This is the scenario for testing the retry injection on the istio virtual service:
The below Tables show the configuration of the cluster that is used in this practice:

Our OSL in this project:

95% of all responses in 0~100 ms
5% of all responses in more than 90ms

The number of Users Esk AWS Number of replicas
Number of
Play!|st Us?r MUS.IC nodes S1 service | S2 service | db service Play'l|st
service service service Aws service
t3.medium
0 10 0 2 1 1 1 1
TableName ReadCapacityUnits WriteCapacityUnits
Music-bagherireza 5
User-bagherireza 5
Playlist-bagherireza 5

The below table shows the retry configuration on s1 and fault injection on the db service:

Phase Time Retry no., Fault percentage
No. perTryTimeout
1 10:38 5,28 0%
2 10:44 5,28 100%
3 10:46 5,28 10%
4 10:50 5,28 50%
5 11:05 5,28 90%

The below diagram shows the overall response of clutter over whole scenario:

Total requests per minute [1m]

Errors per second [1m]

90th %ile response time [1m]

;_/\,/\ ;/\/\/L/x/\/\,//\/\/\/\/\ A

+ Addquery O Queryhistory @ Inspector

1. Phase1:

a. ltis shown that In the beginning the number of requests in the s1 and the db are

equal as we expected and it is around 580.
2. Phase2:

a. When the fault injection percentage is 100, as we can see the no. of requests of
db reach zero because it is not receiving and request. then the number of
requests reaches more than 5000 which shows that the retry function worked.

3. Phase3:

a. Then when the percentage is decreased to 10%, as we can see the number of
request from s1 increases while db just receive the same amount of request and
generates the same amount of request to DynamoDB.

4. Phase 4:

a. Even after increasing the percentage of failure by 50%, we can see that the

number of requests is increasing while the number of db requests is the same as

normal. it means that with help of the retry function we are able to recover the
services.
5. Phase 5:
a. When the percentage of failure increased to 90%, we can observe that the retry
function can’t recover because the number of db requests is decreased.
Successful rate:

6. Phaset:
a. lItis shown that there are around 19 successful requests each minute.
7. Phase2:
a. When the fault injection percentage is 100, as we can see the no. of successful
requests is decreased to zero.
8. Phase3:
a. Then when the percentage is decreased to 10%, as we can see the number of
successful requests back to 19.
9. Phase 4:
a. Even after increasing the percentage of failure by 50%, we can see the number
of successful requests back to 19.
10. Phase 5:
a. When the percentage of failure increased to 90%, we can observe the number of
successful requests is dropped to less than 8.

Failure rate:

11. Phase1:
a. ltis shown that there is no failure.
12. Phase2:
a. When the fault injection percentage is 100, as we can see there are around 85
failures.
13. Phase3:
a. Then when the percentage is decreased to 10%, as we can see the number of
failures 2.
14. Phase 4:
a. After increasing the percentage of failure by 50%, we can see the number of
failures is increasing to 20.
15. Phase 5:
a. When the percentage of failure increased to 90%, we can observe the number of
failures is dropped to less than 70.

In the end, there is a report regarding the number of failures and requests and their relation to
the number of retries.

Average response:

et

Querytype Range

+ Addquery O Query history

Graph

Because the fault is added by istio, for the packets that are replied with status 200, the average
response time is the same as normal.

Median response:

200"}(1n1)))

Because the fault is added by istio, for the packets that are replied with status 200, the median
response time is the same as normal.

90% ile response time:

+ Addquery O Queryhistory O Inspector

Graph

Because the fault is added by istio, we observe normal behavior here too.

Summary:

Based on my observation, when a system faces some percentages of error, with help of the
retry function the cluster can recover. And from the client's point of view, it works normally.
From Istio Retries documentation: Default retry is hardcoded and its value is equal to 2. It
means any circumstance, it will try two times at least.

From this experiment, We simulate the situation where the db microservice faces some problem
and rejects some percentage of requests by error code 500. The fault injection has been done
with help of istio. On the other hand, we tried to use the retry function to recover the system.

It is clear that the retry function can help to recover the system, but the efficiency of the retry
function depends on the percentage of failure and traffic of the network. The details exploration
has been done and reported in this report

(https://github.com/scp756-221/term-project-cloudriven/issues/29).
but these retries can make problems of congestion inside the cluster which can be controlled by

the circuit breaker. (https:/qgithub.com/scp756-221/term-project-cloudriven/issues/33).
Interesting facts, regarding the number of retries:

I have injected 100% fault in db so | expected to see that s1 retry to send a request based on
the number of retries. But my observation was different, In the beginning, there is no retry
configuration, but istio as a default configuration retry to send the failed request again, because
of that failed requests are 20, two times of origin request which was 10. As you can see in the
diagram the number of requests is not following the number of retries. It seems, that there are
mechanisms that prevent the retry function to go linear when the number of retries increases.

https://github.com/scp756-221/term-project-cloudriven/issues/29
https://github.com/scp756-221/term-project-cloudriven/issues/33

No.

The number of
retries

Failed requests

The total number of
requests

1 0 20 1.16K
2 1 40 2.26K
3 2 55 3.3K
4 3 69 4.6K
5 4 79 4.8K
6 5 85 5.12K
7 10 105 6.36K

Points scored

125

100

75

50

25

10

) Explof

Range Exemplars

sun(rate (flask_http nds

Both Minstep Exemplars

+ Add query O Queryhistory @ Inspector

Graph

