Skip to content
This repository was archived by the owner on Jan 13, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions _unittests/ut_sklapi/test_onnx_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.mixture import GaussianMixture
from sklearn.tree import DecisionTreeRegressor
from pyquickhelper.pycode import ExtTestCase, ignore_warnings
from mlinsights.mlmodel import TransferTransformer
from mlprodict.onnx_conv import to_onnx
Expand Down Expand Up @@ -46,6 +47,13 @@ def test_pipeline_iris(self):
self.assertEqualArray(res["label"], pipe.predict(X))
self.assertEqualArray(res["probabilities"], pipe.predict_proba(X))

def test_pipeline_none_params(self):
model_onx = OnnxPipeline([
('scaler', StandardScaler()),
('dt', DecisionTreeRegressor(max_depth=2))
])
self.assertNotEmpty(model_onx)

def test_pipeline_iris_enfore_false(self):
iris = load_iris()
X, y = iris.data, iris.target
Expand Down Expand Up @@ -235,4 +243,5 @@ def cache(self, obj):


if __name__ == '__main__':
TestOnnxPipeline().test_pipeline_none_params()
unittest.main()
6 changes: 4 additions & 2 deletions mlprodict/sklapi/onnx_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,8 +66,6 @@ def __init__(self, steps, *, memory=None, verbose=False,
runtime='python', options=None,
white_op=None, black_op=None, final_types=None,
op_version=None):
Pipeline.__init__(
self, steps, memory=memory, verbose=verbose)
self.output_name = output_name
self.enforce_float32 = enforce_float32
self.runtime = runtime
Expand All @@ -77,6 +75,10 @@ def __init__(self, steps, *, memory=None, verbose=False,
self.black_op = black_op
self.final_types = final_types
self.op_version = op_version
# The constructor calls _validate_step and it checks the value
# of black_op.
Pipeline.__init__(
self, steps, memory=memory, verbose=verbose)

def fit(self, X, y=None, **fit_params):
"""
Expand Down