
Applying the HTTP methods to the SDMX
REST API for Structures

CREATE

Artefact (Structure)

Submitting SDMX Artefacts in bulk, either of the same or of different types, is achieved with a
	POST	 method.
Creating new Artefact(s) may be issued by:

	POST	 one or more Maintainable Artefacts under the proper resource type, e.g. for
Codelists: 	/structure/codelist/	
	POST	 one or more Maintainable Artefacts under the abstract structure resource type, e.g.
	/structure/	

	POST	 one or more specific Items under a specific Item Scheme resource, e.g.
	/structure/codelist/SDMX/CL_FREQ/1.0/	

In case one Artefact is to be created, 	PUT	 may be used, as well.
In that case, the following apply:

	PUT	 one fully identified Maintainable Artefact, e.g. for a Codelist:
	/structure/codelist/SDMX/CL/1.0	

	PUT	 one fully identified Item , e.g. for Item 	M	: 	/structure/codelist/SDMX/CL_FREQ/1.0/M	

Client

In order to create Artefacts, the client:

MAY set the 	Accept	 header to indicate the preferred response format;
MUST set the 	Content-type	 header according to the format of the submitted Artefact;
MUST include in the request body, one or more Maintainable Artefacts in the SDMX
format indicated in the 	Content-type	 header and of the SDMX type indicated in the
resource, i.e.:

For 	POST	:
any set of Maintainable Artefacts under resource 	/structure/	
a set of specific type of Maintainable Artefacts under the corresponding resource
type, e.g. for Codelists: 	/structure/codelist/	
a set of Items, within an Item Scheme, as identified by the resource url, e.g. for

Codelist 	SDMX:CL_FREQ(1.0)	: e.g. 	/structure/codelist/SDMX/CL_FREQ/1.0/	
For 	PUT	:
one Maintainable Artefact under its fully identified resource, e.g. Codelist
	SDMX:CL_FREQ(1.0)	 under 	/structure/codelist/SDMX/CL/1.0	
one Item in its Maintainable container under the fully identified resource, e.g. Item
	SDMX:CL_FREQ(1.0):M	 under 	/structure/codelist/SDMX/CL_FREQ/1.0/M	

Server

In response to an Artefact creation, the server:

MUST return 	201	 upon successful creation (or 	207	 for partial success);
MUST return a 	SubmitStructureResponse	 message with the result of the action(s),
according to the 	Accept	 header, or the default, if the 	Accept	 type is not supported
(currently available only in SDMX-ML 2.1);
MUST set the 	Content-type	 according to the returned format;
MAY set the 	Location	 header to point to the created/primary resource/Artefact (only one
instance is allowed);

RFC7231
(https://tools.ietf.org/html/rfc7231)

6.3.2.	201	Created
(https://tools.ietf.org/html/rfc7231#section-6.3.2)
[...]
			The	primary	resource	created	by	the	request	is	identified
			by	either	a	Location	header	field	in	the	response	or,	if	no	Location
			field	is	received,	by	the	effective	request	URI.

4.3.3.	POST
(https://tools.ietf.org/html/rfc7231#section-4.3.3)
		[...]
			If	one	or	more	resources	has	been	created	on	the	origin	server	as	a
			result	of	successfully	processing	a	POST	request,	the	origin	server
			SHOULD	send	a	201	(Created)	response	containing	a	Location	header
			field	that	provides	an	identifier	for	the	primary	resource	created
			(Section	7.1.2)	and	a	representation	that	describes	the	status	of	the
			request	while	referring	to	the	new	resource(s).
		[...]

Response

The 	SubmitStructureResponse	 message must be returned in any case (success, partial success,
failure).
In SDMX 2.1 this is defined as part of the 	RegistryInterface	 messages.

The details of the message are explained in section Response message, below.

Especially when different results occur on the Artefacts (e.g. partial success), the following
should occur:

Return a multi-status return code (like 	207);
Return a 	JSON	 or 	XML	 message with the details of the result (currently available only in
SDMX-ML 2.1);

Method Exists
Is

Final
Is

Referenced

Refs
exist/

provided
Response Code

POST/PUT F - - T
	201	 (successful)
or 	207	 (partially
successful)

POST/PUT F - - F
	409	 failed
references

T: True, F: False, I: Irrelevant, -: Not applicable

UPDATE

Following the current SDMX practices, updating (replacing) means providing the new version
of any Maintainable Artefact. In the case of Items, it means updating their details.
According to RFC7231, 	PUT	 is the proper way to update a resource, as identified by the URL,
but 	POST	 may also be used in case more than one resources need to be updated.

Single Artefact (Structure)

In this case, the 	PUT	 method may be used. This is performed:

Under a fully identified Maintainable Artefact, e.g. 	/structure/codelist/SDMX/CL_FREQ/1.0	,
Under a fully identified Item, e.g. 	/structure/codelist/SDMX/CL_FREQ/1.0/M	.
In both cases, the identification of the contained SDMX-ML Artefact must match the
resource identification of the URL; otherwise, an error is thrown.
The result in this case is completely replacing the identified Artefact.

Client

In order to update an Artefact, the client:

MAY set the 	Accept	 header to indicate the preferred response format;
MUST set the 	Content-type	 header according to the format of the submitted Artefact;
MUST include in the request body, one Maintainable Artefact, or one Item in the SDMX
format indicated in the 	Content-type	 header and of the SDMX type indicated in the
resource.

Server

In response to an Artefact update, the server:

MUST respond with 	200	 in case of successful update;
MUST return a 	SubmitStructureResponse	 message with the result of the action, according
to the 	Accept	 header, or the default, if the 	Accept	 type is not supported (currently
available only in SDMX-ML 2.1);
MUST set the 	Content-type	 according to the returned format;
MUST respond with 	422	 in case of resource type mismatch, i.e. the artefact identified in
the URL does not match either to the resource type or identification of the included SDMX
Artefact.

6.5.13.		415	Unsupported	Media	Type	
(https://tools.ietf.org/html/rfc7231#section-6.5.13)
			The	415	(Unsupported	Media	Type)	status	code	indicates	that	the
			origin	server	is	refusing	to	service	the	request	because	the	payload
			is	in	a	format	not	supported	by	this	method	on	the	target	resource.
			The	format	problem	might	be	due	to	the	request's	indicated
			Content-Type	or	Content-Encoding,	or	as	a	result	of	inspecting	the
			data	directly.

11.2.		422	Unprocessable	Entity
(https://tools.ietf.org/html/rfc4918#section-11.2)
			The	422	(Unprocessable	Entity)	status	code	means	the	server
			understands	the	content	type	of	the	request	entity	(hence	a
			415(Unsupported	Media	Type)	status	code	is	inappropriate),	and	the
			syntax	of	the	request	entity	is	correct	(thus	a	400	(Bad	Request)
			status	code	is	inappropriate)	but	was	unable	to	process	the	contained
			instructions.		For	example,	this	error	condition	may	occur	if	an	XML
			request	body	contains	well-formed	(i.e.,	syntactically	correct),	but
			semantically	erroneous,	XML	instructions.

Response

The 	SubmitStructureResponse	 message must be returned in any case (success, failure).
In SDMX 2.1 this is defined as part of the 	RegistryInterface	 messages.

The details of the message are explained in section Response message, below.

The following matrix summarises the returned 	HTTP	 response codes.

Method Exists
Is

Final
Is

Referenced

Refs
exist/

provided
Response Code

PUT T F F T 	200	

PUT T F F F 	409	

PUT T F T T

	200	 if update is
possible - 	409	 if
references would
break

PUT T T - -
	409	 (only for
structural updates)

PUT - - - -
	422	 see section
Server

T: True, F: False, I: Irrelevant, -: Not applicable

Multiple Artefacts (structures)

In this case, the 	POST	 method must be used.
It shall be performed:

under 	/structure	 for different types of Maintainable Artefacts, i.e. an SDMX Structure
message;
under 	/structure/{maintainable}	 for Maintainable Artefacts of type 	{maintainable}	, i.e. an
SDMX Structure message including only a specific type of Structures;
under 	/structure/{itemscheme}/{itemschemeidentifier}	 for Items of the Item Scheme
identified by 	{itemschemeidentifier}	, i.e. an SDMX Structure message with an Item
Scheme and the Items to be updated.

The semantics of 	POST	 are different to that of 	PUT	. While 	PUT	 is used to fully replace the
identified Artefact, 	POST	 is meant to update it, at the level of the resource. This means that for
a submitted Maintainable Artefact, properties that exist are replaced, while those that do not
exist are added. By properties, we mean Names, Descriptions, Annotations at Maintainable
Artefact level, as well as their containing Identifiable Artefacts, i.e.:

Categorisation (Source, Target)
AttachmentConstraint (ConstraintAttachment, DataKeySet | MetadataKeySet)
ContentConstraint (type?, ConstraintAttachment, DataKeySet | MetadataKeySet |
CubeRegion | MetadataTargetRegion, ReleaseCalendar, ReferencePeriod)
DSD (DataStructureComponent)
ItemScheme (Item)
MSD (MetadataTarget and ReportStructure)
HierarchicalCodelist (IncludedCodelist, Hierarchy)
Dataflow, Metadataflow (Structure)
ProvisionAgreement (StructureUsage, DataProvider)
Process (ProcessStep)
ReportingTaxonomy (ReportingCategory)
CategoryScheme (Category)
StructureSet (RelatedStructure, OrganisationSchemeMap | CategorySchemeMap |
CodelistMap | ConceptSchemeMap | ReportingTaxonomyMap | HybridCodelistMap |
StructureMap)

The rules for 	POST	 are the following:
For any of the following properties submitted within a Maintainable Artefact, the property will
be updated if it exists, otherwise it will be added:

Any of the XML attributes: 	validFrom	, 	validTo	, 	uri	, 	isExternalReference	, 	serviceURL	,
	structureURL	, 	isFinal	
Name of a specific language, e.g.:

<com:Name	lang="en">An	English	name</com:Name>

Description of a specific language, e.g.:

<com:Description	lang="en">An	English	description</com:Description>

Annotation of a specific 	id	 (or 	AnnotationType	?), e.g.:

<com:Annotation	id="identifier">
		<com:AnnotationType>TYPE</com:AnnotationType>
</com:Annotation>

The same holds for all content described in the Maintainable Artefacts, above. For any content

that is not identified within the Maintainable, e.g. ConstraintAttachments in a
ContentConstraint, or Source and Target in a Categorisation, new instances will replace all the
existing ones. On the other hand, when they can be identified, only existing instances will be
replaced, e.g. Components in a DSD.
The following table illustrates the above two cases per Maintainable Artefact:

Maintainable Artefact Identifiable content
Non-identifiable

content

Categorisation N/A Source, Target

AttachmentConstraint N/A
ConstraintAttachment,
DataKeySet,
MetadataKeySet

ContentConstraint N/A

type(?),
ConstraintAttachment,
DataKeySet,
MetadataKeySet,
CubeRegion,
MetadataTargetRegion,
ReleaseCalendar,
ReferencePeriod

DataStructure DataStructureComponent N/A

ItemScheme Item N/A

MetadataStructure
MetadataTarget,
ReportStructure

N/A

HierarchicalCodelist Hierarchy IncludedCodelist

Dataflow,
Metadataflow

N/A Structure

ProvisionAgreement N/A
StructureUsage,
DataProvider

Process ProcessStep (see Nested Items) N/A

ReportingTaxonomy
ReportingCategory (see Nested
Items)

N/A

CategoryScheme Category (see Nested Items) N/A

StructureSet

OrganisationSchemeMap,
CategorySchemeMap,
CodelistMap,
ConceptSchemeMap,
ReportingTaxonomyMap,
HybridCodelistMap,
StructureMap (Maps
may
become
Maintainable
Artefacts
in
SDMX
3.0)

RelatedStructure

This means that:

When using 	PUT	 to submit an Artefact, the resulting Artefact MUST be exactly the same
to the submitted one;
When using 	POST	 to submit an Artefact, the resulting Artefact MUST follow the rules for
updating, as stated above.

