MYYj2pWC6e577pPifS/ENvHsfbKh3LuwrQHI5I6Afoe + 9WJZzpGupK8YWI7YnYKcD0I9sY4/2CK8EhvFjkWWKZo5FIKuGwyn2Nep6X4gXXdHjnmKGdbZoJgB + 1dcsDxyM4HtyRxRchxtsT6jFZ6BqGoDzdsBPmwqXwRlcgL6H5uD7VH4d8Xx3viC/juY2jkMYZdr7 + lkMY5J9G2g4I49skVf1C30vxPE6STF7y2H2eaHeAQqEqGAPcbhg8ZOBnvVbSvDdhp8rTxzSymQqu + BlEyDkbhnnndkZI5PAqWw0seD5oooqhhRSUUAGaWkooAKKKKACiiigAooooAWijHrxRkelMApKXP + tS5NACUozjpRk+pozTAcM9x+VOC7hwaj/Glz60xDxEzHggGuv8MeE4b6VZLqdAeyZ61x3X0JqSO5 + uID+5mljI/uORSYz6L0rw7Z2ESyK8DDAO0nOOM85/D/JFWLzSZpLPyv4CMOqKFBB6gHnBB7+lfOq + a7q0Z+TULlfpKRXZ+EfE9yzCJ75jJnlZHJB/OocRHpdtpt5ZSsk0ZkiwEBZl3EEck7eG4yM4HTPN + VbjT5Q4+0kuvlMHMJ2kZIJ4BGedp4P8AD3zWrZ3EV9CUyYnxlpFOUPAUdOnUce1XEhvYIlBIuCvO + 5OA3t3xzjpU3A4C+tB9tDfaCzON8NxG2CSTxuOP4jweTjk4HFYut+IZbSA+c0j7yNksSjayk5Kk5 + I6Fu3b61391YDzRJ88buCCFQAkjsemRkA+oyeTmuZ122tpfsQuIRMkzGN3kVty7UBBPGW6jvjjjH + NMZjW2twrfSs90rrv8yOZJFJCjrkAAYwASCOe2TXSaTq0R1IQTNGk9xjK23zMMBs7jjawDjPGetc + 7BZyw3byrdmYFwqlLREH3d4OWHQnPTsfQDGvJfx2aROsUyIS5ljVhlWOEK+WM5HIIIxjA5weWB0y + arLZqXkZCCwBAJIcEKAQo6Z5/L8a2Ipo2RfKdVhYbkyPl25zw4PTp1OenpXGXN9bW0Ci9MMEQJ3l + yFXAIHyqcg5xnA7j1NYF58Q9Nts/ZhLcyFQN4TbggYzuPPfpjtSsB68stxbgq8ZdCfn+b164P59s + 8jrUhlUBFZNxC5BKZ28gH3/H/CvDz8V72Ld9l0+NC3GXlY8duBj26elEXxg12IAC1syAc4AYZ9c8 + 0coHs6fZY49qbUBVmKFijDPB+U89T9KztX0vV76xuYLXXPsfmxtGp+zqQBu/hYEEHB255PfrzXk0 + /wAXvEMqbVhskP8AeMZY/qazn+JfiVslbmCMnqUtk5/MU+UDtvDvw+8T6Dfi50fxTZWqMwMrJ5mX + RTnDRkYYex9frXoN9r+l2bmbUZ4I7kfNI4ZUVzn+6zHsD6185ah4u8Qann7Xq926nkqJCqn8BgVj + szMfmJJPr1o5QPerjxz4ZtdQe/bxAZZnh8hoER5IgCwYsPlBJ47nkfQAZDfE/wAPWc08ls+qytIQ + VVIY1WM4IO0uSeTyc9/TJz5VbaFq14V+zaZeS7vulIGIP44rWtPAPiK5j81rIW8WMl7iQLge46/p + RZAdrc/F7T3Iki0m8eX/AKaXIAXjB2kAkZ5qtN8YA8Sonh+Jtpz+9umbPQgYAHcA/hVKy+E9xIg+ + 26vBDKxASOCIyk+uclf61p2nwo0w2jTXeq3wCFgxS3XnHoAW7fz+tFkFzGn+K+uNlbW3tLaIE7UA + ZiB2Gc9BWfP8SfE04dRdwxB2DkR26DkADPI9hXdx/Cbw2CFbUdRc4zksig9Ony/UfWrT/Dfwra25 + kezuiAvDy3BbccZHyqVOO1PQDyG58R63eEmbVbx85485gOfYVUstNvtTmEVlaT3MhOMRIW/lXuK+ + HPDVtciGHR7CFi2BJKGkwM9SHzj68dPerE1hDdWHkqFFs6oYpQwC54O4AFT1CjGRz9c0XA8wsfhf + 4huh+++yWhzjbNNls9cYQNj8a1bb4UxoT/aeuJGQzApa27Snj8j7dOtehW8U7RGNlLGMeSzpIMJ3 + GcgjpjGPb3ptoEthNCbZUxI37yNyEAYKTgAYTlumB9O5V2BgaT8NPCkcZnee+1IA7cMfLUHgcgYb + qcda6C10Twxp2UtdJscIu8maEFgM5+84z06dDxirTx3MbvEImWbDbJCwHmMOTuOQDznIPt1GSIi0 + tu8MdwJY/LUK37olc/dI43YzkY6+nrSuInmtbdoDAWlt4VGVmiQoEwc8gZ6ZHfvxVY2aWcQhgthG + vLb0bc3QZPJJ5OQfT07UqrGZFjR4GuGZfLLQgM2cZ/hxg5HbgmibR5Xtpv3oSUJv3QRZZSc7s4PU + fLnJoGYuoadeCylhivjGk7AxloeBlwR14PJx0GOuQMVg21zeyI6wI0OWl2TOjoCmG7AbR3XnPBHd + SD11xaQWMn2jVNUj8suzZkm8rIz6liT6d8+vWuG1Lx3oliiR6LpwkIbeGfI2nBByTyxOT0x1poDX + vJjZytqAkhhtiSboOUJD8LvUJsDZG4Anrk4HIrh9S8Z3TN5GlN9mt14DhAGPToTkqMgHqSD37Vma + 14k1HX5FN5NlFOVjXOBxjvkngYrMiilmbbFG8jYzhFJP6VSXcBJpZbiVpZpHkkY5Z3Ykk+5NMAqa + W2ngCtNBJGG5UuhXP0zW34dS9kuE+yWb4DKDcRwlijZ4ycEjJ4wMfj0LAg0nwlrWtx+bZWZMIIzL + IwRR75J5H0rutH+E0QdP7Xv3aRuPJgG1e38bDnqDjA9jW0tzf3cqPDdBEdCY1kXk5AG3khmDEHAx + zxWXqPiP7JqUlvcXD3KmLYjm2ZXhwTtYZILEqwPDckdxUXbA6u28M+Gltkt3ijn8sBSl6rzeVgH5 + QScqOuOMcdKkHhbwrbvn+ybCMEbt0luWTG0cgs2SMspyB7HHWvM5PEviOZhaQpHFDbjGTCNmFGQe + cjscdua6Dw5dxTWRhmdYDM2JP9IkDkkhT9T90455XAzyKNQO6fwb4MvAjppGnuiNlmtZXRiB127W + 5weR69AM1Fc/CjwrqKE299e2skvb7QJFByOzg56jv6VVmtoEkZoYWjmZVkSUuTkYOSBk5wCSBxnN + W9OvWsrkpdX0szSnasbgYXnBwxJ9cHB6EehNLUDRtvC81rocWiwPPb2tkMx3SpgOOSc467jnd9fS + m6TDcQapJC+nwSWabw1yZEaUEncWwGJ2HJG08jg9Kvtq1mskBluHiLHCbl2MScZ579R369Kkmis7 + 1hdXEMUkqqCjzAB+OwbPvjr1NTbqO4OswTaZLVkl5kXcUcJ0yCAcnI68Vj6vpEmpwwixuVt5I5OT + OHbcB0HykdznkZH4CuhS3eJirRspJwVDZAOP/r9P/wBdMfTYGaKb7LH5m8uGEQDK5wMhgO/fpmlY + Vzh7PwnNpcf2gNFJHG6TeSJmkGQWJKk7QDg8de/OM10gt5Y9vkKoj8sbAoJ3Lg/Luz0zgj/64rZj + tUSMgGaSMcqkjliCDngNyDUN3pkF1KHuYlkjQBwhTo2evPykdPp+NMLmFqMkEVmbq4Km3hDBpCSr + xLweTyckEjA9etUW1SxMuyN47yZWbmFlkZepy4JJOAOg9e+a6t9Ph2wjzZo1TB+R9ueg6AYI9hxW + Re6PYG2ANvpNwkc5Z1u0EW3eepO04c5HOBnIoC5Uge1EoAV1k8sKZJkODg46gnAwDgdwenNOM6SD + 7QkojD5ZZRKWDAqQTuA6ZXgEjFR3UWq2OkEafpEVxdvgxrHd7YDlic8nnnnHGc+lS2ls8dhHcXth + bjUztBZoQisW+9zu46nnBPJ4bOKAGfZbpjJGrIC38MbFWTgk+uccEHPrmq9xDCTHLORM+4xpvCKd + 2AN3Ix/Fnjr6Gruy1nMay2374rLguJEcfMAoXIHXAHUDpjrTltJJpp1lhvVXyzhpPLCMG6r8rZ4z + j5sfjQBnf2dBBI0iWyRBAIxtUvtwGDH1VhgqTnnIp+L15YoZ518khhHGYh5iKCuVLElcfXn+daF/ + o7wQSTJbmaYrtBjO9gpGDkNhcdOOOecevB61qPiRWlGmaReBHEgM5iLM2dwVVEfAweh6njPFMDo7 + 57G1WN5zbLlgI5pWUqMlvkxnvz93I78gEHFGvWN1I0OvDfbnCr5E6oFHBGQjFmz/ALwyB05rz02u + rztvudN1OSZjyz20h/DpV628P69eLutdCvsno0kXlj83IplWXVmyniey028mt7Se4+wEjZi2iVkw + Bj5iCzHciEtkE/MeCecnxD4uvNVIS0a4hgLEsjyZZs9vXbjHGTUlp4JvrhvM1C+t7NN2GER89wfQ + lflHHq1dHY+G/CNukkV1BNczhPNzPcBWKgc4VWQjk9COoHPPLE+VG34few1PR4Ps9y9lMIvMjXzQ + z8EFsHOGHRcEZGMHrzxvxH0u/S10u/mv2vIPL8tmOAVJyyk7eOV+v3evSur0zRfCNo8Uto95byy/ + KJoGlGw7sEfMTjPGN3XFdjcaXpWuWhS5RLuH+FZFyVJGASOCOfyOelFyTwHT9c+wCCaKaSC+th+5 + nXLBl/55suRxk9fwI6Yo3tzLqF09xOys7sSFVcKueoVegHtXsF78HfD07j7Nc31qQ2DsdZVx26jI + x9e3uccxqnwg1uyw+mz22ox8/K7CCReAcHJwep79vSmNNC/CbxCuj6pcW0yybJSGZlG7aADnIxkj + HXGMYFe7QahZ6tCJ7WYOy/MYjwy8Z4B56H6HnGa+bNO8JeI4dR82XRJYdr5LTuYgOT0YEH/gQ6cV + 6Bo3/CRaYtnqUUbmRQElgaQO7gdgVGGGFyM8/MQM0Ce56HdaTYXW6R02EAl3j4BBPO5QcfU9cGsm + 88MKZCZ4lm3AAngqTg4YHqGBOa6CCWG9QahYyCNmAWWJjxn3HbIP8vpVeS+azVFeJjA37t15Bj6D + BPTHPHbByOKkVzmTZT2t4VVHEZfIdiWJLHkkcgZHPTGeOKq/ZGligyWSSJCXJbcqFl5BO7JAJ9jj + 2zXWXFzG8UTJIoQt8jMoViT25wvPY5Hp1qvtt5xnarAkK+W+ZD1CsQc4Of1pDOOm023nkjWaMSTR + q8io6FmUkkZU8ZAYYz34Jz3etqphSE3Ln5NqMsmV/vDAI4xzwM4I+tdBdWAkIE0KTMSGEkgAYNjs + w6MDg54z17VWhKyRHyt7FnYkybkIydx3A4Oev1yOKBnNXemFY1jub99oYhl2Ar14yq5BU7hngAcd + MmktLf7TGdNvgssmZNpERzNkbhgZGDkenbJznNdUbW/ikGWWMKNuFfPA7ncOvXj3HNUpwkI+xzx/ + ZtoAQoFaJTxjtkE/0zjGKYGckc4l+WYXEcmAgkkKuoYKPvKCCOTnoMnrmrsI2t5kjv8AJ90uyll4 + 3DLADBycc9ffNTSCeN4JojbG1KqUWNyxx/ewQcKR24wAKess27CI7yISuFwhIGApz9M49wc46EAr + yuBOyvOxKjcY5FDBTx0AHPUHrnrgY6UzPZLfpatLbSXaIxihU4l2cnjJwnY8c8HrVq5uraSN5Jbo + JAWDGZ2XYOm3dnkfN0B561AvmTxQpDLGY5iyMww0eRwOQcDJPI/DjINADZ9sUob7TKpEpJZmYscj + KgANuIJPT1xjsKoadqEV00saCZZW3R/aEj8tnKgdVzuyMt94ZGB1yBV1NOv44DMjxpOIwjzQowdz + kc4I+ZfbnkcdKzr7Q7m5jcyJai9MjMLiJQrlxwucjv8ALkZ5wRmgC3IgEkTNewtbzfuZN6eWSOyg + 7Rz1wMjr6dcq4uYYpUhju7N58KYY1k2MrAHOSdxOA2AfqQQeRmWlvqukW0ENzamSERESKkjOzAvn + cFBY5U4OPunIzzxUX9ny3ekfaY7ef7I+cvujR5FAcYZRhVwc84OARwQQKYEa6nbWsP2iW5a+f/lr + JJOyhWK/NEoAJ+6TzjBz25FZK+Lr9YlJmhyybF/dAtGo6AE8DPHQH7o/HNvNMu1S/lklmazUkiZS + WSRjjaCencdcYz04rLgKhRnGfWqGjeuTq8tl/akt+5WV9phUkMenLDGD0BGc5wOORW/pXiS4Omrb + WBBJmVcXARWJwDycBcFVPTJz74J4xbzysgAZIwD3qO3DX1+kSxSTbmywjj3sORkgfl7UrA0jq/Fu + qeIhFDY6y6xGTc5SFxh1yMA44I9s+megNc5p2p3GlahFfWjhZYjkqfuuPQjvXbXvhoal4Sh0/E39 + oQv5lk4V5QysACjMAVGcDGDgFR2Jpnhz4Y3e231C8uPMkBDC2SPjdkYVixXnn0xkdaVhXR3nh7xO + mqaT9rkSeG0b5IppPvZzjBxnI54J9ce1WEmtI5DHPcRJcufmhM2Elx0YBgMcLkkDAx3rlri/i0XU + ktvs5ut+C7wyY8pB1MzFiTx/CxAOPpXOav42ge2aydBdRdGt7dmhhC8goTkl+vXjkDHBILsI6mXx + l4UttrPfo0iONjQqSynGOCqgY5Oefpmt7StTsLrc8c9whCZaSWweHKbjjJYBSOQOD69zXjNx4ov0 + tra30wRafFDhtloNuXHRix+Yn1yTW6nxM1Flb7Uslxb7VV2aQhzx8xGPl65OCD2p2Bpnrcmp6NaM + 6TaxbO8MojkXyDkFsAKTk/njPT61qxwWFyC0Tu4HBDP9w+vI+U/l2rxefULLWNOS6F6Y5ZQUhaXa + M4IzFIu0IwwQQexwR6V6LpUVxBMA17HdWzIqIyKQ8JwD8wLHKkbR1PbnvRYk6KTTGlLv5jJJkk9A + zEjjI5U9B0NV2SSHCyoynP8ACu3cB1H5dsdutKNQWKeFWkaJ3OPKl5XIP8icd/brWhaT297asIn3 + zDjBchhjBwCOvse1TYVykrAqB5xI5BLAOCcHHP8A9cU3dG+SkkRBwcKrYBxgdD/Tsc028s4w21ZT + E3lh1JA4DHuM88g9q5fVdJ8ZzBGsrrR7pZAWLxxujsM5IG8Fc8euetIpHWLeGMFd5YjAbbISPbIY + AqPx7U2cRToWltreQucHzYw3HcHO7P4VwQ1zxnZX8dte6XLOkQAlmRC+MnkArkZ5I4PB612KXltK + POlaSNSAZGkHluMg53diOPQUWAbJp1iCJv7OssHqrWaZIzj+Ljgkms648I6DeXOG8NWD/wC2oCZ7 + btqEcdO/Hp1xrmYiETJLHGzNhpVBdTx+OOT69qYtyvyQSSRKzICqmPaDx1BDHjPfqM0wMFPBGh2p + Pn+HdO2FeNwc7Gz3JbpjqMk8cHmrFn4Z0bTLqW4tdKitLjZ5MnkTEqQevBJGCcduvatiKZkRk89V + G3BYyMw4HBwc8YB79qeLpcho5NxUZKjG7B9CSO38jQBEI7RXEi2ioiEK0jqAyjONwIHTp3HFIbNW + IOFcbtpbOeSAMEA/rjFWB+5D/aSRGxVcIvHtnk+n680ohYMwMomHHEmcdsH2OPc9qBHylRRRTLEo + oooAKKKMUAFFGKKACilpKACjNFFMAooooAKKKKACiiigApc4oopgGaUH8qbS0ALkdx+VKMg5RsH8 + qQc0YoA17HxNrWmkeReygDoCc11Fp8W9etsedHDP0ySNufy/z+dcDRnFFkB6cPjTfGPZJo1tIMcZ + lIwfy/zxVd/i/fh1e30q1iK9MyyNgenWvOt3rg/UUo291H4GjlQHav8AFHVg4eCysIiAVGEZsA5J + HLdOTxWVfeO/EN/v3Xwh3nLG3jWNm4xywGf1rn8Rd9w/WpVitSoJnYZ6jb0osgIpp5biQyTyvLIe + rOxYn8TUdbNvb+HlANzfXznHKxwBcfiSa37TU/AWn7WGjXd+473EuAfqB/hQBxABY4AJPoK0rXw9 + rN7/AMe2lXko65WFsfnivS9M8c6DApjsbGy0xMdf4sDsSByc4INN1j4p2lpIE01PtzjkSsuxVPtn + 5j+lK4HFwfDrxZO4X+xp48/xSssY/Mmt/T/g/qUvz6jfwWqDG5YkMrD27D9azrr4reJ7kt5c0Fup + OQI4skfi2agj8deNJjmPULp/92FWH/oNLUR3GnfDDRbC8jF1JPeMRuCyYCHoeg/Hgn/CuntdBsrB + B9nghtCHO4iBI2QFhtAIHPOFznnNeTt488bRoySzy7CMMr2SAdPTbVeX4geKGUKbsJjptt0Ht6ew + pWGe0tY3LlTZEyuWJMchPIGeh6g5A/LHA5qO50f5vs4kPkF/3qmPzFZMYxycqSFznJ6EYrwO48Ra + 7dZ87VL5h6eawH5CqiNftKUU3JkPVQWz69PyNOwj6Ok05IogFRYolPzLkE7eMjOSODzyPTNK0Y2+ + VIsmPLwrOww2NoOQTyfujr+I4rwAaB4jnG4aZqTe7Qv9O4qePwX4quFDJot+wPQmMj270rAe5vIl + lMGmu0t1AyVlkQdSSWyTk4Ix19MgVAmpaZbxuJNYsFdjjf8AaIyM4AyQDjtxn/8AX4qngPxRMRjS + Jeem50X+ZqzH8N/ELpmSOzh9pLyNT6+vvRYD1yXW9GiMajUbAFX3OPtoXPJ/uHrnB6YP61l3niPw + 7bgyzaxAJF+YxxEO544XKbs4Pr9a4CH4cSJKq3+uadBkgFYmMjDIz3wP1rSjtvDvhuaMWkEtxeld + 6TTrvcYPJRR8oIw3Xniiwy5rWnatqF2iwOttpcib/NvQEdwSPl2qDJ8u7jPTJ5FbVr4ZsdO3XOp6 + jeXszvkwk+UvmHKDhORk9xxyKzoLq7LndM/mMQJ5ZPuRn7pXcrFfTqOeOmQavm1K25RrkqMAmNWC + g46sBwMEhWyOmfQcgGwdY0eGNSulQ+WBgNIjMyJs+u7I2kc84U9hTrHxPoV25iexhkj3mIrI7MuV + 4znnBAAHX0PFchf6fPDCwzGTK24RucK3z8llIPXdzjPK5B5rhrzTL/TGiyqqQxUyqzK2RkEHOMcD + sO9FgPeNX03Ttb0vydHuINOaUFj58QuUkJxgctlTkr2P0rir/wAL/FNpGWHVoZ48bg9rcJCCD36K + f8mq+n6o9tZukN88UrqdrMSGYjI+YcgkcdADkdDzXQ2XiTVGhg+zMmQGYpGSoX5e3GMHseAMjtmk + I89m+F3jWdzPPZpIXOTI95Gck+p3Un/CpfFoGZLW2Qds3KHPT0J7HP4V63YeKzK4jTeiGV1juEAZ + ZMHkgL14/nXQWuoTSr9xGyOQp2nP0zwSSBTuwPFLX4XGz2y6rd+aAw3RWqMQVzgndjt16DpW5BqW + m+FbmG2sIZLe4maONYQU/ftvAOSMnHTljg9uc16xLscFbm1Eqd8DPH+HI/LvWVNoGn3Wx7edcKfk + WVctEO+DkMD360rgY32l7uwa3uYfOVXB8uaNvk29OvLfd68cH8K5+a81aWEpbFbOMkxtu/gG7d1w + MYzxjqB7V2LaTcWsgd7OISbRv8mQcc+/J6Ec/wB4Vl3w+yTI0iwiQFEXLqjLuyoA3H1wMehxRcDk + U0u5ltDG91I0pIeOJAEEjZAPfBG5s5yPvHpVS78LF4dn2WWMljuQ5QsFwQSckcgnkd+e+R1kdtPc + EC4F1BdxYUKJ9hKDIGCoAOcg9Tz+FVYLNokjtrS6mZY8o5nfeyEgAEMG6YPTj72CRg4Yzir+GO20 + uKK2mWG2kRpIxu+Zjtw3Xkrkkc4HB645k0/UtTvLt4DKqYyP3kW8HkDDnB5wqnkd+uK2LzwvZzXH + nXYkYs+xDGNhLdR2YH0yxzn1BGG3On61BGItMzYQK6yiAIZJXYsBgcFQe5G45wc55NAHRafqmpWi + 26XIWS2MjKVjgeQpjOBwox1cE4yCO/fXvooruyeVlaXB+dUzuUYBDAAjtt4II475rEtPtkV2txJe + SeUxaKUTLEuzHAb73XgkdT83Nat54p0vSNp1G5SKRgvynJY56jYM8Dp+dIDPGl3NrCxjnuBbM24r + MjYAA+bOASMgvzxg8cVd0zTBdSzxi9UuQ6yopAdN3GDtzkbv9rHIqvqGo+GNX022N6ZZoRgxRtcG + ElTxkjcoJ4PJ5zx35s6Je6HZ28QsYEiiChd0HyhwCfmJU5PDE4xkYYewBXL9peahprSwX1rPd26s + ZI1jhBdCOevAP3WP1+tdBa3UGGkRnETD51lyGGfUHnPNVbbUbWVtjGSOU4VyX+9wNpBIxnn65B9s + zM0KMCMs5G1yTtYDoc46Dof/ANdArk0N3p0ol8q6tna3wZFWQZjxwSR1HfrjpTkmsnOI5l3E4ysv + X8j6ViPY2sk7sApud+9hENpZvu/McEfmcYpz2MsVqz/2apidV2vDMrkfKeQpXH5f3ulKwzbjKsDi + VSBjarOGyD24I749/fmkeKMujPDHxx86bgD2BI6cgHOa5Wz1i1mle1mtfszLGzRnywocADdgg+vU + f4Vam1mC1ljCm6iJISRgSAuQME54Hboc59qLCN8QCI/ukjWE8lUA6enA7c9fTryKlMYKsMcHHC8H + rxx+VYNvr0r3MSrf27kqxEbIcnBwTnjPB/M9Mc1YHiiyEroLq1d48B18wBsHGDnPQ574oA0PsyqT + gkDrgfKSfX36561h3fhe1lmjnjZt69AJpFAODgkA/e555G4Zz2NdDbXdrexiSCVGDL8pVgT+Yqby + BKTg4bb6YznsO2KBnMBZ7OUqLUlPuSRJOTgEn59vRTn3HUd+Kgv724jU3JtLidX4li6MCcHJyQRw + TnHrXTXVr5oVmjQsoIbPXJB6HqKxo7OH+0XjckSNlQk0rRsATkhdpwRnbjHT8TQBh3Wvef5piun3 + FQFUgh0zjGVLgg5B/QHOARk3GoaxNIpXU4pgp3qrRKA25lCgZPrnHHcZ7V1N7oAkCI9vFJkkDPUj + k8Y6fXJIyfQVzVxoUMEPltZwxt98NCpYjqB/BwTnJI4zg9Dyw0MWC91O2nkngsUOw7XgmnRSvJCl + ZP4xt3DvjGOaSaWD7XcSX1zOYL+NUO1jmNgCCF2nnDIpOB1wCOlRQDWLrWYoUtUt7VX2C6uiyHGS + pZVUAjq2Rjvk9TWhqXh66WaWVcvG8m8xFtzDK5CHtjpznPQg5xTA1raZv7PS6voo55AhzKnyl0OD + xkDIxuOMZBXnmrtjqNte7Xs7lT2WLg7Dk4AA5A4b8COMjFc3ZWYS3dTuQlhJjd0xkEkMcZPU8YIB + IwQageyuE1BXtrx2CESTSShMrtxhskZJABVj6c5IOKAO2C3cwXzI3CSfu/3bFSEyNvIwSeV59j71 + Ba3d/Bbbbp/NUxuCwLI6kngsAMDOTz6gd8k59lqu242iMjI8p/mZc9RkZPONuffnrW/DqUbxh3JZ + XOxZ1yWHTcDwCOcnuMendAQW97ZzS+RHLcLJIzAqxVQTnqMDH3hjj1Georl9bs/EunXKyaEsU9mj + eYkClSw2/wAIT5Tjp93JzwMZxXWG1tZbvccJIFJJBCtjv9QCFPfGBUl1Yb0RopDkuPuAblOck915 + 5z9e9FwLXhzWpJtLha/s5bR2iHmxsfnjBPI45wOTg4OK25I4pAZx+8DxbXdOVkXHcflx9fWuXW4e + AAXiFlCH5wMMmBwBjkEZPQ9ulawd5tsglwwJ3AKQRn+9jA9OcA0AMWxtdkkIDS28obhX4Cso4J6g + ZBA4yOKpQEWMZkEsjWcg++25JYUCjk5GWA24yxGMjrV67hllXMDNFcFS8cmA5XrkY/iAOMjPNVHG + 5IobqaIyE/vJDtQ71Xk7Wz1znA6BunU0gLUVzuh3b1khb50lg+YSDHLADO059M/rVeZrebd5rZeR + fuByhyAOAD3wR+maZKu+FxbzOpcYV0Xf5bZ/unjA/wAaoXtxdC2IW3tndHGBO67SDnzOScqRzjjt + 3oAsvapbhvKW6lwQVRJiOGOGPOAAM5xnsKaZJdsqvDcRQhQc7w+Gwc8Dn+Ec85BHYYqQNI8kj+Uj + FDjds/hxxhskHjtx3qvNM9tLH5cdysbIxlQRAl/l4XcTweoB5GTjNADUS3XbJb3flluAHcZwGPrg + ZwCRjB496b9jNtI0kqvOysS0igAqCeg6t12nrx+PF1Jt0iGKNnjVRhnALjIHysCc56j2P605bt9w + jja5WYphX8vzY+2Qw6jGMHBB5NADJLa0ZQkiRfvF8s5U8glsjI9z1PPWqssQB8yO4iVJ0J8xJNwK + knLegwe/JOOeuRdt5GtSsE8sSzlS/lqxUMerBMliRuxx159sVIpnASWKCQbl3bAwGDj0xgHOeoGT + nJxmmMyhLNGRcBXDvIzMoOcDb8wwvysDtzuJHU1Tj8U+H9K1lLO9WRGI+adt3lF2BwjEMSDyCeDg + HBxjI0dUs9au9PdLGeNJmIETXCZ8rkjAA4BAHHHU+1eeJ8P5bWV31DUi8TbSQv7pJCQSNzMeOQei + kj0GaAPUtF1/w9qCXkV1Zm1vLYlzFE+8lSF/eIeCQRgg9wAcdCY72xtTPNd2dzDK7KMttBZCSMMx + Byew/H2BGdpGnqkSx6fdWQ8pVaIRPuyD82NmF7MQMHOGHJ6VoXdkEdvJWSAlnIRX5yeSMEEc4znp + xnqTQI5jUrWTUI5IZtGN6YTuWMuyFkLA7grAdieBkDFci/gi3ldvJvpoGHDQNEGZG5OOSDjAPv06 + 16BqKzxojOVjvVx5SyhBG5x8ygndtGRkgYyAcVlXVzdusNvmWa7ONk1lESkihfmBLMRnLHJDZIAJ + 64qkxnMaf4e0q20VtR+yT63chgohjyAhyM7kHJAzjPIyRxzVpPFJ023lN6be3GV8vTLM+WY/mycl + OVIwMA49SKnuXn1Of5DFGrHlRdb5SMkgFt3yqcjIyO3Xim2/hb/SVdtNRGAxJIrbju4yckMCRgk4 + wRnr6gF2w8bale6dO+ly3c08MYOZChbcoOAVwA2TnBAz8vOcimzeMNShsQbqGOS6aQIqSkO6FlwQ + QOMYDHBHGR161ejt5Y7SS3jglcwgiS2V2wxI4CscY6kEcjqB78lq98NQ1CGcxJGVTJRDnbnHU4Hz + YHIwMcfWgaVzK1K5ury6me5uppQ77mVnOOvp0qpPGrIFRQCox68VdnjDM3uOT2psqo204+YLyaLl + WKDqCi7NvtjtS+Q3lHamcZJw3J9/epQiMW5+bJORQoOMSZBHy4pgVFE4he085zC7bgi4Pz49DXov + hW9vPDOpWNnfyO1rd26jEyfL1IwCNwZeSAQcgHoK4CSJXXhSWHU966Dw1e3FxbyaW7rMIc3FqrMQ + yuvJA+oz+QpkNHtuqW6SLbyRnYjsJo2XBCt/EM+jA5/XPY5er3Uml28OpRvtaPEUynggDGGGeowQ + M/T1NPl1IJ4RNzKgXyY97LnPAGeD0IK5IP4VzmuahceI/ANwulRedd5icKignZu5YA9COPcCkZpH + e6Zd23iTTFAcQToDtkX+E9cEd1PXFZV2uo6XLtCMEZgFEXIPTPGMEEdPT8xXDaR4n/s/UrjytluD + c7YkVgQvT5SuBgYBx9cc4r0e11hNVt5I7uBkdotuTnAIxyPfnIx2J9DSaGtCAa3Y3DtFd8uRxIse + x4wcZ3Z428jr9OcGrU0NyFBjmiu8RncrjY3TqMdjx3/A1y2pWKRXBkgsxOVOZRGoJ9DtYEEHANWd + L1x7eMxlmmtwpYO+AY9p+YHd93oSDnoOlIZsRzrt/fRKZcNhSVfcOxHQe3IzSR3UbKApS3CqrxlD + wM46DHqOxqSPULHUFdHkgLu+A8Tjk9tw456+tK1vb28KbVKKANgj4UHnrgEY98fhQBSu5bpW3QXb + pgEIrEEMfvAMGAJHGOGHBPTrS2V4LmLZeWSwcbSyyqwYYGCSDkc5Hf7vfNJHdWyISs7usa4bDA5A + zjgccbf5U55SSXTY4x8rKy7c5Iwc/XHYc/XABOllahmZGmdmJVtzucZ68E+45GegxVdoZrJjjUbm + RT8ojuCJEOSOjcH1HJ71CZ4YtzGyktZ0AJKlgGU9CrDr/DwRnpVwXWClvI4Ejc7XwWIzg5Xoec8i + gR8uUua6K48A+K7WAzy6DeiNRksI84/KuekjkhcpKjI46qwwR+FUWJSUZooAKKKWgBKKKKAClpKK + ADNFFbWmeF9S1NBMIxDbnnzpjtUj29fwoAxc1LDBNcvsghklf+7GpY/pXYS6PpGgymGSJ9SvkCuy + lf3YU8nGD1AweeMGtvTvFv2GyaeBUs3iZUaKAKoOcAMBgDgKc9eSOlAHnbaVqSPsawug23dgwtnH + r06VVeN4ziRGU+jDFe8r4puhaw6ra3rSRJCXcOucbPvrwMdwfxFOsfFHh/VbS5hurSOdIArzvMqy + Kwbg7e4AOPzoFc8CzRXvd98MvCfiWzF7pRewaVco8B3x5z3U/XtjpXlHijwPrXhS5Zb2DzLfPyXM + XKMP6fQ0DObpaSigApaSlpgFLnikozQAueaXOewpuaKAHYB7Gk2nsD+VJmnxxySuqRozMeAFGSaY + DfwpK6Ox8HXk06R6hdW2mBsH/SWOQD0yB0z6nFdWnwkiXa8viKHy8DcVhwV5weretK4HmNGa9UTw + N4Ks3CXWr3l1KoIZYsKucH29j3rYtLHwrpxSWy0mBWLZSSd9zYGCDljgdD1x3pXA8m03w/qurMPs + lnI0fUyuNqAepY8V1EPg7R9KjSXWdSSVyf8AVxN8h4zwR8ze/wB3FdNqGo3V/wCUiXKRxbFlRYVx + Ip5JJG7O0fXnP0xzq3ItJIZLhsjOyd0JbKkkAn0yAT8p7D1xSA67w/LpA3R2Gk28EiS7FY2u5hjk + 7iRnPJByevrWta+KLm4vUt7eVrSSOMtIHUIrEqcAZPGNvWuY03TTBcT3mlysscy5kjeTej5AyRjn + 7wIyQe/pXdG1FxB9odgskQwzDnYCAOCMcZJ470mIbbeJrlpJ0mM6vEocMGyrj5cj3I4yOv51fh1W + 2d1SUxgOCYi64BGQB+YIHrx3rGbSYmvHlZ45JpFWOX5QwXjr3OPm/AH2FJHpzWcASK5Z0DsdpfDI + Cc7RnPIHTgdDQBuXVzZ2giV9yJPlkZUBVW65xnoT3HTjpUMNs9zare2Dx3UTRnIUiMnIB6HoRzxk + dvaofKEkAV3GYyPmC4ZXxjOR0PHPHeqdjDe6VcNsO6InKLGQxXBJBwcHnI9etSMnnkuY0J2sxQHZ + 8oJPXPGMdCPU9q4zXEvIHhuJdSlKLJvLRQJEQehQfNnHGMANyRx6eiS6jbXd0pvrSNZJNux8bcYY + Elge5PcGmzWVlI3nLFASCU8wsBtyM/LuORkEnrzx9aLgcQk9x9ulSASzwbDED5IQMMc7g2CTyPuj + gKTz0qrqqypcW8aarDEzSh9oIMpUjOAcZiyQc4OMHvyK6+40KaRsxRQzSIwL+YytlsHjODxycYII + 9KzIvDep6azzRw29nHLK0zxRIC/TGSS3OCTjjHbHemBStrSF5pUuNOnsreB2RWkcMzYw+QcEnnH5 + rz1q5Zy6dIjtJYTSswzuyQQAByR1Bzzn6n0rPstOtLDVvtNympEyAiWS4kjKRnGBgrkjIzj6jrxX + ULbi6SSW1QyMxxv3Y5I2kE5x1z1x1pgUodPtJ7eT7OMJJlvLZNpYkA9OM844PHSnpFHBJt+zjJcM + FduEBUFiCRgHk4/rV0xPPC6s5Rl2klwCwbhipGf5ccnmmzwWoBCMYSACWGWQAjGCOg6/mBQBmz6f + CEkjixEwwcngtjCkHnGMAdqyZtOspJPLuLESZZQqIm8YXGNy8AHac59c56878y28RkeG2FyAx8wR + y4ZSCWBGCOMgcA8cVgat4lg0S0AkBhVh+7t4z85U8AMPTnPbqOvIoEPn00KFtYbKSd26RxOGVVUE + IctxjAx1yQcDtVqx0CbToYybYW03mB9kb4VnOMAbiTgfX14rA0bx3q2rX5jd7e1UDCIUJJHfLdcg + 49Mc13+n66ZCFmi2wysAzI28ZPJznjBxwfr60gMuC0U4inX7PByoROQBjGTjDc4IGR6da04rSa0D + MoaWMktuPVVIG0DufzrYmhSVWKfNE4IZQCcj+nvVJY3hZnySGySq8qRxn5uvB7n3oAsWF80xkdll + VkJGCuPmGOmecYI4/wAcVM+2VCVAZM4zGcOmRjpjOSKopIrkTLkOQAdpwuRwOn6E8fkKshgp8xXK + 5yshzjgj5gccZGeOlICUTs0Kh5x5ig7ZFTAXnjIOeM+g7GsPVNOhvbOS1u4DdRupXeuAR03c9c52 + +2R6VcuG+zK1zDuAXJdcEHpggjnGRge5FUbXX7K8gS7dzEGVQzEFSnIxnnIHI4IIwO9AzK/syJbV + YBczOkAwpkkUsmDwpbB4wOD7Cqd5E1vMkjSGZ9vlgyPnb90ZDcE5ICnHXb7gV111Ha3UQbYpO0Ay + EAEgjkBsEEEc/wD6qzbm1klmMjSN5rDAkT5flYY6g55Jz17H2ywPPdZj1ORYhC7gF9u2UgE5YMSw + +6cA7SHbAHH0yI7if7UZru4kMxDSyPKxVkL5wQADtyME9DzwBnJ7m+0ZEla6a6l2RRsqu7ABARhv + nyQGyAecgnNeT+INQ+16i8cUkb28JKRtGgQMM5J4A7+wqkBtX/iq5mUW+nt9nQEZm8wu+AchQT0A + JPQDP6VjN5k87zXErTTOcvJI2WY/WslXK9M1MlwwwAaqw0zQZN+S7ksTuyW755/lU0V1eWxUQXc6 + omQqq/C5Oen15rPS4z948+vrU6TBm5H60rD0NxPF+sRWxjEsTMyBJGZASRyOnQduRySM1WufEWtX + ZLvqFyWGDlXK7eAOMHAz9Kz96HK4ABHWmMPTkE9AcZoCyJrrUdRnlV5tQu3KHKl5WYj3616Z4Z8Z + rZaPa27ah/pEUe9sI8h2hmLDcD1PB5H8+fLg6lMH0pplaLJibG/5XOeo46/p+VFhNH0Cnjexja0G + pbEu5sx4ljyQuQCc9Cp69ccY5xWjfW+i6tbtapMtkZIA2YyOADlTjoMEHp/+rx3TdSizaR3E1rPa + 7X2G6iD+ScAAAcYGe4Pc+grtLW2uZbH7VZXLSXSRBJFYHsMHDkkd8nOP61LRJWm+H/iqz16DWdJ1 + awum84spbKbA2cgqQR0z3z6djUGreHfEEV9eXgiNjcXjKZ5YlAhJVgRtXqOgIOex6ZrQgvdTijIm + JQFdrNCxZdwIUMGDfLtwD6HHTBrb0rxLcBVFxFhSu0lmwenXcOD0I9eg5o1A5G0k8QWSeZGLe82v + udY5sZbOcq2SpIAU9eRnjArtdH8QXfkobmKSQAgxl15OQW/MdDgn2zVqLUdIvGikkgCyomUkIXJ4 + J5P5jnHemnTAm9bRopLVvmMb/wABJ6gdMc9OKQG5aXAuraOW1mJSQB9h+YbTjofb+tOuAhBmfG0D + 58ANj359j+grnYJzbykFvJwMEqe+CeR2/H2rattTS5UCRgrqNynHQ8cN3FIQr+bCAFnUlRyCOD7A + enTnNDbJndZlIDE4B52nI6d8fT0qSRYgrEkYXLFTyD0BH8vyFUij20e2Fw0ZUeZG5OwDJB9duOcj + 6UAVb7Q7C8ZjJa2lyGy4Eg4Y4784z06+g5qBoYYikDqFhVRHbA7gMKRwSeDjK45/hPQ1dguZIdtv + NiNlXashPytgccc4I6kcdvpUiTowLNHyPvBhnJA5IGe45H/16BmKmnyWqxmKV3VRgLMN23kEjf14 + wSMjv+SfY4X8vzIx/EVchTjjGQ2OhDeo6fnrBLNWxgqd2UKswHQDg9OmB1NVJXFud3lnYzbWREbJ + PX+D1GeT7UwM06Iq9ZCofJdRgbj83AZQOmSfbGKfBY+VI+yeZ4mAjdg4D88AnABzjjJJP5nF1b2F + oyZJDbbtu/zQSFypUAkjHXPpkg/itzdWe4Ncm2JMgAGMhDgEcjI6cjOO3rQAnl4UsYHCj5mKHIyD + gdOc4B7ZP5U+0kmtFZpoF2K2I3ik3nZkgbs4wxAOcZHbPFPjaJo8xz7wo+ZiwKjBwTgd+Dyc+9SR + x4DK0ahowCELjnsOScEE9PqKAJngJiEgG+NwCdvRgVGDj1qm6y2kYNsPLlDKWhdgFZeA2D2wCT2H + H1pkcV5FcXM9jI2ZShmUYITaMAjkZJB9e1Wo7nBCZLSkqWwCBtyeo/hPXvjpSAkgvFnjw5K7ULFJ + hhlIPPH5d/X1qaRYpjgSbomXHJBBBPHPX1H4/Sqm42skkkmGRpDIjI2No7ZGfmGc9OxPHFTRSmJd + yxYCk7Qn93oQRjOeT29KAGnJKLI3BHzA5APHoc44zxnt70yNoZ23RESDnaFC/KCcevI60vnRx5Et + vIzkjcwOMdRnBPAx/SmtdQSgqpJCqARIfm3ccdee3Q9qAIZoLQZeOVEK4B3/AC7l6gZyMj5h696j + ubES26yQSMEJVh5jZ2jpuBOem7J6dPpiyzlVVRkABRhASue2PQjkfj3qO2W4t4lMNtBDMwBdY22o + WPoRnrgDp60AQ3FoSWwXIAJK7N3Od2ME884/I9c4rJ13xDpGiRxzatcfvASsa26fvGAI425OMDHJ + IHWtozkOo8lDGoZlAcr2Abnle55yKc3kKoJj2KoyxKnBwM9VJzx7UwMY6jHJqHkNa2L2ADs32maO + OWFtmRmM87W3dVGdpz9b85tmXbJbKWkKvJ5TmRE+6G9CBxzge5Bzy+NtNA8sTQSuA8flugBBBAKr + 079QB36U6U+SN3zhBhif4lPbAxnn0HPGOlAFWRjEomlijWIZ89pMsAuTyCCdvXHIA57AVFczak1q + kqGLI++satsZSAdoO7kkZwcUs95qMN9bwzWZeJzsluIAmxV5GcklgQPw56Nmo9VurbS4byd/LdUS + SWVBFsDKFHAbJG7lQM5zjFAzj9Rm8R6TqVjbaTYxXVr5QkOnqm5vvYBIOWUcLgqcDGM11NnqWqXO + lCS8WK1uin7+J1LxK4BwdwPBIIyMnv3zXP6X8SY764xbeHLma5kIVSsikDAAA+6ABxn2JyK7WHVr + G6+aW0lsyrEgtFkbsYOGGQQSfQZoA5WW7ie6Cz+G7hZ0LLDLbbJSGyGGCRkA8dcjnGDji6becyR3 + d5amS6Rd6oSG25POCFA3YJyMgHGB61vzTwzoVEtt9nZCsR3HBIHKkZx69D26cVmSyabLMHMlrLAA + GXfPgB/vDHf3/wAmgDK/06S6CQPtumU7jHFsZeMKGZmwoO09W+YDvXGeLdV1SyCRxE205ciREm8x + oyFHcDA3DBOCegrVn8W6jZakDa6LBZ24m3sblQgYp3bADE4xyPYAeuvH45t7uWaO8vNGtyQpS7ED + Nu6ArsZt3HqSBhelNAeZ3Gqx3NvPNf3d4Z3CGK2ibau8LyzdgM88c89utVrO+MitI7DzC5Zu3WpP + GF9Df+I7l4JIZo0wgniTaJcD7x5P069qwQSDkGqsCdjqVl3KSx5yaRn+UZz9PSsKG+ZMh8nNW3vt + wyp5osXzEzFon3heCcnaenvinbo5RhmPI9cVWN0rggnmozIGILMfcZosK492ZT98kdM45/Orumaf + q104vNOt5v3bZ85WCKCOfvEgVQ3bgT1PXnrWnaa3eK0eJEARlK5AyCvCnPXjpx/9emxHrWhQ3+se + G7/QtTtvsuoSQN5cjYMbHldwYcZ+Y5ANYuh+G5dHvYy2ozKIFEqbrYoSpJBRgeDx79c1R0PxFeWd + sYRekFh+6V2JCkH5eGwcdQeSORXXjVYdTVJnUH90BGfMKyYPDA5YEEDdz3x3yajUk5pfDGnm5nFv + fxSWM0wklg2ncmxj9xgc9Tt5HetW2urjSJI4DIkcO5h85PPXAxtG3BYrnOBj06zXENtNOyXFtHNE + gDmTyv3u/qCDnuo6j8circeoW0zLHsmeKCNWEnXBXhScYbPOfcUAJcX81xGHaDOflB3Alud2HABI + GBz0wee3OBq8ZglWS6V4oWIMPmXBO4EDKk58w8nkZ9PrWq5s0RFkeZYm+YA7sA9VOW+70Ix07elZ + +otoljFI13uCu5JtpZf9rtjJB5PJ68gmgDKtTZybXSxczSEMI/I2btvIwzNtJ/DJGfWuz0a5hso1 + 3edEJsMUkn3A57ggDH4+g7V58/jBp2nFjZfZwSzvPLIzZPqeeSRx3zx7Yu6dPPdb4ryMsUjJLblJ + Zz8xAK9MgA7ehBOQM0wZ6ujpId0MaGKUbnKjOffjr05BqB7S3aQB4ImJ3cxthsEYJx1+vX8elcbp + XiCe3H2e+l3NEzFI1XYQuQTu9scjHbJOa6XTNdgnChmWVAgbJwGIPTHcdD15oJK91olpcbJGkljE + b+YpUbDGeTkY5PP97Iqq+j3MDSsZVvS7pKBJII2XauNwKjacHB5A59OtdILi3nky6OZMYDKu7Ixn + IP8Ak0jw3AG63dHBGGVxjjr26daQH//Z + headers: + Access-Control-Allow-Credentials: + - 'true' + Connection: + - keep-alive + Content-Length: + - '121149' + Content-Type: + - image/jpeg + Date: + - Fri, 03 Jan 2025 04:13:04 GMT + Vary: + - Origin, Access-Control-Request-Method, Access-Control-Request-Headers + x-compute-time: + - '18.972' + x-compute-type: + - cache + x-request-id: + - ZdB6IDD9BJNAySyhsnkjw + x-sha: + - 0ef5fff789c832c5c7f4e127f94c8b54bbcced44 + status: + code: 200 + message: OK +version: 1 diff --git a/tests/test_huggingface_tracer.py b/tests/test_huggingface_tracer.py index 8ddc6a9..dbdd1b8 100644 --- a/tests/test_huggingface_tracer.py +++ b/tests/test_huggingface_tracer.py @@ -2,6 +2,9 @@ import pytest from huggingface_hub import InferenceClient, AsyncInferenceClient +import os + +os.environ["HUGGING_FACE_HUB_TOKEN"] = "" @pytest.mark.vcr @@ -63,6 +66,19 @@ def test_huggingface_hub_image_generation(tracer_init): assert response.scope3ai.request.request_duration_ms == pytest.approx(18850, 0.1) +@pytest.mark.vcr +@pytest.mark.asyncio +async def test_huggingface_hub_image_generation_async(tracer_init): + client = AsyncInferenceClient() + response = await client.text_to_image("An astronaut riding a horse on the moon.") + assert response.image + assert getattr(response, "scope3ai") is not None + assert response.scope3ai.request.input_tokens == 9 + assert len(response.scope3ai.request.output_images) == 1 + assert response.scope3ai.impact is None + assert response.scope3ai.request.request_duration_ms == pytest.approx(18850, 0.1) + + @pytest.mark.vcr def test_huggingface_hub_translation(tracer_init): client = InferenceClient()