diff --git a/content/notes/math/differential_geometry.mdx b/content/notes/math/differential_geometry.mdx index 57d5bc8..c617c76 100644 --- a/content/notes/math/differential_geometry.mdx +++ b/content/notes/math/differential_geometry.mdx @@ -1256,7 +1256,7 @@ $$ The Riemannian connection on a smooth, not necessarily orientable surface $M$ in $\R^3$ is given by $\nabla_X Y = \operatorname{pr}(\mathrm{D}_X Y)$. -## Gauss's Theorema Egregium +## Gauss's Theorema Egregium for $\R^3$ Suppose $M$ is a regular submanifold of $\R^n$. For $X$ a tangent vector field on $M$ and $Z$ a vector field along $M$ in $\R^n$, the directional derivative $\mathrm{D}_X Z$ is a vector field along $M$ in $\R^n$. Since the Riemannian connection $\nabla$ of a surface $M$ in $\R^3$ is defined in terms of the directional derivative $\mathrm{D}$ on $M$, it is easy to compare the curvature tensors of $\nabla$ and $\mathrm{D}$. This will lead to a formula for the curvature $R$ of $\nabla$, called the *Gauss curvature equation*. @@ -1468,6 +1468,210 @@ $$ ## Generalizations to hypersurfaces in $\R^{n+1}$ +### The shape operator of a hypersurface + +A *hypersurface* $M$ in $\R^{n+1}$ is a submanifold of codimension $1$. Assume there is a smooth unit normal vector field $N$ on $M$; note that this is always possible locally on any hypersurface. Recall that the directional derivative $\mathrm{D}$ on $\R^{n+1}$ is the Riemannian connection of $\R^{n+1}$. + +For any point $\mathbf{p}\in M$ and tangent vector $X_\mathbf{p}\in T_\mathbf{p}M$, since $\langle N,N\rangle\equiv 1$ + +$$ + 0 = X_\mathbf{p}\langle N,N\rangle = 2\langle\mathrm{D}_{X_\mathbf{p} N, N}\rangle +$$ + +Therefore, $\mathrm{D}_{X_\mathbf{p}}N$ is tangent to $M$. The *shape operator* $L_\mathbf{p}: T_\mathbf{p}M \to T_\mathbf{p}M$ is defined to be + +$$ + L_\mathbf{p}(X_\mathbf{p}) = -\mathrm{D}_{X_\mathbf{p}}N,\; X_\mathbf{p}\in T_\mathbf{p}M +$$ + +As the point $\mathbf{p}$ varies over $M$, the shape operator globalizes to an $\mathcal{F}$-linear map $L:\mathfrak{X}(M)\to\mathfrak{X}(M)$ given by $L(X)_\mathbf{p} = L_\mathbf{p}(X_\mathbf{p})$. + + +Let $X,Y\in\mathfrak{X}(M)$ be smooth vector fields on an oriented hypersurface $M$ in $\R^{n+1}$. Then +1. $\langle L(X), Y\rangle = \langle\mathrm{D}_X Y, N\rangle$ +2. the shape operator is self-adjoint with respect to the Euclidean metric inherited from $\R^{n+1}$ +$$ + \langle L(X),Y\rangle = \langle X,L(Y)\rangle +$$ + +
+Proof + +Since $\langle Y, N\rangle = 0$, by the compatibility of $\mathrm{D}$ with the metric + +$$ + 0 = X\langle Y,N\rangle = \langle \mathrm{D}_X Y, N\rangle + \langle Y, \mathrm{D}_X N\rangle +$$ + +Hence + +$$ + \langle \mathrm{D}_X Y, N\rangle = \langle Y, -\mathrm{D}_X N\rangle = \langle Y, L(X)\rangle +$$ + +Reversing the roles of $X$ and $Y$ gives + +$$ + \langle \mathrm{D}_Y X, N\rangle = \langle X, L(Y)\rangle +$$ + +Since $[X,Y]$ is tangent to $M$ + +$$ + \langle [X,Y], N\rangle = 0 +$$ + +By torsion-freeness, subtracting $\langle D_Y X, N\rangle$ and $\langle [X,Y], N\rangle$ from $\langle \mathrm{D}_X Y, N\rangle$ gives + +$$ +\begin{align*} + 0 =& \langle \mathrm{D}_X Y - \mathrm{D}_Y X - [X,Y], N\rangle \\ + =& \langle Y, L(X)\rangle - \langle X,L(Y)\rangle +\end{align*} +$$ +