Client

In order to update Artefacts, the client:

MAY set the 	Accept	 header to indicate the preferred response format;
MUST set the 	Content-type	 header according to the format of the submitted Artefact;
MUST include in the request body, one or more Maintainable Artefacts in the SDMX
format indicated in the 	Content-type	 header and of the SDMX type indicated in the
resource, i.e.:

any set of Maintainable Artefacts under resource 	/structure/	
a set of specific type of Maintainable Artefacts under the corresponding resource
type, e.g. for Codelists: 	/structure/codelist/	
a set of Items, within an Item Scheme, as identified by the resource url, e.g. for
Codelist 	SDMX:CL_FREQ(1.0)	: e.g. 	/structure/codelist/SDMX/CL_FREQ/1.0/	

Server

In response to Artefact(s) update, the server:

MUST respond with 	200	 in case of successful update;
MUST return a 	SubmitStructureResponse	 message with the result of the action(s),
according to the 	Accept	 header, or the default, if the 	Accept	 type is not supported
(currently available only in SDMX-ML 2.1);
MUST set the 	Content-type	 according to the returned format;

MUST respond with 	422	 in case of resource type mismatch, i.e. the resource type
identified in the URL does not match to the Artefact type(s) of the included SDMX
Artefact(s).

Response

The 	SubmitStructureResponse	 message must be returned in any case (success, failure).
In SDMX 2.1 this is defined as part of the 	RegistryInterface	 messages.
The details of the message are explained in section Response message, below.

The following matrix summarises the returned 	HTTP	 response codes.

Method Exists
Is

Final
Is

Referenced
References

exist/provided
Return Code

POST T F F T
	201	 (successful)
or 	207	 (partially
successful)

POST T F F F 	409	

POST T F T T

	200	 if update is
possible - 	409	 if
references
would break

POST T T - -
	409	 (only for
structural
updates)

POST - - - -
	422	 see section
Server

T: True, F: False, I: Irrelevant, -: Not applicable

DELETE

Always concerns one Maintainable Artefact or one Item.
For example:

A fully identified Maintainable Artefact, e.g. 	/structure/codelist/SDMX/CL_FREQ/1.0	
A fully identified Item, e.g. 	/structure/codelist/SDMX/CL_FREQ/1.0/M	

Client

In order to delete an Artefact, the client:

MAY set the 	Accept	 header to indicate the preferred response format;
MUST fully identify exactly one Maintainable Artefact or one Item, by means of the proper
URL;

Server

In response to an Artefact deletion, the server:

MUST respond with 	200	 in case of successful deletion;
MUST return a 	SubmitStructureResponse	 message with the result of the action, according
to the 	Accept	 header, or the default, if the 	Accept	 type is not supported (currently
available only in SDMX-ML 2.1);
MUST respond with 	404	 if the resource was not found;

Response

The 	SubmitStructureResponse	 message must be returned in any case (success, failure).
In SDMX 2.1 this is defined as part of the 	RegistryInterface	 messages.
The details of the message are explained in section Response message, below.

The following matrix summarises the returned 	HTTP	 response codes.

Method Exists
Is

Final
Is

Referenced
Refs exist/
provided

Response
Code

DELETE F - - - 	404	

DELETE T F F I 	200	

DELETE T T I I 	409	

DELETE T F T I 	409	

T: True, F: False, I: Irrelevant, -: Not applicable

Response message

The 	SubmitStructureResponse	 message must be returned in any case (success, partial success,

failure).
In SDMX 2.1 this is defined as part of the 	RegistryInterface	 messages.
This message includes the following information per submitted Artefact:

The 	action	, e.g. 	Append	, 	Replace	 or 	Delete	 (Information	 is also available)
A reference to a specific Maintainable Artefact
A status message with the result of the action, which contains:

The status, e.g. 	Success	, 	Failure	 or 	Warning	
One or more message texts to explain the result (we need only one per Artefact),
which in turn contains:
A code (could be the HTTP code)
A multilingual text message

An example is shown below:

<reg:SubmissionResult>
		<reg:SubmittedStructure	action="Append">	<!--	Append|Delete|Replace	-->
				<reg:MaintainableObject>
						<Ref	agencyID="SDMX"	id="CL_FREQ"	version="1.0"	
								package="codelist"	class="Codelist"	/>
				</reg:MaintainableObject>
		</reg:SubmittedStructure>
		<reg:StatusMessage	status="Success">	<!--	Success|Failure|Warning	-->
				<reg:MessageText	code="204">	<!--	Could	be	the	HTTP	code	200,	201,	204,	...	-->
						<com:Text	xml:lang="en">Codelist	successfully	deleted</com:Text>
						<com:Text	xml:lang="en">Codelist	supprimé	avec	succès</com:Text>
				</reg:MessageText>
		</reg:StatusMessage>
</reg:SubmissionResult>

