Sentinel Hub Cloud Detector for Sentinel-2 images in Python
Switch branches/tags
Nothing to show
Clone or download

Package version Supported Python versions Build status Overall downloads Last month downloads

Sentinel Hub's cloud detector for Sentinel-2 imagery

The s2cloudless Python package provides automated cloud detection in Sentinel-2 imagery. The classification is based on a single-scene pixel-based cloud detector developed by Sentinel Hub's research team and is described in more details in this blog.


The package requires a Python version >= 3.5. The package is available on the PyPI package manager and can be installed with

$ pip install s2cloudless

To install the package manually, clone the repository and

$ python build
$ python install

Input: Sentinel-2 scenes

The input to cloud detector are Sentinel-2 images. In particular, the cloud detector requires the following 10 Sentinel-2 band reflectances: B01, B02, B04, B05, B08, B8A, B09, B10, B11, B12, which are obtained from raw reflectance value in the following way: B_i/10000.

You don't need to worry about any of this, if you're doing classification of scenes obtained using Sentinel Hub's WMS or WCS services (i.e. using ours Python library sentinelhub-py).


Please test the cloud detector after the installation by performing a classification on a test scene provided with this package. To execute it do the following:

>>> import s2cloudless
>>> s2cloudless.test_sentinelhub_cloud_detector()

In case your installation is fine and cloud detector works properly you should get the following output:

INFO:s2cloudless.test_cloud_detector:Test OK.
Cloud probabilities and cloud masks match templates.


Jupyter notebook on how to use the cloud detector to produce cloud mask or cloud probability map can be found in the examples folder.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.