+
+ + +Let $M$ be a hypersurface in $\R^{n+1}$ and $L_\mathbf{p}: T_\mathbf{p}M \to T_\mathbf{p} M$ be the shape operator at a point $\mathbf{p}\in M$. The following curvature measures can be defined on $M$ at $\mathbf{p}$: +1. The *principal curvatures* are the eigenvalues $\lambda_i$ of $L_\mathbf{p}$. +2. The *mean curvature* is the average of the principal curvatures, or the trace of $L_\mathbf{p}$ +$$ + H(\mathbf{p}) = \frac{1}{n}\sum_{i=1}^n \lambda_i = \frac{1}{n}\operatorname{tr}(L_\mathbf{p}) +$$ +3. The *Gaussian curvature* is the product of the principal curvatures, or the determinant of $L_\mathbf{p}$ +$$ + K(\mathbf{p}) = \prod_{i=1}^n \lambda_i = \det(L_\mathbf{p}) +$$ + + +### The Levi-Civita connection on a hypersurface + + +Let $M$ be a hypersurface in $\R^{n+1}$ and $\mathrm{D}$ the directional derivative on $\R^{n+1}$. For $X,Y\in\mathfrak{X}(M)$ the tangential component of $\mathrm{D}_X Y$ defines the Riemannian connection $\nabla$ of $M$ + +
+Proof + +Since it is evident that $\nabla$ satisfies the two defining properties of a connection it suffices to check that $\nabla_X Y$ is torsion free and compatible with the metric. + +**Torsion-freeness:** Let $T_\mathrm{D}$ and $T_\nabla$ be the torsions of $\mathrm{D}$ and $\nabla$, respectively. By definition, for $X,Y\in\mathfrak{X}(M)$ + +$$ +\begin{align*} + \mathrm{D}_X Y =& \nabla_X Y + (\mathrm{D}_X Y)_{\mathrm{nor}} \\ + \mathrm{D}_Y X =& \nabla_Y X + (\mathrm{D}_Y X)_{\mathrm{nor}} +\end{align*} +$$ + +Since $\mathrm{D}$ is torsion-free, $\mathrm{D}_X Y - \mathrm{D}_Y X = [X,Y]$. Equating the normal components of both sides, we get $(\mathrm{D}_X Y)_\mathrm{nor} - (\mathrm{D}_Y X)_\mathrm{nor} = 0$. Thus, + +$$ +\begin{align*} + 0 =& T_\mathrm{D}(X,Y) \\ + =& \mathrm{D}_X Y - \mathrm{D}_Y X - [X,Y] \\ + =& (\nabla_X Y - \nabla_Y X - [X,Y]) + (\mathrm{D}_X Y)_\mathrm{nor} - (\mathrm{D}_Y X)_\mathrm{nor} \\ + =& \nabla_X Y - \nabla_Y X - [X,Y] = T_\nabla (X,Y) +\end{align*} +$$ + +**Compatibility with the metric:** For $X,Y,Z\in\mathfrak{X}(M)$ + +$$ +\begin{align*} + X\langle Y, Z\rangle =& \langle\mathrm{D}_X Y, Z\rangle + \langle Y, \mathrm{D}_X Z\rangle \\ + =& \langle\nabla_X Y + (\mathrm{D}_X Y)_\mathrm{nor} Z \rangle + \langle Y, \nabla_X Z + (\nabla_X Y)_\mathrm{nor}\rangle \\ + =& \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle +\end{align*} +$$ +
+
