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GBNet: Gradient Boosting Network for Monocular Depth Estimation
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Abstract: Recently, neural networks have shown promising results in estimating depth from a single image. A large
amount of per-pixel ground truth depth data is required to train the neural network in supervised learning. However, the
dense depth data of ground truth is challenging to collect in realistic dynamic environments. To solve this problem, many
researchers propose self- and semi-supervised learning as a credible alternative. This paper proposes a novel self- and
semi-supervised monocular depth estimation method, inspired by the gradient boosting method. The existing gradient
boosting method provides training to several sequential, additive, and gradual models for minimizing the error. Similarly,
we design our proposed network to refine the predicted depth map sequentially and gradually generate a high-quality
depth map via multi-stack CNN structures. Our method shows the state-of-the-art results for monocular depth estimation
on a DDAD (Dense Depth for Autonomous Driving) dataset.
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1. INTRODUCTION

Depth information is a crucial component in computer
vision and robotics society with potential applications
such as autonomous driving and drone technology. How-
ever, it is not easy to obtain dense depth information in
the outdoor environment. In the case of LiDAR, a repre-
sentative 3D sensor for autonomous vehicles, it can pro-
vide accurate depth information, but sensing data can-
not cover the entire area and can only provide sparse
information. Recently, to solve this limitation, various
deep learning-based methods have been proposed, and
attempts to provide high-quality and dense depth infor-
mation are increasing. As an example of that, various ap-
proaches such as monocular-, binocular-, and multi-view
stereo-based methods have been proposed. In this pa-
per, we only focus on monocular depth estimation, which
could 1) produce dense depth maps and 2) replaces the
expensive sensor such as LiDAR.

Supervised learning method in monocular depth es-
timation has shown successful results on the various
benchmark [1][3][12]. This learning method learns dis-
tance to object by direct comparing ground truth (dense
depth map) to an inferred depth map. Therefore, su-
pervised learning requires a significant amount of high-
quality depth maps to achieve good performance. For
overcoming these problems, self- and semi-supervised
methods have been introduced that do not require
dense depth during training. The self-supervised ap-
proach [5][6] uses geometric relationships between se-
quence or stereo images to train the network that pre-
dicts the dense map. The semi-supervised method [7][8]
uses both the self-supervised method and the supervised
method, and for supervised learning, a sparse LiDAR is
used instead of a dense depth map. This semi-supervised
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Fig. 1.: Result of monocular depth estimation. Our
proposed network, GBNet, produced sharp and high
quality depth map.

method has both the advantages of 1) supervised learning
that can use physically very accurate and sparse depth in-
formation during training and 2) self-supervised learning
that accurate dense depth map can be used during train-
ing, resulting in significant performance improvement.

In this paper, we propose a novel self- and semi-
supervised depth estimation method, called Gradient
Boosting Network (GBNet), that leads to performance
improvement. The GBNet is a coarse to fine network for
estimating high-quality depth maps, inspired by the gra-
dient boosting method. This method sums each inferred
depth map to learn how to assemble the correct depth pix-
els. Finally, the proposed method has the advantage of
being compatible with the existing monocular depth esti-
mation methods.

The remainder of this paper is organized as follows. In
Section 2., we present a novel architecture and loss func-
tion to which self- or semi-supervised learning methods
can be applied. Comparisons and analysis results with
the state-of-the-art methods are described in Section 3..
Finally, in Section 4., we conclude our paper with a brief
discussion.

https://github.com/sejong-rcv/GBNet


Fig. 2.: GBNet-SfM & GBNet (a) Our proposed self- and semi-supervised monocular SFM architecture. (b) Our pro-
posed monocular depth network (GBNet).

2. GRADIENT BOOSTING NETWORK

This section describes our self- and semi-supervised
monocular GBNet-SfM system (Fig. 2-(a)) that takes a
target images It and infers a depth D̂t. We aim to learn
models as follow: (i) a monocular depth estimation model
G(I) = D that estimates the well refined depth; (ii) a
monocular ego-motion estimator E(It, It+1) = et→t+1,
that estimates the relative pose et→t′ of each source im-
age It+1 ∈ [It, It+1], with respect to the It’s pose. We
train (i) and (ii) models with self- and semi- supervised
learning methods which are not used dense depth maps
as the role of supervision. We first explain our proposed
depth estimation network and then training loss for self-
and semi-supervised learning separately.

2.1 Proposed Architecture
Existing monocular depth estimation methods are fo-

cusing a single generator on enhancing performance.
However, using only one generator model can not refine
the output. To solve this problem, we propose a novel
architecture, called GBNet (Fig. 2-(b)), that is inspired
by the gradient boosting method. This method combines
weak models into a single strong learner in an iterative
fashion. It builds the model in a stage-wise fashion, and
it reduces prediction errors when blended with previous
ones as stages progress. Similar to the gradient boosting
method, we design a hierarchical and residual network
to refine D̂t. Our proposed GBNet G(I) gradually mini-
mizes the depth error every time it passes each single net-
work P . The single network is based on PackNet [4], i.e.
encoder-decoder architecture, with skip connections, pre-
serving and recovering important spatial information. We
construct G(I) into N single network. The first single
network P1 use It as input and the other single networks
Pi, i ∈ (2, N) are worked with D̂t(i−1). To leverage
the abundant information of all images and make them
complementary relationships, we finally estimate D̂t as
follow:

D̂t =

N∑
i=1

λiD̂ti, (1)

where, λ is a static value that increases the effect of more
refined depth maps by adjusting the influence of each sin-

gle network. Z is the ground truth of LiDAR to estimate
the supervised loss.

2.2 Self-Supervised Objective
Following the work of Monodepth2 [5], we simultane-

ously train the depth and pose models. The overall self-
supervised constraints consist of an appearance match-
ing loss term Lpsl to make the synthesized target image
Ît+1 and the target image It and a depth smoothness loss
term Lssl to encourage estimated depth D̂t to be locally
smooth.

Appearance Matching Loss We use a combination of
an L1 distance and the Structural Similarity (SSIM) [10]
term to aim to increase the pixel-level similarity between
the target image It and the synthesized image Ît+1, by
Eq. 2.

Lpsl(It, Ît+1) = α
1− SSIM(It, Ît+1)

2

+ (1− α)‖It − Ît+1‖ (2)

Eq. 2 is a robust learning method for self-supervision
typically. However, the error of parallax in the scene
makes the out-of-view and occluded pixels. It causes an
undesirable effect incurred to the learning. We use the
per-pixel minimum re-projection loss to solve the out-of-
view pixels and occluded pixels problems, as shown in
Monodepth2 [5] It alleviates the undesirable problems by
calculating the minimum loss per pixel for each source
image It+1. It means that the same pixel is not out-of-
view and occluded in the synthesized target images.

Lpsl(It, It+1) = minLpsl(It, Ît+1) (3)

We also apply the auto-masking static pixels methods
suggested in Monodepth2 [5]. Due to the static pixels
have a minor appearance matching loss and can make
an infinite depth hole when assuming no ego-motion be-
tween frames, we use auto-masking to ignore the static
pixels. We find the pixels that satisfy having Lsf (It, It+1

higher than Lsf (It, Ît+1) in order to produce a mask.

M = minLpsl(It, It+1) > minLpsl(It, Ît+1) (4)
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Table 1.: Quantitative performance comparison on the DDAD dataset

Type Method Abs Rel ↓ Sqr Rel ↓ RMSE ↓ RMSE log ↓ δ1.25↑ δ1.252↑ δ1.253↑

self-supervised PackNet 0.175 5.002 15.326 0.263 0.793 0.921 0.962
GBNettotal 0.148 3.329 14.471 0.244 0.818 0.930 0.967

semi-supervised PackNet 0.122 2.477 13.200 0.220 0.849 0.941 0.973
GBNettotal 0.124 2.476 13.276 0.220 0.846 0.940 0.973

Table 2.: Ablation study on the GBNet architecture

Type Method Abs Rel ↓ Sqr Rel ↓ RMSE ↓ RMSE log ↓ δ1.25↑ δ1.252↑ δ1.253↑

self-supervised

GBNet1 0.254 6.055 17.582 0.331 0.606 0.871 0.950
GBNet2 0.150 3.394 14.661 0.246 0.812 0.928 0.967
GBNet3 0.164 3.467 15.148 0.256 0.786 0.923 0.966

GBNettotal 0.148 3.329 14.471 0.244 0.818 0.930 0.967

semi-supervised

GBNet1 0.191 4.411 16.757 0.275 0.740 0.913 0.962
GBNet2 0.130 2.609 13.335 0.223 0.841 0.939 0.973
GBNet3 0.143 2.855 14.460 0.238 0.817 0.929 0.969

GBNettotal 0.124 2.476 13.276 0.220 0.846 0.940 0.973

Depth Smoothness Loss As suggested in Mon-
odepth [5], the depth smoothness loss penalizes depth
discontinuity in texture-less low-image gradient regions.
We apply depth smoothness to our constraints.

Lssl = |δxD̂t|e−|δxIt| + |δyD̂t|e−|δyIt| (5)

The self-supervised loss throughout the process is as
follows:

Lsl = Lpsl(It, It+1)�M + 0.001 ∗ Lssl (6)

where, � denotes element-wise multiplication.

2.3 Semi-Supervised Objective
Similar to Kuznietsov et al. [8], we use supervised

learning in semi-supervised objective to provide accu-
rate depth information to the networks. To lead estimat-
ing more detailed than self-supervised objective, the Li-
DAR data Z which include sparse depth information is
the ground truth of supervised loss. The constraints of
supervised learning measure the deviation of the inferred
depth map from the available ground truth at the pixels.

Lsp(It, Zt) = ‖G(It)− zt‖, zt = Zt > 0 (7)

We formulate a total semi-supervised loss (Lsm)
function that incorporates supervised (Lsp) and self-
supervised (Lsl) objective as follow:

Lsm(It, It+1, Zt, Zt+1) =

γLsp(It, Zt) + βLsl(It, It+1) (8)

where, γ = 0.9 and β = 0.1.

3. EXPERIMENTS

3.1 Datasets
We experiment with our proposed method on DDAD

(Dense Depth for Autonomous Driving) datasets [4],

which is the more realistic and challenging benchmark.
This dataset composes a diverse scene of urban, highway,
and residential, and it contains 12,350 images for train-
ing, 3,950 for validation, and 3,085 for evaluation color
frames with the LiDAR of ground-truth depth maps. We
evaluate our method with validation set at the CVPR 2021
Dense Depth for Autonomous Driving challenge.

3.2 Implementation Details
We implement our proposed model in PyTorch with

all models trained across 8 Titan V100 GPUs. We use
the Adam optimizer [11] with β1=0.9 and β2=0.999. We
initialize our single depth generators P and monocular
ego-motion estimator E(It, It+1) with PackNet weights
pre-trained for KITTI [2] depth estimation. In addition,
our proposed model is trained for 10 epochs, with a batch
size of 4 in the DDAD dataset. We set the number of
single network to N = 3 and, the SSIM weight to α =
0.85.

3.3 Evaluation Metrics
We measure the accuracy of our proposed method in

depth prediction using the 3D LiDAR ground truth on the
test images. We follow depth evaluation metrics used by
Eigen et al. [9].

Abs Rel: 1
|T |

∑
y∈T |y − y∗|/y∗

Sqr Rel: 1
|T |

∑
y∈T ‖y − y∗‖2/y∗

RMSE:
√

1
T

∑T
i=1 ‖ρ(xi)−1 − Z(xi)‖

RMSE log:
√

1
T

∑T
i=1 ‖log(ρ(xi)−1)− log(Z(xi))‖

Threhold: % of yi s.t. max(
yi
y∗i
,
y∗i
yi
) = δ < thr

where, T is the number of pixels with ground-truth in the
test set.



Fig. 3.: Absolute relative error (ABS REL) compari-
son for each depth scale.

3.4 Ablation Study
We analyze the effect of every single network in our

proposed recursive network in Table 2. To demonstrate
the progressive minimization of the depth error of our
methodology, we evaluate the inferred depth maps from
every single network preceding the ensemble method
in GBNet. The GBNeti, i ∈ (1, 3) is the single net-
work that the estimated output is D̂ti. In results of self-
supervised, GBNet2 achieves higher depth map predic-
tion (2.921 m in RMSE) than GBNet1, and also is more
accruate depth (3.422 m in RMSE) in semi-supervised. It
means that adding the single network performance can be
boosted in overall learning methods. The ensemble of ev-
ery single network improve entire performance (average
1.574m in RMSE).

3.5 Depth Estimation Performance
In Table 1, we present the performance of our pro-

posed method for the self- and semi-supervised monoc-
ular depth estimation on the DDAD datasets. We sepa-
rately evaluate our proposed method by self- and semi-
supervised learning and compare it with our based net-
work PackNet. The results show that our monocular
method outperforms the PackNet significantly in self-
supervised for all metrics. When evaluating in semi-
supervised, our methods are 0.001 more accurate in Sqr
Rel than the results reported by PackNet. The benefits of
GBNet are larger than semi-supervised in self-supervised
which LiDAR as a source of supervision is not used. We
illustrate the qualitative results of comparing methods in
Fig. 4. In overall scene, our monocular method appear
more detailed and sharper than PackNet. It can be seen
that more accurate depth is predicted even compared the
ground-truth to methods. In addition, We analyze the per-
formance of each method according to different depth in-
tervals in Fig. 3. It shows that the performance of our self-
supervised GBNet is higher than self-supervised PackNet
in all of the depth intervals, the performance gap becom-
ing more apparent as the distance increases.

4. CONCLUSION

We present a novel architecture GBNet for self- and
semi-supervised monocular depth estimation, achieving
state-of-the-art performance. Our work leverages multi-
stack CNN networks to reduce error in the predicted
depth map sequentially and gradually. As a result of
the analysis, our proposed network provides detailed and
sharp results of distant objects than the baseline method
PackNet. We show that our results are superior in both
quantitative and qualitative evaluations of the DDAD
dataset, based on this result, we won 1st (semi-supervised
track) and 3rd (self-supervised track) place at CVPR
2021-Dense Depth for Autonomous Driving challenge.
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Fig. 4.: Qualitative Results of the Monocular Depth Estimation. Each column indicates (a) RGB image (b) 3D LiDAR
(c) Comparison method called PackNet (d) Proposed method called GBNet.
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