diff --git a/examples/plot_kcustom_converter_wrapper.py b/examples/plot_kcustom_converter_wrapper.py index cbab3577..a1752066 100644 --- a/examples/plot_kcustom_converter_wrapper.py +++ b/examples/plot_kcustom_converter_wrapper.py @@ -38,7 +38,7 @@ from sklearn.decomposition import PCA from skl2onnx import update_registered_converter from skl2onnx.algebra.onnx_ops import OnnxIdentity -from skl2onnx.algebra.onnx_operator import OnnxSubOperator +from skl2onnx.algebra.onnx_operator import OnnxSubEstimator from skl2onnx import to_onnx @@ -146,7 +146,7 @@ def decorrelate_transformer_converter(scope, operator, container): # We tell in ONNX language how to compute the unique output. # op_version=opv tells which opset is requested - subop = OnnxSubOperator(op.pca_, X, op_version=opv) + subop = OnnxSubEstimator(op.pca_, X, op_version=opv) Y = OnnxIdentity(subop, op_version=opv, output_names=out[:1]) Y.add_to(scope, container) diff --git a/examples/plot_pextend_python_runtime.py b/examples/plot_pextend_python_runtime.py index 7bfd0527..de39acc4 100644 --- a/examples/plot_pextend_python_runtime.py +++ b/examples/plot_pextend_python_runtime.py @@ -165,7 +165,7 @@ class OnnxEig(OnnxOperator): """ since_version = 1 # last changed in this version - expected_inputs = ['X'] # imput names + expected_inputs = [('X', 'T')] # (imput names, type), T means any type expected_outputs = ['EigenValues', 'EigenVectors'] # output names input_range = [1, 1] # only one input is allowed output_range = [1, 2] # 1 or 2 outputs are produced