+ +### Fundamental forms + +At each point $\mathbf{p}$ of an oriented hypersurface $M\subseteq\R^{n+1}$, there is a sequence of symmetric bilinear maps on $T_\mathbf{p}M$ called the *first*, *second* and *third fundamental forms* and so on + +$$ +\begin{align*} + \matrm{I}(X_\mathbf{p},Y_\mathbf{p}) =& \langle X_\mathbf{p}, Y_\mathbf{p}\rangle \\ + \mathrm{II}(X_\mathbf{p},Y_\mathbf{p}) =& \langle L(X_\mathbf{p}), Y_\mathbf{p}\rangle = \langle X_\mathbf{p}, L(Y_\mathbf{p})\rangle \\ + \mathrm{III}(X_\mathbf{p},Y_\mathbf{p}) =& \langle L^2 (X_\mathbf{p}), Y_\mathbf{p}\rangle = \langle L(X_\mathbf{p}),L(Y_\mathbf{p})\rangle = \langle X_\mathbf{p}, L^2 (Y_\mathbf{p})\rangle, \dots +\end{align*} +$$ + +For $X,Y\in\mathfrak{X}(M)$, the directional derivative $\mathrm{D}_X Y$ decomposes into the sum of a tangential and normal component. The tangential component is the Levi-Civita connection on $M$; the normal component is essentially the second fundamental form. + + +If $N$ is a smooth unit normal vector field on the hypersurface $M$ in $\R^{n+1}$ and $X,Y\in\mathfrak{X}(M)$ are smooth vector fields on $M$, then + +$$ + (\mathrm{D}_X Y)_\mathrm{nor} = \mathrm{II}(X,Y)N +$$ + +
+Proof + +The normal component $(\mathrm{D}_X Y)_\mathrm{nor}$ is a multiple of $N$, so + +$$ + \mathrm{D}_X Y =& (\mathrm{D}_X Y)_\mathrm{tan} + (\mathrm{D}_X Y)_\mathrm{nor} \\ + =& lambda_X Y + \lambda N +$$ + +for some $\lambda\in\R$. Taking the inner product of both sides with $N$ gives + +$$ + \langle \mathrm{D}_X,N\rangle = \lambda\langle N,N\rangle = \lambda +$$ + +Hence + +$$ +\begin{align*} + (\mathrm{D}_X Y)_\mathrm{nor} =& \langle\mathrm{D}_X Y,N\rangle N \\ + =& \langle L(X), Y\rangle N \\ + =& \mathrm{II}(X,Y)N +\end{align*} +$$ +
+
+ +### The Gauss curvature and Codazzi-Mainardi equations + +Let $M$ be an oriented, smooth hypersurface in $\R^{n+1}$, with a smooth unit normal vector field $N$. The relation between the Levi-Civita connection $\mathrm{D}$ on $\R^{n+1}$ and the Levi-Civita connection on $M$ implies a relation between the curvature $R_\mathrm{D}(X,Y)Z = 0$ on $\R^{n+1}$ and the curvature $R(X,Y)Z$ on $M$. The tangential component of this relation gives the Gauss curvature equation + +$$ + R(X,Y) = \langle L(Y), Z\rangle L(X) - \langle L(X), Z\rangle L(Y) +$$ + +and the normal component gives the Codazzi-Mainardi equation + +$$ + \nabla_X L(Y) - \nabla_Y L(X) - L([X,Y]) = 0 +$$ + + +If $M$ is a smooth oriented hypersurface in $\R^{n+1}$ with curvature $R$ and $X,Y\in\mathfrak{X}(M)$, then + +$$ + \langle R(X,Y)Y, X\rangle = \mathrm{II}(X,X)\mathrm{II}(Y,Y) - \mathrm{II}(X,Y)^2 +$$ + +
+Proof + +By the Gauss curvature equation + +$$ +\begin{align*} + \langle R(X,Y)Y, X\rangle =& \langle L(Y), Y\rangle \langle L(X),X\rangle - \langle L(X), Y\rangle\langle L(Y),X\rangle \\ + =& \mathrm{II}(X,X)\mathrm{II}(Y,Y) - \mathrm{II}(X,Y)^2 +\end{align*} +$$ +
+
+ + # Curvature and differential forms # Geodesics