diff --git a/_doc/bench/bench_orttraining_nn_gpu.py b/_doc/bench/bench_orttraining_nn_gpu.py index 8d70a6c4..ad8842de 100644 --- a/_doc/bench/bench_orttraining_nn_gpu.py +++ b/_doc/bench/bench_orttraining_nn_gpu.py @@ -35,8 +35,9 @@ from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_squared_error from mlprodict.onnx_conv import to_onnx -from onnxcustom.training import add_loss_output, get_train_initializer -from onnxcustom.training.optimizers import OrtGradientOptimizer +from onnxcustom.training import ( + add_loss_output, get_train_initializer, + OrtGradientOptimizer) def benchmark(N=1000, n_features=20, hidden_layer_sizes="25,25", max_iter=1000, diff --git a/_doc/examples/plot_orttraining_benchmark.py b/_doc/examples/plot_orttraining_benchmark.py index 867b90df..cf6eb795 100644 --- a/_doc/examples/plot_orttraining_benchmark.py +++ b/_doc/examples/plot_orttraining_benchmark.py @@ -28,8 +28,9 @@ from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor from mlprodict.onnx_conv import to_onnx -from onnxcustom.training import add_loss_output, get_train_initializer -from onnxcustom.training.optimizers import OrtGradientOptimizer +from onnxcustom.training import ( + add_loss_output, get_train_initializer, + OrtGradientOptimizer) X, y = make_regression(2000, n_features=100, bias=2) diff --git a/_unittests/ut_training/test_data_loader.py b/_unittests/ut_training/test_data_loader.py index d5ed2e80..5cefebb5 100644 --- a/_unittests/ut_training/test_data_loader.py +++ b/_unittests/ut_training/test_data_loader.py @@ -7,7 +7,7 @@ from pyquickhelper.pycode import ExtTestCase from sklearn.datasets import make_regression from onnxruntime import OrtValue -from onnxcustom.training.data_loader import OrtDataLoader +from onnxcustom.training import OrtDataLoader class TestDataLoadeer(ExtTestCase): diff --git a/_unittests/ut_training/test_optimizers.py b/_unittests/ut_training/test_optimizers.py index 5e81f2d8..cd0ad066 100644 --- a/_unittests/ut_training/test_optimizers.py +++ b/_unittests/ut_training/test_optimizers.py @@ -22,8 +22,8 @@ class TestOptimizers(ExtTestCase): @unittest.skipIf(TrainingSession is None, reason="not training") def test_ort_gradient_optimizers_use_numpy(self): - from onnxcustom.training.orttraining import add_loss_output - from onnxcustom.training.optimizers import OrtGradientOptimizer + from onnxcustom.training import ( + add_loss_output, OrtGradientOptimizer) X, y = make_regression( # pylint: disable=W0632 100, n_features=10, bias=2) X = X.astype(numpy.float32) @@ -78,8 +78,8 @@ def test_ort_gradient_optimizers_use_ort(self): @unittest.skipIf(TrainingSession is None, reason="not training") def test_ort_gradient_optimizers_optimal_use_numpy(self): - from onnxcustom.training.orttraining import add_loss_output - from onnxcustom.training.optimizers import OrtGradientOptimizer + from onnxcustom.training import ( + add_loss_output, OrtGradientOptimizer) X, y = make_regression( # pylint: disable=W0632 100, n_features=10, bias=2) X = X.astype(numpy.float32) @@ -134,8 +134,8 @@ def test_ort_gradient_optimizers_optimal_use_ort(self): @unittest.skipIf(TrainingSession is None, reason="not training") def test_ort_gradient_optimizers_evaluation_use_numpy(self): - from onnxcustom.training.orttraining import add_loss_output - from onnxcustom.training.optimizers import OrtGradientOptimizer + from onnxcustom.training import ( + add_loss_output, OrtGradientOptimizer) X, y = make_regression( # pylint: disable=W0632 100, n_features=10, bias=2) X = X.astype(numpy.float32) @@ -164,8 +164,8 @@ def test_ort_gradient_optimizers_evaluation_use_numpy(self): @unittest.skipIf(TrainingSession is None, reason="not training") def test_ort_gradient_optimizers_evaluation_use_ort(self): - from onnxcustom.training.orttraining import add_loss_output - from onnxcustom.training.optimizers import OrtGradientOptimizer + from onnxcustom.training import ( + add_loss_output, OrtGradientOptimizer) X, y = make_regression( # pylint: disable=W0632 100, n_features=10, bias=2) X = X.astype(numpy.float32) diff --git a/onnxcustom/training/__init__.py b/onnxcustom/training/__init__.py index 22f037b2..bda5a961 100644 --- a/onnxcustom/training/__init__.py +++ b/onnxcustom/training/__init__.py @@ -1,6 +1,8 @@ """ @file -@brief Shortcuts to *training*. +@brief Shortcuts to *orttraining*. """ +from .data_loader import OrtDataLoader # noqa +from .optimizers import OrtGradientOptimizer # noqa from .orttraining import add_loss_output, get_train_initializer # noqa diff --git a/onnxcustom/training/optimizers.py b/onnxcustom/training/optimizers.py index 23789179..c5c8b3e6 100644 --- a/onnxcustom/training/optimizers.py +++ b/onnxcustom/training/optimizers.py @@ -1,6 +1,7 @@ """ @file -@brief Helper for :epkg:`onnxruntime-training`. +@brief Train a machine learned model +with :epkg:`onnxruntime-training`. """ import inspect import numpy diff --git a/onnxcustom/training/ortgradient.py b/onnxcustom/training/ortgradient.py new file mode 100644 index 00000000..98be01bc --- /dev/null +++ b/onnxcustom/training/ortgradient.py @@ -0,0 +1,4 @@ +""" +@file +@brief Helpers for :epkg:`onnxruntime-training`. +""" diff --git a/onnxcustom/training/orttraining.py b/onnxcustom/training/orttraining.py index 86e31f34..8a5e1515 100644 --- a/onnxcustom/training/orttraining.py +++ b/onnxcustom/training/orttraining.py @@ -1,6 +1,6 @@ """ @file -@brief Helper for :epkg:`onnxruntime-training`. +@brief Manipulate ONNX graph to train a model. """ from onnx.helper import ( make_node, make_graph, make_model, make_tensor_value_info,