Skip to content

sekocha/lammps-polymlp-package

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

lammps-polymlp-package

A package of LAMMPS software enabling simulations using polynomial machine learning potentials

Building lammps with lammps-polymlp package

(lammps-polymlp-package is tested using LAMMPS_VERSION "lammps-23Jun2022”)

  1. Copy all the components in the lammps-polymlp-package to the latest lammps source code directory as

    > cp -r lammps-polymlp-package/lib/polymlp $(lammps_src)/lib
    > cp -r lammps-polymlp-package/src/POLYMLP $(lammps_src)/src
    
  2. Add "polymlp" to variable PACKAGE defined in $(lammps_src)/src/Makefile and activate polymlp package as

    > cat $(lammps_src)/src/Makefile
        PACKAGE = \
        adios \
        amoeba \
        ...
        poems \
        polymlp \
        ptm \
        ...
        ml-iap \
        phonon
        ...
    > ulimit -s unlimited
    > cd $(lammps_src)/src
    > make yes-polymlp
    
  3. If necessary, modify compile options and flags in $(lammps_src)/src/MAKE/Makefile.serial and $(lammps_src)/lib/polymlp/Makefile.lammps

  4. Change directory to $(lammps_src)/src and build lammps binary files. (It requires approximately ten minutes to one hour for compiling polymlp_gtinv_data.cpp.)

    > make serial -j 36
    

Machine learning potentials for a wide range of systems can be found in the website. If you use lammps-polymlp package and machine learning potentials in the repository for academic purposes, please cite the following article [1].

[1] A. Seko, "Systematic development of polynomial machine learning potentials for elemental and alloy systems", J. Appl. Phys. 133, 011101 (2023).

Lammps input commands to specify a machine learning potential

The following lammps input commands specify a machine learning potential.

    pair_style  polymlp
    pair_coeff * * mlp.lammp Ti Al

About

A user package of LAMMPS software enabling simulations using linearized machine learning potentials

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages