
Finitely presented bands

JDM

June 2, 2021

This document contains some questions relating to finitely presented bands.

1 Varieties of bands

A variety of semigroups is a class of semigroups that are closed under homomorphic images, subsemigroups, and
direct products. For example, the class B of bands is a variety.

The lattice of varieties was described by Biryukov [1], Fennemore [2], and Gerhard [3]. Fennemore [2] showed that
every variety of bands is defined by a single identity.

If A is a finite alphabet, then we denote by F (A) the free band over A. If R ⊆ F (A)× F (A), then we denote by R]

the least congruence on F (A) containing the set R. We denote the quotient semigroup F (A)/R] by B(A,R), and
refer to B(A,R) as a band presentation. For example, F (A) is isomorphic to the band defined by the presentation
B(A,∅). Note that since F (A) is finite if A is finite, it follows that every finite band is finitely presented.
Question 1.1. Is it possible to efficiently compute the least variety of bands that contains a given finite band?

Suppose that A is an arbitrary finite set and that End(F (A)) denotes the endomorphism monoid of the free band
F (A) over A.

We say that a congruence ρ on F (A) is invariant if ((x)f, (y)f) ∈ ρ for every (x, y) ∈ ρ and every f ∈ End(F (A)).
If B(A,R) is any finitely presented band over A, then we denote by R† the greatest congruence on F (A) that is
invariant and such that R† ⊆ R.

This lemma will be helpful:
Lemma 1.2. Let ρ be a congruence on F (A). Then F (A)/ρ is the free element FV(A) of some variety V if and
only if ρ is invariant.

Proof. This is a question of using the correspondence between endomorphisms and the “free” extension of maps to
morphisms.

(=⇒) Let (u, v) be any relation in ρ. The words u = u1u2 . . . uk, v = v1v2 . . . vl are free band elements and ui, vj ∈ A
for each i, j. Suppose WLOG that A = {1, 2, . . . , n}. Let f ∈ End(F (A)) be any endomorphism; f is uniquely
determined by where it maps the generators of F (A). Write (i)f = bi for each i = 1, 2, . . . , n. We wish to show
((u)f, (v)f) ∈ ρ, i.e.

(bu1bu2 . . . buk
, bv1bv2 . . . bvl

) ∈ ρ.

With the aim of using the ‘free’ property of FV(A), we define a function φ : A→ FV(A) which agrees with f
on A, i.e.

(i)φ = bi ∀i ∈ A.

Since FV(A) is free in V, and certainly FV(A) ∈ V, we know φ can be extended to a unique homomorphism
φ̂ : FV(A)→ FV(A). By assumption, u and v are ρ-related so u = v in FV(A). Therefore, in FV(A),

bu1bu2 . . . buk
= (u1)φ(u2)φ . . . (uk)φ̂ = (u)φ̂ = (v)φ̂ = (v1)φ(v2)φ . . . (vl)φ̂ = bv1bv2 . . . bvl

,

and this proves ((u)f, (v)f) ∈ ρ.

1

(⇐=) The proof for this direction follows the same pattern as Proposition 4.6.2 of [4].

With this, we can prove that for a finitely presented band B(A,R), the free object in the smallest variety containing
B(A,R) is in fact F (A)/R†.

Let ρ be the congruence on F (A) giving the free object FV(A) of the smallest variety V. Then since R† is by
definition invariant, F (A)/R† is a free object. Also, since R† ⊆ R], we know that B(A,R) is a homomorphic image
of F (A)/R†. So certainly, F (A)/R† and B(A,R) lie in the same variety. If FV(A) was in a smaller variety than
that of F (A)/R†, then we would have R] ⊇ R ⊇ ρ ⊇ R†, but also ρ invariant, impossible.
Question 1.3. Given a band B, is it possible to check efficiently whether or not B is a free object is some variety
of bands?

2 Algorithms for finitely presented bands

Given a finitely presented band B(A,R) how can we compute things about this object? Such as its size, Green’s
structure, and so on. The main algorithms for computing such things for finitely presented semigroups are the
Knuth-Bendix algorithm and the Todd-Coxeter algorithm. Are there versions of these main algorithms for finitely
presented semigroups specifically for bands?
Question 2.1. Suppose that F is a free object in a variety of bands. Is it possible to generalise the algorithm of the
other paper to check equality of words in F?

2.1 Broadening the general Todd-Coxeter Algorithm

We may wonder whether the results proved in [5] hold also if we replace the original TC1 process with a “smart”
version which defines new nodes labelled exclusively by canonical elements in some (relatively) free semigroup. We
also wish to give this improved subprocess the ability to define an edge e(w, a) to point towards an already existing
node, if it so happens that the canonical form of wa already exists somewhere in the node set.

Suppose A is a finite alphabet and V is some variety of semigroups. Call FV(A) the free object on A in the variety
V. We suppose we are interested in performing a variant of the Todd-Coxeter algorithm where the presentation
implicitly includes the fact that the output should be an element of V. Wishing to avoid the presence of two nodes
in Γ labelled by FV(A)-equivalent words, we define a canonical form of w ∈ A∗ to be w̄, the shortlex least element of
the equivalence class of w in FV(A). We now define a smart TC1 which reduces words to canonical form before
adding them to the node set.

TC1V . If w is a node in Γ(i) and ei(w, a) is undefined for some a ∈ A:

(a) If ei(ε, wa) is defined, define Γ(i + 1) to be the digraph obtained from Γ(i) by extending ei so that
ei+1(w, a) = ei(ε, wa).

(b) Otherwise, noting that all prefixes of wa must be canonical, let w′ be the longest prefix of wa such
that ei(ε, w′) is defined. Express the canonical word as wa = w′a1a2 . . . an where each ai ∈ A. Add the
following nodes to n(Γ(i+ 1)):

w′a1,

w′a1a2,

...
w′a1a2 . . . an(= wa).

Create new edges:

ei+1(ei(ε, w′), a1) := w′a1

ei+1(w′a1, a2) := w′a1a2

...
...

ei+1(w′a1a2 . . . an−1, an) := w′a1a2 . . . an.

2

Finally, define ei+1(w, a) := wa.

It might take some thought to convince oneself that the nodes created in case (b) do not already exist. Suppose
some node ν = w′a1a2 . . . ai already existed. Then since TC1V takes a ρ-digraph as input, following the path in
Γ(i) from ε labelled w′a1a2 . . . ai should lead to ν. However, we assumed when constructing the maximal prefix w′
that ei(ε, w′) was defined but ei(ε, w′a1) was not. So this path doesn’t lead anywhere and ν cannot exist before it is
created in TC1V .

Note that the node ei(ε, w′) may not actually be labelled w′, even though w′ is canonical: coincidences could have
been processed that merged a previous node w′ with some shortlex-smaller node. In the following example, this is
the case.
Example 2.2 (Case (a)). Suppose we are in the variety of commutative semigroups. Orders of generators can be
swapped. Our alphabet is A = {x, y, z}. Also, one of the explicit relations is xx = x. At step i, we have the following
digraph Γ(i):

ε

x

xy

x

x

y

We now apply TC1V to node w = xy and edge a = x. So wa = xyx, which in canonical form is wa = xxy. The
node xxy is not in the node set, but if we follow the path labelled xxy from ε, we end up at node xy. So case (a) is
triggered, since the path is defined, and we set ei+1(w, a) := xy:

ε

x

xy

x

x

y

x

This next example illustrates the node-creating capabilities of TC1V .
Example 2.3 (Case (b)). Suppose once again that we are in the variety of commutative semigroups and A = x, y, z.
One of the explicit relations is xy = x. At step i, suppose we have the following digraph Γ(i):

3

ε

xy

yz

yzz

xy

z

z

y

We now apply TC1V to node w = yzz and edge a = x. So wa = yzzx, which in canonical form is wa = xyzz.
Following the path labelled xyzz starting at ε, edges are defined for xy at which point we end up at the node labelled
x. Then, x has no out-edge labelled z, so the next two steps are undefined. This triggers case (b) where w′ = xy,
a1 = z and a2 = z. So we create nodes w′a1 = xyz and w′a1a2 = xyzz and complete the path we started at ε:

ε

xy

yz

yzz

xyz

xyzz

xy

z

z

y

z

z

x

The blue edges and nodes are added through the list provided in case (b) of the definition, while the green edge is the
final addition which actually defines the edge we wanted: ei+1(w, a).

Notice that our choice of labels means that the new edge leading out of the node x leads to a node labelled xyz. While
it would perhaps make more sense to label this new node xz, in the general case we have no guarantee that labelling
by appending letters to e(ε, w′) will produce canonical words. On the other hand, we know that all prefixes of wa –
including, in this case, xyz – are necessarily canonical.

Another thing to keep in mind with TC1V node creation is that, as in the example above, nodes are not always labelled
by their shortlex minimal representative. For instance, xyz is accessible via the path xz, a shorter representative for
the same element – but no separate node xz can be created, since following the path labelled xz from ε leads to the
well-defined node xyz.

We claim now that replacing TC1 by TC1V in [5] has no effect on the results about the Todd-Coxeter Algorithm in
the rest of the paper. The definitions of σ-digraphs and proper congruence enumeration processes are still relevant
with this new setup. We will only consider two-sided c.e.p.s.

The important thing to note about our new interpretation of ρ is that we will assume ρ contains all the relations
that generate FV(A). So for example, if u, v ∈ A∗ represent the same element of the relatively free semigroup FV(A),
then {u, v} ∈ ρ. On top of this, ρ will contain the additional explicit relations that are passed as input to the
congruence enumeration process.

Let’s go through every result which needs adapting to fit with TC1V .

4

Lemma 4.3. If TC1V is applied to a ρ-digraph Γ(i), then the output digraph Γ(i+ 1) is also a ρ-digraph.

Proof. Suppose Γ(i) is a ρ-digraph to which we apply TC1V to get Γ(i+ 1). The product ei+1(w, a) is now defined.
Check the conditions of the definition.

(a). If any nodes were added when applying TC1V , then wa was added along with any prefixes that were missing.
Note that all prefixes of a word in canonical form (i.e. shortlex minimal) are also in canonical form for their
congruence classes. The process TC1V ensures that all new edges and nodes on the path leading to wa are
sensibly created in such a way that ei+1(ε, wa) = wa, and this holds for prefixes too.

(b). We wish to show the equivalence relation πi+1 is contained in ρ. Since πi ⊆ ρ, let {u, v} ∈ πi+1 \ πi.

If the first scenario of TC1V was applied, then no new nodes were created and one edge labelled a from w
to ei(ε, wa) was created. Call this node (that the new edge points to) ν. Since both the paths ei(ε, ν) and
ei(ε, wa) are assumed to already exist, Γ(i) being a ρ-digraph implies that wa ρ ν.

At least one of the paths u, v must have passed through this new edge from w to ν. Assume first that both
paths did: we have u = u1au2 and v = v1av2, where

ei(ε, u1) = ei(ε, v1) = w (∗)

and
ei(ν, u2) = ei(ν, v2) =⇒ ei(ε, νu2) = ei(ε, νv2). (∗∗)

We can now deduce a number of relations that are helpful:

• u1 ρ w by (∗), so u1a ρ wa ρ wa, the last step holding because the two words represent the same element
of FV(A). Since wa ρ ν, We keep u1a ρ ν in mind.

• Similarly to the previous point, v1a ρ ν .

• By assumption on πi and by (∗∗), we have νu2 ρ νv2 .

Combining the above, we get u = u1au2 ρ νu2 and v = v1av2 ρ νv2, and so u ρ v as required.

This reasoning does not cover the possibility that one or both of the paths pass over the new edge more
than once. In the most general case, this could look like u = u1au2a . . . aun and v = v1av2a . . . avm where
ei(ε, u1) = ei(ε, v1) = w, and ei(ν, uk) = w for all 2 ≤ k < n (same for v). It can be built up by induction
that u1a . . . aun−1a ρ ν (same for v) and the final step of the proof follows as above. TODO.

Suppose now that only one path, say u, passed over the new edge (only once - the inductive argument extending
this is TODO and proceeds as in the previous remark). Then we can write u = u1au2 where ei(ε, u1) = w. As
in the previous case, we can prove that u1a ρ ν. Since we assumed the path v does not pass over any new
nodes or edges, we may write

ei(ε, v) = ei(ν, u2).

This implies v ρ νu2, and so we get u = u1au2 ρ νu2 ρ v, as required.

If the second scenario of TC1V was applied, we may treat it as a sequence of new node creations (blue in 2.3)
followed by a first-scenario application of TC1V (green in 2.3) which we considered above. So it suffices to
show that adding one node w′a1 and one edge ei+1(ei(ε, w′), a1) = w′a1 preserves ρ-digraphs. Any additional
nodes and edges (e.g. w′a1a2, w

′a1a2a3, . . .) have analogous proofs.

The approach for one node and one edge addition is in the same vein as the original proof of Lemma 4.3.
If {u, v} ∈ πi+1 \ πi, then u = u1a1 and v = v1a1 for some u1, v1 ∈ A∗, and ei(ε, u1) = ei(ε, v1) = ei(ε, w′).
Hence, by assumption, (u1, v1) ∈ ρ and since ρ is a right congruence, (u, v) = (u1a1, v1a1) ∈ ρ, also.

So we have proved that πi+1 ⊆ ρ.

(c). Applying TC1V does not change K, so this condition holds.

5

When thinking about the above proof, it may be helpful to consider a “messiest-case” scenario with lots of paths
and loops, etc. The following graph could be part of a ρ-digraph for the variety of bands. We are applying TC1V to
create an edge labelled c from the node abcab to the already existing node abc. (this falls into the first scenario).
One of the explicit relations added is abac = abcb.

abca abcb

abcab abc aba

ab

a

b
c

b
a c

c
a

b

No additional tweaks to proofs are necessary until section 4.2, where we consider:
Lemma 4.13. If w is a node in Γ(i), and there exists j > i such that w is not a node in Γ(j), then w is not a node
in Γ(k) for any k ≥ j.

Proof. If w is a node in Γ(i) then the path ei(ε, w) certainly exists. Since edges that are defined cannot become
undefined, and definition of edges is robust under coincidence processing, this means the path ek(ε, w) is defined for
all k ≥ i. If w 6∈ n(Γ(j)), then the only way w can reappear as a node at a later step is via node creation in TC1V .
However, TC1V only creates a node labelled w at step k if ek(ε, w) is undefined, which is not the case for any k ≥ i.
So w is not a node in Γ(k) for any k ≥ j.

For Lemma 4.14, very little adaptation is needed given we have shown that Lemma 4.13 still holds.
Lemma 4.14. Every congruence enumeration process stabilises.

Proof. The proof claims that the definitions of TC1V , TC2, TC3 are such that ε ≤ ek(w, a) ≤ ej(w, a) for all
k ≥ j, provided both terms are defined. If ej(w, a) is defined, then TC1V cannot change the value of the edge
function on (w, a), so changing the value is only possible via TC2 or TC3 which remain unchanged from their
original descriptions.

It is also still true that TC1V cannot be applied to Γ if Γ is complete. Hence, Corollary 4.15 still holds: completeness
at some step implies that the algorithm will terminate.

No proofs in Section 4.3 need changing as they all rely mostly on previous results and the definition of TC2, the
same goes for Section 4.4 and Section 4.5 builds on previous results. So, we have proved that replacing TC1 with
TC1V in the general description of a congruence enumeration process has no effect on the validity of that process,
provided ρ is defined to contain all explicit relations R along with the generating relations of the free element FV(A).

2.2 The Todd-Coxeter Algorithm for Bands

Using our newly defined TC1V step above, we can see how we may apply this to a band presentation. We will
assume throughout that we are in the variety of bands, i.e. V = B.

Suppose we wish to find the elements of a semigroup given as a band presentation B(A,R), where the fact that
each element is idempotent is treated as implicit. We assume that there is an efficient way of expressing any word
w ∈ A∗ in a canonical free band form, which we denote by w̄ and which we assume to be lex-least in the set of all
words in the free band equivalent to w.

The presentation B(A,R) is equal to F (A)/R] ∼= A∗/(φ(A) ∪R)], where φ(A) denotes the set of “band relations”:

φ(A) = {{ww,w} : w ∈ F (A) canonical}.

We will denote the full set of relations R ∪ φ(A) by R̄.

6

If the generators of some φ(A) are known, then computing B(A,R) via Todd-Coxeter can be done by simply
appending these generators to the given explicit relations R, and running the Todd-Coxeter algorithm as usual on
the given input. However, the number of generators for φ(A) increases quickly with |A|. The minimum size for
|A| = 2 is 6, for |A| = 3 it is around 40, and anything beyond |A| = 4 is computationally expensive, if not impossible,
to compute.

Instead of relying on expensively making the contents of φ(A) explicit, we propose to adapt common implementations
of the usual Todd-Coxeter algorithm so that the band relations are treated implicitly and internally, while the
explicit relations R are treated “as usual”.

The Band Todd-Coxeter (BTC) algorithm has all its steps built off TC1V , as well as sub-processes from [5]. We
will use:

TC1V . Define the product of a node w and a node a, either by creating one or several new nodes if the path wa
doesn’t exist, or by adding an edge pointing to a pre-existing node if it does.

TC2. Push a node w through a relation {u, v} ∈ R̄.

TC3. Process coincidences.

We will treat the BTC algorithm as an R̄]-process with steps TC1V , TC2, TC3 in a specific order. A set S,
initially equal to {ε}, must be maintained in parallel when this process is carried out. We add words to S whenever
we add words to the list of nodes via TC1V , but we do not remove words from S when processing coincidences, so
that S contains every word that the algorithm has seen.

Just like there are different strategies for implementing the Todd-Coxeter Algorithm, there are several similar
strategies for BTC.

2.2.1 The HLT Strategy

The HLT strategy ensures every coset is pushed through every implicit relation only once by ensuring, when TC2 is
applied to (w, {u, v}), that ei(w, u) and ei(w, v) are both defined. For BTC, we adapt this as follows.

1. Initialise the first R̄]-graph, Γ(0), as the trivial digraph.

2. Set w, the node the algorithm is currently considering, to be the lex-least node in n(Γ(i)) that has not already
been considered.

3. For each a ∈ A, apply TC1V to w and a.

4. For each relation {u, v} ∈ R (note this does not include the implicit relations, only the explicit ones), apply
TC1V as needed until ei(w, u) and ei(w, v) are defined. Then push w through {u, v} using TC2.

5. For each word u ∈ S, push w through {uu, u} (note {uu, u} ∈ φ(A) necessarily since we only ever add canonical
words to the nodes), ensuring as above via applications of TC1V that both paths are defined.

6. For each word w′ in S which was considered in a previous iteration, push w′ through {ww,w} using TC2,
once again using TC1V to define ei(w′, w) and ei(w′, ww) if needed.

7. Process coincidences using TC3.

8. Return to step 2 – except if all nodes have been considered, in which case stop.

Note that if all nodes have been considered and coincidences have just been processed, TC1V and TC3 can no
longer be applied. We will later prove that applying TC2 will not change the graph further.

Let’s begin by affirming a few basic properties of this algorithm.

Lemma 2.4. BTC terminates on any input.

Proof. Notice that each application of BTC1, BTC2 and TC3 runs in finite time. This is obvious for BTC2, and
for TC3 we note that only finitely many pairs can possibly appear in the list of coincidences in one application of
the process. BTC1 is a combination of one application of TC2, one of TC3 and at most |wa|+ 1 of TC1, so is
finite too. Then, we note that since the set of relations and the alphabet are finite, each iteration of the loop for

7

fixed w ∈ n(Γ(i)) runs in finite time. Each such w is a word in the free band on A, which only has finitely many
elements, so the algorithm will terminate at the latest when every w has been considered.

Lemma 2.5. The sequence of words w in the order they are considered forms a lenlex-increasing sequence.

Proof. TODO. This will just help clear some messy things up later on. I think we just need to prove no words
lenlex-less than the current word being considered can be discovered later on. This can be done by induction maybe?
It follows from the fact that words are defined at each layer.

Lemma 2.6. Every word that is considered by BTC is pushed through the exact same set of relations.

Proof. TODO make more rigorous - trivial for R, and steps 5 and 6 cover all cases for implicit relations.
TODO okay there’s a problem here. Relations can also be pushed as part of BTC1. I think there must be a way we
can argue that they’re harmless enough that they won’t affect the part of the properness proof I’m using the lemma
for.

To prove validity of BTC, it suffices to show that the described R̄]-process is proper. We run through the conditions
(a), (b) and (c) from Definition 3.4 of [5]. We may assume that i is chosen at the end of a loop to avoid an
intermediate scenario. Assume the current word that is being processed by the algorithm is t.

(a) The first condition requires that for all w ∈ n(Γ(i)) and for all a ∈ A, if ei(w, a) is undefined, then there is
j > i such that either w is no longer a node, or the edge is defined. This holds for the same reasons as it does
for other Todd-Coxeter algorithm implementations. At step i, for a fixed word w, we begin by defining ei(w, a)
for each a ∈ A. So if the edge is undefined but the node w exists, it must be that t ≤ w, and the edge will be
defined at the latest when we consider the corresponding w.

(b) Suppose here that at step i, a node w in Γ(i) exists such that for some {u, v} ∈ R̄, ei(w, u) and ei(w, v) are
defined but not equal. We distinguish between three cases, depending on which subset of R̄ the relation lies in.

1. If {u, v} ∈ R, then {u, v} is an explicit relation which we expect to push w through at some point. It
must be that w has not yet been processed, since otherwise TC2 and TC3 would have made the two
nodes equal. If w eventually disappears from the list of nodes, it cannot appear again, so we are done. If
it doesn’t, then it will eventually be considered, and for all j past the point where the corresponding
coincidences are merged, the two nodes will be equal.

2. If {u, v} ∈ φ(A), then we may assume u is canonical and v = uu. Let’s first suppose u will be considered
(or was considered) as a node at some point. We may also assume w will be considered (or was considered)
since otherwise, we know w will eventually disappear from the node set and we are done.

2.1. If t ≤ u ≤ w, then when considering w, step 5 ensures w is pushed through u.

2.2. If t ≤ w ≤ u, then when considering u, either w is pushed through u in step 6 or w has disappeared
from the node set. In both cases we are done.

2.3. If u ≤ t ≤ w, then when considering w, step 5 ensures w is pushed through u.

2.4. If u ≤ w ≤ t, then we have a contradiction: when considering w, w would have been pushed through
u in step 5.

2.5. If w ≤ t ≤ u, then when considering u, either w is pushed through u in step 6 or w has disappeared
from the node set. In both cases we are done.

2.6. If w ≤ u ≤ t, then either w had disappeared from the node set before u was considered, or w would
have been pushed through u in step 6 when considering u. The latter case gives a contradiction.

With these cases proved we now assume u was never considered. We prove that this scenario works by
first assuming w = ε. The word u is never considered so it must eventually disappear from the node set,
and following the path labelled u from the empty word must lead to some other node label. Since BTC
terminates by 2.4, say at step N , we know that we can follow the path eN (ε, u) and end up at a canonical
node u′ which has been considered. Since this node has been considered, we are guaranteed that

eN (ε, u′u′) = eN (ε, u′) = eN (ε, u) = u′.

8

We now note that for the paths u and u′, corresponding to distinct words in the free band, to be merged,
it must be that relations were pushed via TC2 and created coincidences. Let Ru be the set of relations
which resulted in the two words merging. Then there must be an elementary sequence from u to u′ with
respect to Ru. By 2.6, it must be that every relation in Ru was also pushed through u′ and all subsequent
nodes, so that

eN (u′, u) = eN (u′, u′).

Then, we get that

eN (ε, uu) = eN (eN (ε, u), u) = eN (u′, u) = eN (u′, u′) = eN (ε, u′u′) = eN (ε, u).

If w is a node other than ε, I believe it’s a question of “shifting the origin”. (TODO)

(c) Coincidences are regularly processed so this condition easily holds.

References

[1] A. P. Biryukov. Varieties of idempotent semigroups. Algebra and Logic, 9(3):153–164, May 1970.

[2] Charles Fennemore. All varieties of bands. Semigroup Forum, 1(1):172–179, December 1970.

[3] J.A Gerhard. The lattice of equational classes of idempotent semigroups. Journal of Algebra, 15(2):195–224,
June 1970.

[4] John Mackintosh Howie. Fundamentals of semigroup theory, volume 12. Clarendon Oxford, 1995.

[5] J. D. Mitchell, F. L. Smith, M. Tsalakou, and T. D. H. Coleman. The todd-coxeter algorithm for semigroups and
monoids. Preprint, 2020.

9

	Varieties of bands
	Algorithms for finitely presented bands
	Broadening the general Todd-Coxeter Algorithm
	The Todd-Coxeter Algorithm for Bands
	The HLT Strategy