Especially when different results occur on the Artefacts (e.g. partial success), the following
should occur:

Return a multi-status return code (like 	207);
Return a JSON/XML message with the results details (currently available only in SDMX-
ML 2.1);

In the case of a multi-status response, the 	SubmitStructureResponse	 message will include the
corresponding code per Artefact, e.g.:

<reg:SubmissionResult>
		<reg:SubmittedStructure	action="Append">
				<reg:MaintainableObject>
						<Ref	agencyID="SDMX"	id="CODELIST"	version="1.0"	

								package="codelist"	class="Codelist"/>
				</reg:MaintainableObject>
		</reg:SubmittedStructure>
		<reg:StatusMessage	status="Warning">
				<reg:MessageText	code="201">	
						<com:Text	xml:lang="en">Successfully	created	Codelist</com:Text>
				</reg:MessageText>
		</reg:StatusMessage>
</reg:SubmissionResult>

<reg:SubmissionResult>
		<reg:SubmittedStructure	action="Delete">	<!--	Append|Delete|Replace	-->
				<reg:MaintainableObject>
						<Ref	agencyID="SDMX"	id="CL_FREQ"	version="1.0"	
								package="codelist"	class="Codelist"	/>
				</reg:MaintainableObject>
		</reg:SubmittedStructure>
		<reg:StatusMessage	status="Success">	<!--	Success|Failure|Warning	-->
				<reg:MessageText	code="204">	<!--	Could	be	the	HTTP	code	200,	201,	204,	...	-->
						<com:Text	xml:lang="en">Codelist	successfully	deleted</com:Text>
						<com:Text	xml:lang="en">Codelist	supprimé	avec	succès</com:Text>
				</reg:MessageText>
		</reg:StatusMessage>
</reg:SubmissionResult>

Nested Items

This section aims at explaining the particularities of nested Items for a subset of the available
Item Schemes, namely:

Category Scheme (Category)
Process (ProcessStep)
ReportingTaxonomy (ReportingCategory)

In all the above cases, Items may contain other Items in a tree-like hierarchy. As a result, the
resource for an Item within such an hierarchy need to inlcude the full path of that Item in order
to exactly identify it.
For example, for the following Category Scheme (excerpt of
SDMX:STAT_SUBJECT_MATTER(1.0) from the Global SDMX Registry):

<str:CategoryScheme	agencyID="SDMX"	id="STAT_SUBJECT_MATTER"	version="1.0">
				<com:Name	xml:lang="en">SDMX	Statistical	Subject-Matter	Domains</com:Name>
				<str:Category	id="DEMO_SOCIAL_STAT">
								<com:Name	xml:lang="en">Demographic	and	social	statistics</com:Name>
				</str:Category>
				<str:Category	id="ECO_STAT">
								<com:Name	xml:lang="en">Economic	statistics</com:Name>

https://registry.sdmx.org/ws/public/sdmxapi/rest/categoryscheme/SDMX/STAT_SUBJECT_MATTER/1.0/

								<str:Category	id="MACROECO_STAT">
												<com:Name	xml:lang="en">Macroeconomic	statistics</com:Name>
								</str:Category>
								<str:Category	id="SECTORAL_STAT">
												<com:Name	xml:lang="en">Sectoral	statistics</com:Name>
												<str:Category	id="AGRI_FOREST_FISH">
																<com:Name	xml:lang="en">Agriculture,	forestry,	fisheries</com:Name>
												</str:Category>
												<str:Category	id="ENERGY">
																<com:Name	xml:lang="en">Energy</com:Name>
												</str:Category>
								</str:Category>
								<str:Category	id="GOV_FINANCE_PUBLIC_SECTOR">
												<com:Name	xml:lang="en">Government	finance,	fiscal	and	public	sector	
								statistics</com:Name>
								</str:Category>
				</str:Category>
				<str:Category	id="ENVIRONMENT_MULTIDOMAIN_STAT">
								<com:Name	xml:lang="en">Environment	and	multi-domain	statistics</com:Name>
				</str:Category>
</str:CategoryScheme>

In order to get Item 	ENERGY	 we need to request the following resource:
	categoryscheme/SDMX/CAT/1.0/ECO_STAT.SECTORAL_STAT.ENERGY	

Instead of the identifier of the Item, the full path of identifiers that lead to that Item are
required, i.e.: 	ECO_STAT	 -> 	SECTORAL_STAT	 -> 	ENERGY	.

At the time of this writing there is an open issue of how an SDMX Web Service should behave
when requeting such an Item, i.e. being nested in a tree-like hierarchy
(https://github.com/sdmx-twg/sdmx-rest/issues/92). The question is whether all container and
containing (ancestors & descendants) of the Item must be returned.

Similarly, it has to be clarified what happens when such an Item is submitted for updating. It is
even a bit more complex, since when submitting a specific Item (using 	PUT	 or 	POST) while
targeting one Category, the body shall include all ancestors (maybe also its descendants) of
this Item within its hierarchy. In that case, is it required to update the ancestors (and
descendants) if they are different, or should the Web Service deal only with the details of the
specific Item?

Summary of HTTP response codes

Method Exists
Is

Final
Is

Referenced

Refs
exist/

provided
Response Code

https://github.com/sdmx-twg/sdmx-rest/issues/92)

POST/PUT F - - T
	201	 (successful)
or 	207	 (partially
successful)

POST/PUT F - - F
	409	 failed
references

PUT T F F T 	200	

POST T F F T
	201	 (successful)
or 	207	 (partially
successful)

POST/PUT T F F F 	409	

POST/PUT T F T T

	200	 if update is
possible - 	409	 if
references would
break

POST/PUT T T - -
	409	 (only for
structural updates)

POST/PUT - - - -
	422	 see sections
Server

DELETE F - - - 	404	

DELETE T F F I 	200	

DELETE T T I I 	409	

DELETE T F T I 	409	

T: True, F: False, I: Irrelevant, -: Not applicable

Examples

Difference between 	PUT	 and 	POST	

To explain the updating semantics, the difference between using 	PUT	 and 	POST	 for the same
SDMX Artefact shall be illustrated in the following example.
For the sake of simplicity, a Codelist will be utilised, i.e. let's assume:

<str:Codelist	agencyID="SDMX"	id="CL_DECIMALS"	version="1.0">
			<com:Name>Code	list	for	Decimals	(DECIMALS)</com:Name>
			<com:Description	xml:lang="en">It	provides	a	list	of	values	showing	the	
					number	of	decimal	digits	used	in	the	data.</com:Description>
			<str:Code	id="0">
						<com:Name>Zero</com:Name>
			</str:Code>
			<str:Code	id="1">
						<com:Name>One</com:Name>
			</str:Code>
			<str:Code	id="2">
						<com:Name>Two</com:Name>
			</str:Code>
</str:Codelist>

Let's assume that we 	PUT	 the following Codelist, under 	/codelist/SDMX/CL_DECIMALS/1.0	:

<str:Codelist	agencyID="SDMX"	id="CL_DECIMALS"	version="1.0">
			<com:Name>Code	list	for	Decimals	(DECIMALS)</com:Name>
			<com:Description	xml:lang="en">It	provides	a	list	of	values	showing	the	
					number	of	decimal	digits	used	in	the	data.</com:Description>
			<str:Code	id="0">
						<com:Name>No	decimal</com:Name>
			</str:Code>
			<str:Code	id="1">
						<com:Name>One</com:Name>
			</str:Code>
	</str:Codelist>

This will result into replacing the original Codelist with the one submitted. Hence, in the new
Codelist only two Codes will exist, the first one (Code 	0) with an updated name.

If, instead, we used 	POST	 for the above Codelist, under 	/codelist	, then the result would be a
bit different. The new Codelist will still have three Codes, but the first one (Code 	0) would
have an updated name, i.e.:

<str:Codelist	agencyID="SDMX"	id="CL_DECIMALS"	version="1.0">
			<com:Name>Code	list	for	Decimals	(DECIMALS)</com:Name>
			<com:Description	xml:lang="en">It	provides	a	list	of	values	showing	the	
					number	of	decimal	digits	used	in	the	data.</com:Description>
			<str:Code	id="0">
						<com:Name>No	decimal</com:Name>
			</str:Code>
			<str:Code	id="1">
						<com:Name>One</com:Name>
			</str:Code>

			<str:Code	id="2">
						<com:Name>Two</com:Name>
			</str:Code>
</str:Codelist>

